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Abstract: At the center of the macula, fovea plays an important role in computer-aided 

diagnosis. To locate the fovea, this paper proposes a vessel origin (VO)-based parabolic 

model, which takes the VO as the vertex of the parabola-like vasculature. Image processing 

steps are applied to accurately locate the fovea on retinal images. Firstly, morphological 

gradient and the circular Hough transform are used to find the optic disc. The structure of 

the vessel is then segmented with the line detector. Based on the characteristics of the VO, 

four features of VO are extracted, following the Bayesian classification procedure. Once 

the VO is identified, the VO-based parabolic model will locate the fovea. To find the fittest 

parabola and the symmetry axis of the retinal vessel, an Shift and Rotation (SR)-Hough 

transform that combines the Hough transform with the shift and rotation of coordinates is 

presented. Two public databases of retinal images, DRIVE and STARE, are used to 

evaluate the proposed method. The experiment results show that the average Euclidean 

distances between the located fovea and the fovea marked by experts in two databases are 

9.8 pixels and 30.7 pixels, respectively. The results are stronger than other methods and 

thus provide a better macular detection for further disease discovery. 
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1. Introduction 

The fovea is a small depression (about 1 mm in diameter) located in the center of the macula area of 

the retina [1]. Fovea detection is necessary because the grade of diabetic retinopathy depends on their 

distance to the fovea. Early detection and diagnosis of retinopathies decrease the risk of retinal lesion 

and effectively control the illness. However, due to problems of retinal image quality, such as poor 

contrast and physicians’ subjective observation, the diagnoses can be unstable and uncertain. 

Computer analysis systems for retinal images can offer an efficient and stable assistance for diagnosis. 

The performance of the computer analysis system is generally influenced by retinal anatomy 

detection. The fovea is difficult to observe, but it usually is where the diabetic retinopathy occurs. The 

consequence of this obvious visual structure in retinal images is that fovea localization becomes very 

difficult. Although a great deal of research has studied this issue, there are still many restrictions to 

their methods. 

The fovea region is always darker than the surrounding retinal tissue. Previous studies searched for 

it directly on retinal images. Gagnon et al. [2] located dark pigment regions to identify the potential 

fovea. Zhang and Karray [3] defined the fovea as the area with the lowest intensity. The foveae were 

identified by using matching correlation together with characteristics typical of a fovea, e.g., the 

darkest area near the optic disc, by Sinthanayothin et al. [4]. However, these methods face problems 

when the region is covered by lesions or hemorrhages. Chin et al. [5] located the fovea as the region of 

minimum vessel density within a search region which is defined by the anatomical priors. This method 

does not require parameter adjustments for different image resolution, but it relies on the quality of 

vessel segmentation. 

In the meantime, some studies utilized the location of the optic disc (OD) and vasculature features 

to detect the fovea. Li and Chutatape [6] depicted the major routes of the retinal vessels with 30 

extracted landmark points, using them to fit a parabola for the fovea localization. Foracchia et al. [7] 

proposed a method for fovea localization based on the geometrical directional pattern of the retinal 

vascular system, which can be geometrically modeled as two parabolas with the same vertex.  

Tobin et al. [8] also applied this model to find the horizontal raphe of the retina, which is a line passing 

approximately through the OD and the fovea. Fleming et al. [9] described a method whereby an 

elliptic form of the major retinal blood vessels is used to obtain approximate locations, which are 

refined by the circular edge of the optic disc and the local darkness at the fovea. Niemeijer et al. [10] 

used the local vessel geometry alongside the intensity information to detect the fovea. 

Geometrical models are usually applied for locating fovea. However, most studies based on a 

parabolic model often took the center of the OD as the vertex of the parabola-like vasculature. 

According to observation, the ideal vertex is the entry point of the main blood vessels (i.e., vessel 

origin (VO)), which is beside the OD center. Therefore, a VO-based parabolic model for fovea 

localization is proposed in this paper. This model takes the VO as the vertex of the parabola-like 
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vasculature and finds the fittest parabola with the Hough transform. The fovea is located on the 

symmetry axis of the parabola with a certain distance from the VO. 

