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Abstract: We propose a linear time algorithm, called G2DLP, for generating 2D lattice 
L(n1, n2) paths, equivalent to two-item }B,{A 21 nn  multiset permutations, with a given 

number of turns. The usage of turn has three meanings: in the context of multiset 

permutations, it means that two consecutive elements of a permutation belong to two 

different items; in lattice path enumerations, it means that the path changes its direction, 

either from eastward to northward or from northward to eastward; in open shop scheduling, 

it means that we transfer a job from one type of machine to another. The strategy of 

G2DLP is divide-and-combine; the division is based on the enumeration results of a 

previous study and is achieved by aid of an integer partition algorithm and a multiset 

permutation algorithm; the combination is accomplished by a concatenation algorithm that 

constructs the paths we require. The advantage of G2DLP is twofold. First, it is optimal in 

the sense that it directly generates all feasible paths without visiting an infeasible one. 

Second, it can generate all paths in any specified order of turns, for example, a decreasing 

order or an increasing order. In practice, two applications, scheduling and cryptography, 

are discussed. 

Keywords: Lattice Path; Multiset Permutation; Turns; Integer Partition; Cryptography; 

Open Shop Scheduling 

 

1. Introduction 

It is common to find ourselves confronted with problems in which an exhaustive examination of all 

solutions is necessary or desirable [1]. However, we do not want to use brute force to go through all 
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possible solutions. Therefore, there is a clear need to design an efficient algorithm that can eliminate 

certain cases from consideration. More than this, our goal is to design an optimal algorithm, whereby 

all infeasible solutions can be ignored. That is, it directly generates all feasible solutions without 

visiting any infeasible solutions. For example, we have proposed an algorithm for generating all 

permutations of {1, 2, … , n} with a given number of inversions, while never visiting any of the 

unqualified permutations [2]. In most applications of permutation generation we are interested in 

minimizing the total running time, not the maximum time between successive visits [1].  

In this study, by utilizing the enumeration results of a previous study [3] and the method of integer 

partition, we propose an optimal algorithm for generating 2D lattice L(n1, n2) paths according to a 
given number of turns. It identically generates two-item }B,{A 21 nn  multiset permutations according to 

a given number of turns. Herein, 2D lattice L(n1, n2) denotes an integer rectangular lattice that has a 

horizontal x-axis and a vertical y-axis. A path is a route that starts at point (0, 0) then moves through a 

succession of steps, usually under the step set {<1, 0>, <0, 1>}, and finally ends at the target point  

(n1, n2). In other words, after leaving the starting point (0, 0), the path can apply unit steps only 

eastward or northward, but can change direction at any point (x, y) until it reaches the target point  
(n1, n2). Some studies deal with an under-diagonal path that only contains points (x, y) with yx  , for 

example [4]. Some studies deal with a higher dimensional lattice, for example [5]. For a 

comprehensive survey on the topic of lattice paths, please see [6]. 

The word “multiset” (often shortened to mset) which abbreviates the term “multiple-membership 

set”, is now the commonly accepted name for replacing “bag”, “bunch”, “weighted set”, “occurrence 

set”, “heap”, “sample”, and “fireset” [7]. A multiset is a set such that each item in the set has a 

multiplicity that specifies how many times the item repeats, and the cardinality of a multiset is the sum 

of the multiplicities of its all items. In short, a multiset is a set with repeated items. Obviously, a set is a 

special case of multiset in which each item occurs only once. Multisets are of interest in mathematics, 

physics, philosophy, logic, linguistics and computer science [7]. Many studies have been devoted to 

multiset permutations [8–15]. However, we know of no published algorithms for generating multiset 

permutations with a given number of turns. 

There are various motivations behind the interest in the turn enumeration of lattice paths. 

Krattenthaler described three motivations from probability, statistics, and commutative algebra, 

respectively [16]. He also showed the wide diversity of connections and applications in other domains 

like combinatorics, representation theory, and q-series. The motivation of our studies on the topic of 

lattice path was inspired by trying to solve a kind of open shop scheduling problem that is concerned 

with setup time among different types of machines [17]. Here, setup time means the delay time that 

occurs when we arrange the processing route (or path) of a job from one type of machine to another. 

This kind of open shop scheduling problem is, intrinsically, a multiset permutation problem, while the 

latter is, essentially, a lattice path enumeration problem. 