Some studies concerning VO detection have been presented. In order to detect vessels within OD, 

Goatman, et al. [11] roughly estimated VO by selecting the darkest 20% of pixels of the OD and taking 

the mean of these pixels as the VO. This paper modifies the algorithm presented in [12] and presents a 

novel algorithm of VO detection. This can be used to improve the detection of blood vessels in OD and 

the localization of fovea. 

In order to accurately extract VO from retinal images, four features based on the characteristic of 

VO are extracted. Then Bayesian classifier is employed to locate the VO. Meanwhile, an  

Shift and Rotation (SR)-Hough transform, which combines Hough transform with the shift and 

rotation of coordinates, is presented to search for the fittest parabola. The fovea region is eventually 

located with the fittest parabola which is gained by SR-Hough transform. 

The rest of this paper is organized as follows. The methodology of fovea detection on retinal images 

is given in Section 2. The experimental results are discussed in Section 3. Finally, conclusions are 

drawn in Section 4. 

2. Materials and Methods 

A VO-based parabolic model for fovea localization is presented in this paper. To evaluate the 

performance of the proposed scheme, two available retinal databases, DRIVE [13] and STARE [14], 

are used. The DRIVE database contains 40 images, with 565 × 584 pixels and 8 bits per color channel. 

Seven retinopathy images are in this database. The STARE database consists of 81 images, with  

700 × 605 pixels and 8 bits per color channel. There are 50 retinopathy images in this database, 

including hard exudates, soft exudates, hemorrhages and neo-vascularization images. This study 

excludes three images from the DRIVE database and 32 images from the STARE database, because 

the foveae in these images were not examined by experts. A total of 17 images from DRIVE database 

are chosen for training. The surplus 20 images in the DRIVE database and 25 images randomly 

selected from the STARE database are the tested images. 

The illumination correction is performed on the green band of color retinal image, followed by the 

OD detection and blood vasculature segmentation. Then the VO features are extracted and used for 

VO localization. Once the location of the VO and the blood vasculature are acquired, the VO-based 

parabolic model works to find the most suitable parabola, which matches the vasculature. The flow 

chart of this method is shown in Figure 1 and the details are described in the following subsections. 

2.1. Illumination Correction 

Since non-uniform illumination has been a common phenomenon of images, illumination correction 

becomes an indispensable pre-processing of object localization. Some studies performed more 

thorough research of this issue [15,16], properly increasing the local contrast of the major structures in 

the image, which could ultimately raise the accuracy of structure identification. In color retinal images, 

a green channel highlights the blood vessels and the OD region. Hence, a gray level image is obtained 

by extracting the green channel from the color retinal image. 
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Figure 1. The flow chart of the fovea localization. 

 

Non-uniform illumination is always one of the main influences of feature selection, subsequently 

making OD not the brightest region and the vessels unclear. The intensity of vessels would even be 

higher than OD. In order to decrease uneven background intensity, an illumination-correction process 

described in [17] is employed. It is defined as: 
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Where I' denotes the illumination-corrected image, and I is the original gray image. μN(x,y) and σN(x,y) 

are respectively the mean and standard deviation of pixels within a N × N window centered at the  

pixel (x,y). Here, N is set as 35. The image after illumination correction is shown in Figure 2a. 

Figure 2. Images in gray level morphology processing, (a) the illumination-corrected 

image I'; (b) the vessel-removed image Ivr; (c) the image Ig after morphological gradient;  

(d) the circular border of the optic disc. 

 
(a) (b) (c) (d) 
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2.2. Optic Disc (OD) Localization 

Because the blood vessels are darker in retinal images, the gray-scale morphological closing 

operator is utilized on the illumination-corrected image to delete vessels and leave the OD and 

background complete. The coverage of the structure element b of the closing operator cannot be too 

big, or the retinal image will lose its original feature. On the other hand, if it is too small, vessels 

cannot be completely removed. Here, b is defined as a circle with 11 pixels as diameter (the largest 

vessel width). The image after closing is the vessel-removed image, Ivr, as shown in Figure 2b, in 

which the vessels were removed. 

Dilation operation expands objects in an image, while erosion operation makes it shrink. Their 

difference, referred to as the morphological gradient, emphasizes the boundaries of regions. The 

gradient image, Ig, can be obtained by applying morphological gradient on Ivr, as shown in Figure 2c. 

In order to detect the range of the OD from the gradient image, the circular Hough transform is used. 