Therefore, in this study, turn has three meanings. In open shop scheduling problems, it means that 

we transfer a job from one type of machine to another type of machine; in multiset permutation 

problems, it refers to two consecutive elements of a permutation that belong to two different items (In 

fact, the number of turns of a multiset permutation is equal to the number of blocks of a multiset 

permutation minus one, if we call a block as a maximal sequence of consecutive elements that are 

belonging to same item. Note that, in a permutation of a set of n integers, a maximal sequence of 
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consecutive integers that appear in consecutive positions is called a block. For example, the 

permutation π = (456723189) contains four blocks namely 4567, 23, 1, and 89.); in lattice path 

enumeration problems, it means that the path changes its direction either from eastward to northward 

(called an EN-turn) or from northward to eastward (called an NE-turn). Viewed in this light, the 

number of turns of paths in a 2D lattice L(n1, n2) can be regarded in the same way as in a permutation 
statistics, referring to turns of a two-item }n,{e 21 nn  multiset permutation. Here, notation “e” denotes 

eastward, and notation “n” denotes northward. Since we have studied the enumeration of a 2D lattice 

path with a given number of turns, it is natural to a step further: from enumerating to generating. 

The remainder of this paper is organized as follows. In Section 2, the proposed algorithm is 

described. In Section 3, analyses of algorithms are discussed. In Section 4, some experimental results 

are presented. In Section 5, two applications, scheduling and cryptography, are discussed. Finally, 

conclusions are summarized and a concomitant problem is proposed for future research. 

2. Algorithms  

In this Section, we propose an optimal algorithm for generating 2D lattice L(n1, n2) paths according 

to a given number of turns. For completeness, the following results are introduced without proof [3]. 

Note that, throughout the paper, all variables are positive integers.  

Definition 1. Let t denote the number of turns of a path that has a EN-turns and b NE-turns, that is, 

bat  . 

Lemma 1. 0 ba  or 1 ba . 

Lemma 2. If t is even )2( k , then kba  . If t is odd )12( k , then ka  and 1 kb  when first 

step is eastward, or 1 ka  and kb   when first step is northward. 

Lemma 3. For a 2D integer rectangular lattice L(n1, n2), 01 n  and 02 n , assume that 21 nn  the 

minimum number of turns of a path is one and the maximum number of turns of a path is 12 1 n  if 

21 nn   or 12n  if 21 nn  . 

Theorem 1. Let ),,( 21 tnnP denote the number of paths with a given number of turns t, then: 
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northward. The reason is explained as follows. For a path with even (2k) turns, by Definition 1 and 

Lemma 2, we know that it must be composed of k EN-turns and k NE-turns. Thus, when the first step 
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is eastward, what we need to do in the whole route is choose k points from 11 n  points and 

choose 1k  points from 12 n  points; when the first step is northward, what we need to do in the 

whole route is choose k points from 12 n  points and choose 1k  points from 11 n  points. Since the 

first step is either eastward or northward, we have the identity (1). 

Similarly, for a path with odd ( 12 k ) turns, by Definition 1 and Lemma 2, we know that it must be 

composed of k NE-turns and 1k  EN-turns when first step is northward, or that it must be composed 

of k EN-turns and 1k  NE-turns when first step is eastward. Thus, when the first step is northward, 
what we need to do in the whole route are choose 1k  points from 12 n  points and choose 1k  

points from 11 n  points; when the first step is eastward, what we need to do in the whole path are 

choose 1k  points from 11 n  points and choose 1k  points from 12 n  points. Since the first step 

is either northward or eastward, we have the identity (2). 

Based on Theorem 1, we propose the Algorithm G2DLP where two Algorithms H and L, borrowed 

from others with some amendments and additions to meet the purpose of this study, are embedded 

respectively in Algorithms Partition and Permute. (The Algorithm G2DLP is put in Appendix) 

Algorithm Partition is based on an Algorithm H that generates all partitions of an integer [18] (p. 38). 

Since Algorithm H treats, for example partitioning integer 11 into 4 parts, a partition of 8111 as same 

as another partition of 1811, we need to call Algorithm Permute to permute the partitions produced by 

Algorithm H. On the other hand, Algorithm Permute is based on an Algorithm L that generates all 

permutations of a multiset in lexicographic order [1] (pp. 39–40). Since Algorithm L assumes that the 

initial elements are in a non-decreasing order but Algorithm H produces partitions of an integer in a 

colex order (That is, lexicographic order of the reflected sequence.), we have to reverse the elements of 

a partition, provided by Algorithm H, in accordance with Algorithm L. 

The strategy of G2DLP is divide-and-combine. According to a given number of turns t, we first 

delicately divide n1 and n2, the x-axis and vertical y-axis of a 2D lattice L(n1, n2), to several small parts 

respectively, totally 1t  parts. The division is based on the identities (1) and (2) and achieved by aid 

of an integer partition algorithm (Partition) and a multiset permutation algorithm (Permute). Then 

combine these small parts, by Algorithm Concatenate, to a path that is we require. 

Note that, in 2D lattice L(n1, n2), from the starting point (0, 0), if the first step is eastward then 
totally there are 11 n  points the path can choose that will not arrive directly to the target point (n1, n2); 

if the first step is northward then totally there are 12 n  points the path can choose that will not arrive 

directly to the target point (n1, n2). It is also worth noting that the upper indexes 11 n  and 12 n  in 

Theorem 1 stands for how many choices of point we can choose to change a path’s direction, and the 
parameters 1_n  and 2_n  in Algorithm G2DLP stand for what integer we want to partition. The 

relations between parameters ( 1_n  and 2_n ) and upper indexes ( 1n  and 2n ) are 11_ nn   and 

22_ nn   respectively. Similarly, the lower indexes 1k  and k  in Theorem 1 stand for how many 

decisions of point we have to make to change a path’s direction, and that the parameters k and k+1 in 

Algorithm G2DLP stand for how many parts we want to partition an integer. The relation between 

parameters (k and k+1) and lower indexes ( 1k  and k) is k k.  
Why are 11 n  and 12 n  in the upper index of Theorem 1 but we use n_1 and n_2 in Algorithm 

G2DLP? Why are 1k  and k  in the lower index of Theorem 1 but we use k and k+1 in Algorithm 
G2DLP? The reasoning is that when we choose 1k  (or k) points from 11 n  (or 12 n ) points it 

means we partition an integer 1n  (or 2n ) into k (or 1k ) parts. 
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We will present the experimental results, in Section 4, on some cases of 2D lattice L(n1, n2) in Table 1. 

For a 2D lattice L(3, 4), if we set 2t , then after two callings of Algorithm Partition and those 

concomitant callings of Algorithm Permute, the contents of arrays perm1 and perm2 are {(1, 2), (2, 1)} 

and {(4)} respectively. Now, when calling Concatenate (parts, “e”, “n”), we alternatively access these 

two array through three pickups. The first parameter of algorithm Concatenate, parts, means we have 

decomposed a path to parts parts. Here, since t = 2 we have parts = 3. Therefore, we need three 

pickups to construct a path. First, we pick up the first element of (1, 2), here is 1, then pick up the first 

element of (4) and finally pick up the second element of (1, 2), here is 2, thus we have one “e”, four 

“n”, and two “e”, that is “ennnnee.” Next, we pick up the first element of (2, 1), here is 2, then pick up 

the first element of (4) and finally pick up the second element of (2, 1), here is 1, thus we have two “e”, 

four “n”, and one “e”, that is “eennnne.” The two paths, numbered 3 and 4, can be found in Table 2, 

which is presented in Section 4.  

3. Analyses 

Obviously, the problem of generating 2D lattice L(n1, n2) paths according to a given number of 

turns is more challenging than a simple multiset permutation problem. This is because, for a simple 

multiset permutation algorithm, to generate permutations with a given number of turns, it requires both 

a time to generate all permutations and a time to perform additional comparisons and calculations to 

pick out those permutations with a given number of turns. Furthermore, if we want generate all paths 

in a specified order of turns, for example a decreasing or an increasing, we must spend additional time 

to sort them according to the number of turns they have. Not surprisingly, we can easily prove the 

following theorem. 

Theorem 2. The time complexity of a simple multiset permutation algorithm for generating  

two-item }B,{A 21 nn multiset permutations according to a given number of turns is )( 5.0
2
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then after multiplying the term by 1n  we have )( 5.0
2

5.0
1
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 nn
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nn

n
O . Moreover, in the case of 21 nn   

the time complexity is ).2( 15.0 nnO  In other words, the running time is exponential growth on the 

problem size n. □ 
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Fortunately, the proposed Algorithm G2DLP significantly reduces this time complexity to a linear 

order. Now, let us analyze the complexity of three components of Algorithm G2DLP individually. 

Since the amendments and additions to Algorithms H and L have little influence in time complexity, 

we can directly use the time complexity of Algorithms H and L, respectively, to stand for the time 

complexity of Algorithms Partition and Permute. First, if we let 
m

n
 denote the number of partitions 

of n that have exactly m parts, then the running time per partition of Algorithm Partition is 
m

n
m /3 . 

By Knuth [18] (p. 39), we know that the total running time of Algorithm H is at most a small constant 

multiplied by the number of partitions visited, plus O(m). The key quantity is the value of j, in H4, the 
smallest subscript for which 11  aa j . Let )(ncm  be the accumulated total value of 1j  summed 

over all of the 
m

n
 partitions generated by Algorithm H. Knuth [18] (p. 50) has proved that the cost 

measure )(ncm  for Algorithm H is at most m
m

n
3 . Regard 

m

n
ncm /)(  as a good indicator of the 

running time per partition, therefore, the running time per partition of Algorithm H is 
m

n
m /3 . 

Second, with regard to the Algorithm Permute, the running time is reasonably efficient [1] (p. 40). 