Then, the circular contour of the OD is obtained. The OD diameter, which provides significant data for 

fovea localization in the later subsection, can be determined with this circular border. Figure 2d shows 

the circular border of the OD superimposing on the color retinal image. 

2.3. Retinal Vessel Segmentation 

To get the blood vasculature, the OD and fovea (or some other background structures)  

should be removed. The difference between the vessel-removed image Ivr (Figure 3a) and the 

illumination-corrected image I' gets the crude vessel structure image Icv. In the image Icv, background 

and OD are no longer obvious. See Figure 3b. 

Figure 3. Images in retinal vessel segmentation: (a) the vessel-removed image Ivr; (b) the 

crude vessel image Icv; (c) the image after line detector processing; (d) the Otsu binary 

image Io of (d). 

 
(a) (b) (c) (d) 

Based on the fact that the vessels are line-like and smooth, a line detector [16,18] is applied to the 

image Icv for further vessel enhancement and detection. The line detector consists of 12 oriented line 

segments passing through the center pixel p(x,y) of a square window. Each line is defined as the 

following formula, 

( ) ( ) 0cossin =−−− θθ yjxi  (2)

where (i,j) denotes a neighbor of p, and θ = 0°, 15°, 30°,…, 165°, is the slope angle of each line. 
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The average gray level is computed along each line in a fixed length l. The line strength of the pixel 

p(x,y), denoted as S(x,y), is given by the difference between L(x,y) and N(x,y). Here, L(x,y) is the 

largest average gray level among those of 12 lines, and N(x,y) is the mean intensity of the l × l square 

neighborhood. The best performance would be with l =15 pixels [16]. Since vessels are darker than the 

background, the line strength can be use to identify whether a pixel is a vessel pixel or not. After the 

line detector, the Otsu algorithm [19] is used to get the binary vasculature image Io. Note that the 

vessel structures in images (b)–(d) of Figure 3 are highlighted and given to illuminate the effect of 

each step of vessel segmentation. 

2.4. Vessel Origin (VO) Feature Selection 

According to the VO-based parabolic model, the retinal vessel origin and major blood vessels are 

employed to find the fittest parabola. Because main vessels stem from the VO, using the VO as the 

parabolic vertex can provide a better vessel structure description and fovea localization than using the 

center of OD as the parabolic vertex. In the meantime, the OD does not coincide with the geometric 

center of OD. Before VO detection, four features of VO—vessel thickness rate, vessel density,  

vessel radiation, and vessel average intensity described in [12]—are selected and presented in the 

following subsections. 

2.4.1. Vessel Thickness Rate 

The closer the vessel is to the VO, the thicker it will be. The thickness rate of a vessel pixel p(x,y) is 

defined by the ratio between the numbers of vessel pixels, within a rectangle mask centered at p(x,y), 

on the binary vascular image Io and on the binary vascular thinned image It. The binary vascular 

thinned image is obtained by the common morphological thinning operator. For details, one is referred 

to [19]. The feature map of thickness rate FVTR is represented as the following, 
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where wvtr is an elongated rectangular mask. On account that main vessels radiate from vessel origin to 

the above and the below, the size of wvtr is set as r × 2r, r denoting the radius of the optic disc.  

Symbol “ * ” represents the convolution product. Figure 4b is the feature map of thickness rate 

corresponding to Figure 4a. 

2.4.2. Vessel Density 

The vessel density of a pixel p(x,y) is defined as the number of vessel pixels within a rectangle 

mask centered at p(x,y). The feature map of vessel density is represented as the following, 

),(),( yxIwyxF ovdVD ∗=  (4)
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where the size of the mask wvd is the same as wvtr in the Equation (3). Since vessels grow out from the 

vessel origin, vessels are concentrated around the vessel origin, and the value of vessel density in this 

region is larger than that in others. A vessel density map is shown in Figure 4c. 

Figure 4. An example of feature maps, (a) the original image; (b) the thickness rate feature 

map FVTR; (c) the density feature map FVD; (d) the radiation feature map FVR; (e) the 

average intensity feature map FVAI. 