When the partition produced by Algorithm H is simply a set containing distinct elements, for example 

5321 as a partition of partitioning integer 11 into 4 parts, the means of the number of comparisons by 

step L2 and step L3 are about 1.718 and 1.359, respectively [1] (pp. 101–102); and the average number 

of interchanges in step L4 is about 0.543 [1] (p. 102). On the other hand, when the partition produced 

by Algorithm H is a multiset, for example 7211 as a partition of partitioning integer 11 into 4 parts, the 

means of the number of comparisons by step L2 and step L3 are a little more complicated; even so, it 

is reasonably efficient. For details, see [1] (p. 102). 

Finally, as to the Algorithm Concatenate, for generating a path, it only performs n_1 + n_2 

concatenations (either “e” or “n”). These concatenations are accomplished by parts pickups that access 

the two arrays, perms1 and perms2, alternatively. Moreover, since Algorithm G2DLP generates all 

feasible paths without visiting any infeasible ones, we claim that Algorithm G2DLP is a linear time, or 

CAT algorithm. An algorithm runs in constant amortized time (CAT) if the amount of computation, 

after a small amount of preprocessing, is proportional to the number of objects that are generated [19]. 

What they call CAT has been called linear by Reingold, Nievergelt, and Deo [20], and in  

several papers [21]. The experimental results, in next Section, Tables 3 and 4 and Figure 1 will support 

this assertion, Table 5 and Figure 2 will support the Theorem 2. 

4. Experimental Results 

In the following, we present path distributions with respect to their number of turns on some cases 
of two-item }n,{e 21 nn  multiset in Table 1. Among then, all paths of the 2D lattice L(3, 4) generated by 

G2DLP are presented, according to the number of turns, in Table 2. 
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Table 1. The path distributions with respect to their number of turns. 

Turns 
n1 3 4 4 4 4 4 5 5 5 5 5 5 
n2 4 6 7 8 9 10 6 7 8 9 10 11 

1 2 2 2 2 2 2 2 2 2 2 2 2 
2 5 8 9 10 11 12 9 10 11 12 13 14 
3 12 30 36 42 48 54 40 48 56 64 72 80 
4 9 45 63 84 108 135 70 96 126 160 198 240 
5 6 60 90 126 168 216 120 180 252 336 432 540 
6 1 40 75 126 196 288 100 180 294 448 648 900 
7 0 20 40 70 112 168 80 160 280 448 672 960 
8 0 5 15 35 70 126 30 80 175 336 588 960 
9 0 0 0 0 0 0 10 30 70 140 252 420 

10 0 0 0 0 0 0 1 6 21 56 126 252 
Total Paths 35 210 330 495 715 1001 462 792 1287 2002 3003 4368 

Table 2. All paths of the 2D lattice L(3, 4). 

Path Number Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Number of Turns
1 e e e n n n n 1 
2 n n n n e e e 1 
3 e n n n n e e 2 
4 e e n n n n e 2 
5 n e e e n n n 2 
6 n n n e e e n 2 
7 n n e e e n n 2 
8 e n e e n n n 3 
9 e n n n e e n 3 

10 e n n e e n n 3 
11 e e n e n n n 3 
12 e e n n n e n 3 
13 e e n n e n n 3 
14 n e n n n e e 3 
15 n e e n n n e 3 
16 n n n e n e e 3 
17 n n n e e n e 3 
18 n n e n n e e 3 
19 n n e e n n e 3 
20 e n e n n n e 4 
21 e n n n e n e 4 
22 e n n e n n e 4 
23 n e n e e n n 4 
24 n e e n e n n 4 
25 n e n n e e n 4 
26 n e e n n e n 4 
27 n n e n e e n 4 
28 n n e e n e n 4 
29 e n e n e n n 5 
30 e n e n n e n 5 
31 e n n e n e n 5 
32 n e n e n n e 5 
33 n e n n e n e 5 
34 n n e n e n e 5 
35 n e n e n e n 6 
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To confirm the claim that the Algorithm G2DLP is a linear time algorithm, we perform a series of 

experiments and present the results in Table 3 and Figure 1. The running time (h: m: s) is for 

generating only but without printing out the paths, by using an Acer ® notebook with an  

Intel® Core™ i5-4200U CPU @ 1.6 GHz and a VBA program executed under the Microsoft Excel 

environment. Based on the experimental results in Table 3 and Figure 1, we confirm that Algorithm 

G2DLP is a linear time algorithm. 