(a) (b) (c) (d) (e) 

2.4.3. Vessel Radiation 

The vessel radiation of a pixel p(x, y) is defined as: 

 ⋅=
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Where n denotes the number of neighbors in the mask region centered at p(x, y). it


 denotes the vessel 

flux through the ith neighbor, which is tangent to the vessel segment. ia


 is the vector from the ith 

neighbor to the center of mask region. 

ai is the magnitude of vector ia


(i.e., ii aa
=

). The dot product of it


 and ii aa /


 means the 

component of it


 in ia


direction. In Equation (5), size of the mask is r × 2r, r denotes the radius of optic 

disc, and n equals 2r2. The radiation is calculated to get the radiation image FVR, as shown in Figure 4d. 

The gray level amount in the image FVR is the value of the radiation feature. The vessel radiation of a 

pixel p(x,y) represents the radiating level of blood vessels which emit from p(x,y). As retinal vessels 

grow out from vessel origin, vessel radiation around vessel origin is always higher. 

2.4.4. Vessel Average Intensity 

The vessel average intensity of a pixel p(x,y) is the average gray level in a 5 × 5 window centered at 

p(x,y). To get this mean feature map FVAI, as shown in Figure 4e, the average value is calculated with 

the illumination-corrected image I'. The intensity around vessel origin would be darker because of the 

vascular structure around it. 

2.5. VO Localization 

Since the Bayesian classifier is robust against retinal lesion in the images of the training set, it is 

chosen for retinal vessel origin detection. Pixels are classified into two classes, vessel origin (VO) and 
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non-vessel origin (NVO). The pixel with the maximal average likelihood ratio of a posteriori 

probabilities is chosen as the vessel origin. This is described in detail in the following. 

Based on the four features mentioned in the previous subsections, each pixel is associated with  

a multivariate feature vector x. The multivariate Gaussian density function is used to model the 

conditional densities [20], which are given as:  
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Where ΣVO and ΣNVO are covariance matrices, and μVO and μNVO are the population mean vectors 

generated from the training data set for classes VO and NVO, respectively. 

On the basis of the Bayes rule, the well-known likelihood ratio of a posteriori probabilities is 

defined as follows [8]: 
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Where p(CVO) and p(CNVO) denote the a priori probabilities of VO and of NVO, respectively. 

Accordingly, the likelihood ratio function Rllh builds a confidence map, denoted as FC. The VO 

location (h,k) is defined as the point (x,y) having the maximal average confidence value. This is 

presented as the following:  
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Where w is an r × r mean filter, and symbol “ * ” represents the convolution product. Here, r is the 

radius of optic disc. 

2.6. Fovea Localization 

The main retinal vessels distribute as a parabolic curve, and the symmetry axis of retina vasculature 

passes through the VO. The fovea lies on the symmetry axis in a distance of 2.5 OD diameters away 

from the VO [6,21]. Here, a Hough transform is employed to search for the fittest parabola and 

symmetry axis of the retinal vessel. In order to reduce the dimension of parameter space of Hough 

transform, the origin of the coordinate system is shifted to the VO, and then the coordinate axes are 

rotated about the VO. Therefore, an SR-Hough transform is proposed, which combines the Hough 

transform with coordinate transformation. In the meantime, to speed up the process of the Hough 

transform, the small vessels of vasculature on the binary vessel image Io are pruned by the 

morphological opening processing before applying the SR-Hough transform. 

A coordinate transformation integrating the shift and rotation of coordinates is performed. As 

shown in Figure 5, a Cartesian coordinate system, denoted by x-y and originating at the upper-left 
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corner in the image, is given. A second Cartesian coordinate system, denoted by x'-y', is obtained by 

shifting the origin of the x-y plane to the VO location (i.e., taking it as the origin of the x'-y' coordinate 

system) and rotating it in a counter-clockwise direction through an angle θ around the new origin. 

Figure 5. (a) The proposed parabolic model; (b) the fittest parabola superimposing on the 

retinal vessel structure. 