Table 3. Running Time of G2DLP vs. Total Paths. 

n1 n2 Total Paths Running Time (h:m:s) n1 n2 Total Paths Running Time (h:m:s)
7 13 77520 0:00:01 9 15 1307504 0:00:13 
9 10 92378 0:00:01 11 12 1352078 0:00:12 
7 14 116280 0:00:01 10 14 1961256 0:00:18 
8 12 125970 0:00:01 11 13 2496144 0:00:23 
9 11 167960 0:00:01 12 12 2704156 0:00:25 
7 15 170544 0:00:01 10 15 3268760 0:00:31 

10 10 184756 0:00:02 11 14 4457400 0:00:43 
8 13 203490 0:00:02 12 13 5200300 0:00:51 
9 12 293930 0:00:03 11 15 7726160 0:01:17 
8 14 319770 0:00:02 12 14 9657700 0:01:38 

10 11 352716 0:00:04 13 13 10400600 0:01:46 
8 15 490314 0:00:05 12 15 17383860 0:03:09 
9 13 497420 0:00:04 13 14 20058300 0:03:31 

10 12 646646 0:00:07 13 15 37442160 0:06:43 
11 11 705432 0:00:06 14 14 40116600 0:07:11 
9 14 817190 0:00:07 14 15 77558760 0:14:31 

10 13 1144066 0:00:13 15 15 155117520 0:29:36 

 

Figure 1. Running Time of G2DLP vs. Total Paths. 

 

In order to highlight the superiority of Algorithm G2DLP, we perform a series of experiments and 

present the running times for generating 2D lattice L(15, 15) paths, according to the number of turns, 

in the following Table 4. Note that we skip the two trivial paths that with number of turns 1. From the 

results of Table 4, it is easy to know that, on average, the running time of Algorithm G2DLP for 

generating a path is almost a constant (mean: 6109   seconds, standard deviation: 6108.7   seconds). 

This result confirms again that Algorithm G2DLP is a linear time algorithm. 
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Table 4. Running Time of G2DLP for 2D lattice L(15, 15). 

Number of 
Turns 

Number of 
Paths 

Running Time 
(h:m:s) 

Number of 
Turns 

Number of 
Paths 

Running Time 
(h:m:s) 

2 28  0:00:00 16 20612592 0:04:36 
3 392  0:00:00 17 18036018 0:04:03 
4 2548  0:00:00 18 12024012 0:02:50 
5 16562  0:00:00 19 8016008 0:01:56 
6 66248  0:00:00 20 4008004 0:01:01 
7 264992 0:00:03 21 2004002 0:00:32 
8 728728 0:00:08 22 728728 0:00:12 
9 2004002 0:00:21 23 264992 0:00:04 

10 4008004 0:00:44 24 66248 0:00:01 
11 8016008 0:01:43 25 16562  0:00:00 
12 12024012 0:02:19 26 2548  0:00:00 
13 18036018 0:03:32 27 392  0:00:00 
14 20612592 0:04:11 28 28  0:00:00 
15 23557248 0:04:59* 29 2  0:00:00 

* Please refer to the running time listed at the bottom row of Table 5. 

 

To confirm the assertion of Theorem 2, we perform a series of experiments, by using a simple 

multiset permutation algorithm Permute+. Here, we only include the L2, L3, L4 parts of Algorithm 

Permute, and substitute L1 part with a loop of statements to perform comparisons and calculations to 

pick out those permutations according to a given number of turns. The running times for generating 2D 
lattice L(n1, n2) paths, with 21 nn   according to a given number of turns are presented in the following 

Table 5 and Figure 2. Based on the experimental results in Table 5 and Figure 2, we have supported 

the assertion of Theorem 2. 

Table 5. Running Time of Permute+. 

n = n1 + n2 Number of Turns Number of Paths Total Paths Running Time (h:m:s) 
4 2 2 6 0:00:00 
6 3 8 20 0:00:00 
8 4 18 70 0:00:00 

10 5 72 252 0:00:00 
12 6 200 924 0:00:00 
14 7 800 3432 0:00:00 
16 8 2450 12870 0:00:00 
18 9 9800 48620 0:00:00 
20 10 31752 184756 0:00:01 
22 11 127008 705432 0:00:04 
24 12 426888 2704156 0:00:16 
26 13 1707552 10400600 0:01:07 
28 14 5889312 40116600 0:04:29 
30 15 23557248 155117520  0:17:52** 

**Note that, although there are some differences in the running time for generating the paths with a different number of 

turns, but the difference is very small. For example, in the case of 30n  even for generating the paths with a given 

number of turns 2, only 28 paths, its running time is 0:17:54. Therefore, for each case of n, we only run Permute+ for 

generating the paths with a given number of turns 1n  that will have the maximum number of paths; for example, in the 

case of 30n  please refer to the data in Table 4 where the number 23557248 is the maximum. 
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Figure 2. Running Time of Permute+ vs. Problem Size. 

5. Applications 

Lattice paths have been applied in several areas, for example to solve interesting and nontrivial 

problems in the theory of queues [22]. In addition, scholars engaged in cryptography have long been 

aware of the importance of lattices and lattice reduction in cryptography, both for cryptographic 

construction and cryptographic analysis [23]. Kaparthi [5] points out that, it has been shown, by [24], 

that lattice path enumeration problems are equivalent to the partial orders enumeration problems that 

have applications in the area of computer science in deciding the efficiency of sorting algorithms [25], 

and in social choice theory in studying various kinds of discrete ranking structures, and preference 

orders among decision makers [26]. Here, we propose two potential applications as follows.  