(a) (b) 

The coordinate transform is defined as:  
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Where (h,k) denotes the origin of the x'-y' plane. The coordinate (x,y) is an arbitrary point relative to 

the x-y coordinate system, while the coordinates (x',y') are relative to the x'-y' coordinate system. After 

rotating through an angle α, the symmetry axis of the fittest parabola is exactly closed with the x' axis 

of the x'-y' coordinate system. Therefore, the fittest parabola can be expressed as the following, 

xcy ′=′ 42  (11)

Where c is the focal length of the parabola. Substituting x' and y' in Equation (10) into Equation (11) 

leads to the Equation (12), 
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This parabola is utilized to estimate the parameters (α,c) with the Hough transform. In principle, the 

Hough transform [19] maps the points in the x-y plane to the α-c plane. All the points on this parabola 

have the same values of α and c in the α-c parameter space. For every vessel point in the x-y plane, let 

α equal to each of the subdivision value on the α-axis (here, 0≤α<359° for 1° step) and solve for the 
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corresponding c that satisfies Equation (12). Then, the c value is rounded off to the nearest integer. The 

cell at coordinates (i,j), with accumulator value A(i,j), corresponds to the square associated with parameter 

space coordinates (αi,cj). While a choice of αl yields solution cm, then let A(l, m) = A(l, m) + 1. A value of  

n in A(i, j) means that n points in the x-y plane lie on a parabola, of which α = αi, and c = cj . 

Once all the vessel points have been processed, the fittest parabola can be determined by finding the 

(α, c) fittest of the parabola according to the following equations. 

)},({maxarg),( jiAqp =  (13)

),(),( qpfittest cc αα =  (14)

The rough location of fovea, denoted as (u,v), lies on the symmetry axis of the parabola in a 

distance of 2.5 OD diameters from the VO. Figure 6 shows an example of the location of fovea 

obtained by the VO-based parabolic model. In order to refine the fovea location, a square region 

centered at (u,v) with a length of 1.6 times the OD diameters is cropped from the vessel-removed 

image Ivr. Then, the centroid of the 6% lower intensity pixels within the square region is regarded as 

the fovea location. 

Figure 6. The upper row shows the original images, and the lower row illustrates the rough 

position of the fovea, marked with the white small triangle. 

  

  

3. Results and Discussions 

3.1. Results 

Most of the work on locating the fovea on retinal images is evaluated by measuring the distance 

between the located fovea center and the ground truth [1]. In this work, the ground truth of each retinal 

image is the average of coordinates manually marked by two experts. Figure 7 shows some examples of 

the fovea localization obtained by each method. Figures 8 and 9 show the comparison of the Euclidean 

distance between the fovea obtained by each method and that given by experts. Essentially,  
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Walter et al. [22] and Mahfouz et al. [23] only reveal the OD detection algorithms. Their fovea data 

are both obtained by the traditional parabolic model, which takes the OD center as the vertex of the 

parabolic-like vasculature. The results reflect the superiority of taking the VO as the vertex of the 

parabolic model. As one can see, the Euclidean distance of the proposed method is small and stable. In 

contrast, the Euclidean distance of other methods show the stark rises and falls. 

Figure 7. Examples of the fovea location. The fovea given by experts is at the center of the 

image. Each note denotes the fovea obtained by the related method, “ + ”: Mahfouz et al. 

method, “ □ ”: Walter et al. method, “ × ”: Sinthanayothin et al. method, and “ ■ ”: the 

proposed method. 

 

Figure 8. The comparison of the Euclidean distance between the fovea location in each 

method and expert location (DRIVE). 
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Figure 9. The comparison of Euclidean distance between the fovea location in each 

method and expert location (STARE). 

 
Table 1 lists the average Euclidean distance between the fovea obtained by each method and  

that given by experts. The results gained by the proposed scheme are 9.8 pixels in DRIVE database, 

30.7 pixels in STARE database, which are much better than the other methods. It shows that replacing 

the OD center with the VO as the vertex of parabolic model locates the fovea more accurately. 

Table 1. The average of the Euclidean distance (in pixels) between the fovea obtained by 

each method and that given by experts. 

Method DRIVE STARE

Proposed method 9.8 30.7 
Mahfouz et al. [23] 13.1 79.7 
Walter et al. [22] 23.9 53.1 
Kovacs et al. [24] 16.2 - 
Sinthanayothin et al. [4] 19.1 56.3 

3.2. Discussions 

The proposed algorithm provides a better performance and works well even with the existence of 

exudative lesions or bright artifactual features. However, it tends to produce false fovea detection if 

there are large hemorrhages around the fovea, especially in the STARE dataset. Another factor 

decreasing the precision of the method is raised by the vessel segmentation due to the presence of 

heavy pathologies. A novel vessel segmentation algorithm [25–27] may be taken into account to 

improve the vessel segmentation in the future. 