5.1. Scheduling  

As mentioned in Introduction, the motivation of this study was inspired by trying to solve a kind of 

open shop scheduling problem that is concerned with setup time among different types of machines [17]. 

Here, setup time means delay time that occurs when we arrange the processing route (or path) of a job 

from one type of machine to another type of machine. In scheduling problems, if the paths of jobs are 

fixed beforehand, and are the same for all jobs, it is called a flow-shop [27]; on the other hand, if the 

paths of jobs are not given in advance, but chosen by the scheduler, it is called an open-shop [28]. 

What we are trying to solve is an open shop scheduling problem that comprised a set of J jobs,  

{1, 2, …, J}, and n machines with two types of A and B. That is, every job must pass through all n 

machines for each machine once. 
Assume that n1 and n2 be the number of machines of type A and B respectively, and that 21 nnn  . 

Now, let 1 2π π π πj j j jn   be a path of job j where π jk , for all },,,2,1{ nk   can be a symbol of “A” 

or “B” that stands for the kth operation of job j is processed by a machine of type A or B, respectively. 
To be a valid path, obviously, in a path π j  of a job j there must have n1 A’s, and n2 B’s. For example, if 

41 n  and 61 n  then π AAABBABBBBj   and 'π AABBBABBBAj   can be two feasible paths of 
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a job j. It is trivial that there are totally 
!!

!

21 nn

n
 different feasible paths for a job. If we assume that there 

are no two jobs with the same path, there are totally 














J
!!

!

21 nn

n
 different feasible schedules can be 

chosen by the scheduler. How to choose a schedule depends on what objective the scheduler aims at. 

One widely used objective is to minimize the make span, the time needed to complete all jobs. 

Traditionally, it is common to assume that, when its previous operation has been completed by a 

machine, a job is immediately available to be processed by another machine. However, in practice, 

there is often a significant time delay between the completion of an operation and the start of the next 

operation of the same job. Furthermore, in some cases, the processing times might be negligible 

compare to the delay times. Therefore, they have a small influence on the make span [29]. Several real 

world applications can be found in [30]. The open shop scheduling problem with time delays was first 

introduced in [31], and shown to be NP-hard even for two machines and identical time delays.  

Let d stand for the delay times needed to transfer a job from a machine of type A (or B) to a 

machine of type B (or A), and Dj stand for the total delay times needed for a job j to complete its path. 

Here, we assume that transfer a job between two machines of the same type does not cause any delay 

time. Without loss of generality, we can set delay times .1d  Therefore, for two paths such as 

1π AAABBABBBB  and 2π AABBBABBBA,  we have 31 D  and .42 D  Our objective is to 

minimize the total delay times of all jobs, that is, to minimize .
J

1 



j

j jD  

Since a path of a job can be viewed as a permutation of a two-item }B,{A 21 nn  multiset, the feasible 

paths of a job can be obtained by an algorithm that can generate all feasible permutations of this 

multiset. The question is how to choose J permutations, from the 
!!

!

21 nn

n
 feasible permutations, for 

these J jobs such that  



J

1

j

j jD  is minimized. Note that in the multiset permutation, we call there is a 

turn if two consecutive elements are belonging to two different items. That is, a turn occurs if we 

transfer a job from a machine of type A (or B) to a machine of type B (or A). This means that the delay 

time of a job that goes through a path with t turns is t. 

Being a scheduler, a reasonable strategy for us is to choose, as soon as possible, those feasible and 

available paths that possess minimum turns. To do that, we are confronted with two issues. The first 

one is to answer the question of what is the number of permutations that possess a given number of 

turns, the second one is to design an algorithm that can generate the paths in a non-decreasingly order 

of turns. The first question has been resolved in [3], and now we have answered the second question. 

Therefore, the result of this study can provide for a scheduler as a good start to plan his scheduling.  

5.2. Cryptography 

The proposed algorithm can be used in cryptography. For example, we can combine the G2DLP 

with a substitution cipher system to become a product cipher system [32], [33] (p. 67). Since there are 

in total 10230 2103978417619937.8!29   possible permutations of 29 characters (include 26 letters 

of the English alphabet plus comma, period and space), we can use any integer κ, !29κ1  , as a 
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secret key to choose a permutation of {A, B, …, Z, “,”, “.”, “”} as a substitution Σ. This can be 

accomplished by an unranking algorithm that we proposed in a previous study [34]. For example, if we 

select 3022911316475575.7κ  E  as a secret key, then by using the unranking algorithm, we can 

obtain a substitution Σ as the following Table 6. 