The retinopathy analysis depends on the fovea localization. The detection of hard exudates is not 

enough to grade the diabetic macular edema, because the distribution of exudates around the fovea also 

needs to be considered. Therefore, the proposed approach for locating fovea may provide a better 

macular detection for further disease detection. 
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In this paper, we supposed that the fovea is considered as a point (as most of the published  

works did), and evaluated the performance by measuring the distance between the located fovea center 

and the ground truth point. The measurement of the fovea area is challenging work that necessitates  

future development. 

4. Conclusions 

This paper presents a fovea-detection method based on the VO parabolic model, which takes VO as 

the vertex of a parabola-like vasculature. During the fovea-detecting process, the vessel structure map 

is a prerequisite obtained by using mathematic morphology and a line detector. Four VO features are 

subsequently selected for the VO localization. Concurrently, an SR-Hough transform reduces the 

parameter dimensions of the parabolic Hough transform and speeds up the fovea-locating procedure. 

The proposed algorithm performs better than some other methods, and it works automatically. 

However, if there are large hemorrhages around the fovea, this method sometimes results in false fovea 

detection. An extension of this study could entail the following: first, improving the vessel 

segmentation algorithm; second, detecting exudates; and third, grading diabetic macular edema. 

Acknowledgment 

This research was supported by the National Science Council R.O.C. under Grant NSC  

102-2221-E-005-082. The authors thank A. Hoover for making his database publicly available. 

Author Contributions 

All authors carried out the work collaboratively. Chun-Yuan Yu and Shyr-Shen Yu conceived of 

and implemented the algorithm. Chen-Chung Liu helped interpret the results. All authors drafted the 

manuscript together.  

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Gegundez-Arias, M.E.; Marin, D.; Bravo, J.M.; Suero, A. Locating the Fovea Center  

Position in Digital Fundus Images Using Thresholding and Feature Extraction Techniques. 

Comput. Med. Imaging Graph. 2013, 37, 386–393. 

2. Gagnon, L.; Lalonde, M.; Beaulieu, M.; Boucher, M.C. Procedure to Detect Anatomical 

Structures in Optical Fundus Images. Proc. SPIE 2001, doi:10.1117/12.430999. 

3. Zhang, B.; Karray, F. Optic disc and fovea detection via multi-scale matched filters and a vessels’ 

directional matched filter. In Proceedings of the 2010 International Conference on Autonomous and 

Intelligent Systems (AIS), Povoa de Varzim, Portugal, 21–23 June 2010; pp. 1–5. 

4. Sinthanayothin, C.; Boyce, J.; Cook, H.; Williamson, T. Automated Localization of the Optic 

Disc, Fovea, and Retinal Blood Vessels from Digital Colour Fundus Images. Br. J. Ophthalmol. 

1999, 83, 902–910. 



Algorithms 2014, 7 469 

 

 

5. Chin, K.S.; Trucco, E.; Tan, L.; Wilson, P.J. Automatic Fovea Location in Retinal Images Using 

Anatomical Priors and Vessel Density. Pattern Recognit. Lett. 2013, 34, 1152–1158. 

6. Li, H.; Chutatape, O. Automated Feature Extraction in Color Retinal Images by a Model Based 

Approach. IEEE Trans. Biomedical Eng. 2004, 51, 246–254. 

7. Foracchia, M.; Grisan, E.; Ruggeri, A. Detection of Optic Disc in Retinal Images by Means  

of a Geometrical Model of Vessel Structure. IEEE Trans. Med. Imaging 2004, 23, 1189–1195. 

8. Tobin, K.W.; Chaum, E.; Govindasamy, V.P. Detection of Anatomic Structures in Human Retinal 

Imagery. IEEE Trans. Med. Imaging 2007, 26, 1729–1739. 

9. Fleming, A.D.; Goatman, K.A.; Philip, S.; Olson, J.A.; Sharp, P.F. Automatic Detection of Retinal 

Anatomy to Assist Diabetic Retinopathy Screening. Phys. Med. Biol. 2007, 52, 331–345. 