Table 6. A substitution Σ of 29 characters. 

A B C D E F G H I J K L M N O 

X K . Q V H N J F W C Z , A S 
24 11 28 17 22 8 14 10 6 23 3 26 27 1 19 

P Q R S T U V W X Y Z , . - Not Available 
O T E B P L M  U I D G R Y Not Available 
15 20 5 2 16 12 13 29 21 9 4 7 18 25 Not Available 

By using the substitution Σ, we can encrypt a plaintext Ψ of l characters into a cipher text Ω1 of l 

numbers that each one is an integer between 1 and 29. Then, by using the G2DLP, we can choose two 
integers, for example 151 n  and 152 n , as a pair of secret keys to encrypt the cipher text Ω1 into a 

new cipher text Ω2 of  strings of )( 21 nn   bits. On the other hand, we can use a decoder to compute 

the number of turns of each string to obtain the cipher text Ω1 of l numbers. Finally, by using the 

substitution Σ-1, we can transfer the cipher text Ω1 into the plaintext Ψ of l characters. The 

cryptosystem mentioned above is presented as following Figure 3. 

 

Figure 3. Encryption-Decryption Scheme. 

The characteristic of the proposed cryptosystem is threefold. First, to be a polyalphabetic 

cryptosystem [33] (p. 13), we can run the unranking algorithm several times, each time use the same 

secret key κ and the latest generated substitution Σ that is initialized as {A, B, …, Z, “,”, “.”, “”} at 

first. Therefore, as being a polyalphabetic cryptosystem, it can exempt from the cryptanalysis that is 

based on the statistical properties of usage frequencies of English alphabet [33] (p. 27). Second, the 

proposed cryptosystem can encrypt a character into one of different numbers of strings. For example, if 
we use 151 n  and 152 n  as a pair of secret keys to encrypt the cipher text Ω1 into a new cipher text 
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Ω2, then we can encrypt the character “P” into one of 20612592 different strings of 30 bits, and encrypt 

the character “M” into one of 18036018 different strings of 30 bits. This is because, see Table 6, the 

letter “P” represents the number 16, and the character “M” represents the number 13; and in a 2D 

lattice L(15, 15), see Table 4, there are totally 20612592 different paths possess 16 turns, and 

18036018 different paths possess 13 turns. If someone tries to break the cryptosystem but he does not 

know the decryption scheme, this will make his attack very difficult. Third, it is easy to implement the 

proposed cryptosystem to become a non-synchronous stream cipher [33] (p. 24). That is, we can use 

the unranking algorithm as a key stream generator that depends not only on the secret key κ but also on 

the plaintext itself. This strategy can greatly increase the complexity of breaking the proposed 

cryptosystem. Based on the characteristics mentioned above, we can say that the proposed 

cryptosystem can be an applicable and safe system.  

6. Conclusions  

Basically, the problem of generating 2D lattice L(n1, n2) paths, equivalent to two-item multiset 
}B,{A 21 nn  permutations, according to a given number of turns is more challenging than a simple 

multiset permutation problem. The time complexity of a simple multiset permutation algorithm for 
generating two-item }B,{A 21 nn  multiset permutations according to a given number of turns is 

)( 5.0
2

5.0
1

5.1

21 



 nn

n

nn

n
O , here 21 nnn   ; and in case of 21 nn  the time complexity is ).2( 15.0 nnO   

We propose an efficient Algorithm G2DLP that significantly reduces this time complexity to a  

linear order.  

The principle behind Algorithm G2DLP is divide-and-combine. According to a given number of 

turns t, we first delicately divide n_1 and n_2, the horizontal x-axis and vertical y-axis of a 2D lattice 

L(n1, n2), to several small parts respectively, totally 1t  parts. The division is based on the 

enumeration results of a previous study and is achieved by aid of an integer partition algorithm 

(Partition) and a multiset permutation algorithm (Permute). Then combine these small parts, by a 

concatenate algorithm (Concatenate), to the paths we require. The experimental results confirm that 

Algorithm G2DLP is a linear time, or CAT (constant amortized time), algorithm. That is,  

its amount of computation, after a small amount of preprocessing, is proportional to the number of 

paths it generates. 

The advantage of G2DLP is twofold. First, it is optimal in the sense that it directly generates all 

feasible paths without visiting any infeasible path. Second, it can generate all paths in any specified 

order of turns, for example, a decreasing order or an increasing order. In practice, the result of this 

study can provide a good starting point for a scheduler attempting to deal with an open shop 

scheduling problem, and can be used as an encryption scheme of a cryptosystem. Finally, a 

concomitant problem, how to design an algorithm that can generate 3D lattice L(n1, n2, n3) paths 

according to a given number of turns, is proposed for future research.  
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Appendix 

Algorithm 1. Sub G2DLP () 

Public flag, parts, perm1(1 To 1000, 1 To 1000), perm2(1 To 1000, 1 To 1000), no_of_perms1, 

no_of_perms2, so_far_no_perms1, so_far_no_perms2 
n_1 = 3 *****input lattice size, assume that 2_1_ nn  , for example (3, 4) ***** 

n_2 = 4 

t = 2 *****input a given number of turns, for example t = 2 ***** 

Path = “” 

k = Int((t + 1) / 2) 

parts = t + 1 *****parts = blocks ***** 

Select Case t Mod 2 

Case 0 *****number of turns is even ***** 

 flag = 1 

 Call Partition (n_1, k + 1) 

 flag = 0 

 Call Partition (n_2, k) 

 Call Concatenate (parts, “e”, “n”) 

 flag = 1 

 Call Partition (n_2, k + 1) 

 flag = 0 

 Call Partition (n_1, k) 

 Call Concatenate (parts, “n”, “e”) 

Case 1 ***** number of turns is odd ***** 

 flag = 1 

 Call Partition (n_1, k) 

 flag = 0 

 Call Partition (n_2, k) 

 Call Concatenate (parts, “e”, “n”) 

flag = 1 

 Call Partition (n_2, k) 

 flag = 0 

 Call Partition (n_1, k) 

 Call Concatenate (parts, “n”, “e”) 

End Select 

End Sub 

 

Algorithm 2. Sub Partition (ii, pp) 

so_far_no_perms1 = 0 

so_far_no_perms2 = 0 
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n = ii 

m = pp 

If n < m Then GoTo Terminate 

If m = 1 Then GoTo H2 

H1: *****Initialize ***** 

a(1) = n − m + 1 

For j = 2 To m 

 a(j) = 1 

Next j 

a(m + 1) = − 1 

H2:*****Visit ***** 

Call Permute 

If m = 1 Then GoTo Terminate 

If a(2) >= a(1) − 1 Then GoTo H4 

H3: *****Tweak a(1) and a(2) ***** 

 a(1) = a(1) − 1 

 a(2) = a(2) + 1 

GoTo H2 

H4: *****Find j ***** 

j = 3 

s = a(1) + a(2) − 1 

While a(j) >= a(1) − 1 

 s = s + a(j) 

 j = j + 1 

Wend 

H5: ***** Increase a(j) ***** 

 If j <= m Then 

 x = a(j) + 1 

 a(j) = x 

 j = j − 1 

 Else: GoTo Terminate 

 End If 

H6: ***** Tweak a(1) … a(j) ***** 

While j > 1 

 a(j) = x 

 s = s − x 

 j = j − 1 

Wend 

a(1) = s 

GoTo H2 

Terminate: 
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If flag = 1 Then 

 no_of_perms1 = so_far_no_perms1 

Else 

 no_of_perms2 = so_far_no_perms2 

End If 

End Sub 

 

Algorithm 3. Sub Permute () 

For i = 1 To m 

b(m − i + 1) = a(i)*****Reverse the elements of a partition. ***** 

Next i 

L1:*****Store all permutations, equivalently store all partitions.***** 

If flag = 1 Then 

so_far_no_perms1 = so_far_no_perms1 + 1 

 For i = 1 To m 

  perm1(so_far_no_perms1, i) = b(i) 

Next i 

 Else 

 so_far_no_perms2 = so_far_no_perms2 + 1 

 For i = 1 To m 

  perm2(so_far_no_perms2, i) = b(i) 

 Next i 

 End If 

L2: *****Find r***** 

 r = m − 1 

 While b(r) >= b(r + 1) 

 r = r − 1 

 Wend 

 If r = 0 Then Exit Sub 

L3: *****Increase b(r) ***** 

 e = m 

 While b(r) >= b(e) 

 e = e − 1 

 Wend 

 temp = b(r) 

 b(r) = b(e) 

 b(e) = temp 

L4: *****Reverse b(r+1) … b(m) ***** 

kk = r + 1 

 e = m 

 While kk< e 
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 temp = b(kk) 

 b(kk) = b(e) 

 b(e) = temp 

 kk = kk + 1 

 e = e − 1 

 Wend 

GoTo L1 

End Sub 

 

Algorithm 4. Sub Concatenate (parts, first_step, second_step) 

For p1 = 1 To no_of_perms1 

For p2 = 1 To no_of_perms2 

 For i = 1 To parts 

  q =Int((i+1) / 2) 

  If (i Mod 2) = 1 Then 

For j = 1 To perm1(p1, q) 

  Path = Path + first_step 

  Next j 

  Else 

  For j = 1 To perm2(p2, q) 

  Path = Path + second_step 

  Next j 

  End If 

 Next i 

 rank = rank + 1 

 Cells(rank, 1) = Path*****output the path***** 

 Path = “” 

Next p2 

Next p1 

End Sub 
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