10. Niemeijer, M.; Abràmoff, M.D.; van Ginneken, B. Automated Localization of the Optic Disc and 

the Fovea. In Proceedings of the IEEE EMBS Conference on 30th Annual International, 

Vancouver, BC, Canada, 2008; pp. 3538–3541. 

11. Goatman, K.A.; Fleming, A.D.; Philip, S.; Williams, G.J.; Olson, J.A.; Sharp, P.F. Detection of 

New Vessels on the Optic Disc Using Retinal Photographs. IEEE Trans. Med. Imaging 2011, 30, 

972–979. 

12. Yu, C.Y.; Liu, C.C.; Wu, J.L.; Yu, S.S.; Huang, J.Y. A Study of Vessel Origin Detection on 

Retinal Images. In Proceedings of IEA/AIE 2013 Conference, Amsterdam, Netherlands, 17–21 

June 2013. 

13. University Medical Center Utrecht, Image Sciences Institute. Available online: 

http://www.isi.uu.nl/Research/ Databases/DRIVE (accessed on 20 October 2011). 

14. Hoover, A. Structured Analysis of the Retina Project Website. Available online: 

http://www.ces.clemson.edu/~ahoover/stare (accessed on 10 September 2009). 

15. Foracchia, M.; Grisan, E.; Ruggeri, A. Luminosity and Contrast Normalization in Retinal Images. 

Med. Image Anal. 2005, 9, 179–190. 

16. Ricci, E.; Perfetti, R. Retinal Blood Vessel Segmentation Using Line Operators and Support Vector 

Classification. IEEE Trans. Med. Imaging 2007, 26, 1357–1365. 

17. Hsiao, H.K.; Liu, C.C.; Yu, C.Y.; Kuo, S.W.; Yu, S.S. A Novel Optic Disc Detection Scheme on 

Retinal Images. Expert Syst. Appl. 2012, 39, 10600–10606. 

18. Zwiggelaar, R.; Astley, S.M.; Boggis, C.R.M.; Taylor, C.J. Linear Structures in Mammographic 

Images: Detection and Classification. IEEE Trans. Med. Imaging 2004, 23, 1077–1086. 

19. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Pearson: New Jersey, NJ,  

USA, 2010. 

20. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley: New York, NY,  

USA, 2001. 

21. Niemeijer, M.; Abràmoff, M.D. Segmentation of the Optic Disc, Macula and Vascular Arch in 

Fundus Photographs. IEEE Trans. Med. Imaging 2007, 26, 116–127. 

22. Walter, T.; Klein, J.C.; Massin, P.; Erginay, A. A Contribution of Image Processing to the Diagnosis 

of Diabetic Retinopathy—Detection of Exudates in Color Fundus Images of the Human Retina. 

IEEE Trans. Med. Imaging 2002, 21, 1236–1243. 

23. Mahfouz, A.E.; Fahmy, A.S. Fast Localization of the Optic Disc Using Projection of Image 

Features. IEEE Trans. Image Process. 2010, 19, 3285–3289. 



Algorithms 2014, 7 470 

 

 

24. Kovacs, L.; Qureshi, R.J.; Nagy, B.; Harangi, B.; Hajdu, A. Graph based detection of optic disc 

and fovea in retinal images. In Proceedings of the 2010 4th International Workshop on Soft 

Computing Applications (SOFA), Arad, Romania, 15–17 July 2010; pp. 143–148. 

25. Conversano, F.; Franchini, R.; Demitri, C.; Massoptier, L.; Montagna, F.; Maffezzoli, A.;  

Malvasi, A.; Casciaro, S. Hepatic vessel segmentation for 3D planning of liver surgery: 

Experimental evaluation of a new fully automatic algorithm. Acad. Radiol. 2011, 18, 461–470. 

26. Nguyen, U.T.V.; Bhuiyan, A.; Park, L.A.F.; Ramamohanarao, K. An Effective Retinal Blood Vessel 

Segmentation Method using Multi-scale Line Detection. Pattern Recognit. 2013, 46, 703–715. 

27. Bhuiyan, A.; Kawasaki, R.; Lamoureux, E.; Ramamohanarao, K.; Wong, T.Y. Retinal Artery-Vein 

Caliber Grading Using Color Fundus Imaging. Comput. Methods Programs Biomed. 2013, 111, 

104–114. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


