
Algorithms 2015, 8, 190-208; doi:10.3390/a8020190

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

From Enumerating to Generating: A Linear Time Algorithm
for Generating 2D Lattice Paths with a Given Number of Turns

Ting Kuo

Department of Marketing Management, Takming University of Science and Technology, Neihu District,

Taipei 11451, Taiwan; E-Mail: tkuo@takming.edu.tw; Tel.: +886-2-2658-5801.

Academic Editor: Faisal Abu-Khzam

Received: 19 December 2014 / Accepted: 30 April 2015 / Published: 8 May 2015

Abstract: We propose a linear time algorithm, called G2DLP, for generating 2D lattice
L(n1, n2) paths, equivalent to two-item }B,{A 21 nn multiset permutations, with a given

number of turns. The usage of turn has three meanings: in the context of multiset

permutations, it means that two consecutive elements of a permutation belong to two

different items; in lattice path enumerations, it means that the path changes its direction,

either from eastward to northward or from northward to eastward; in open shop scheduling,

it means that we transfer a job from one type of machine to another. The strategy of

G2DLP is divide-and-combine; the division is based on the enumeration results of a

previous study and is achieved by aid of an integer partition algorithm and a multiset

permutation algorithm; the combination is accomplished by a concatenation algorithm that

constructs the paths we require. The advantage of G2DLP is twofold. First, it is optimal in

the sense that it directly generates all feasible paths without visiting an infeasible one.

Second, it can generate all paths in any specified order of turns, for example, a decreasing

order or an increasing order. In practice, two applications, scheduling and cryptography,

are discussed.

Keywords: Lattice Path; Multiset Permutation; Turns; Integer Partition; Cryptography;

Open Shop Scheduling

1. Introduction

It is common to find ourselves confronted with problems in which an exhaustive examination of all

solutions is necessary or desirable [1]. However, we do not want to use brute force to go through all

OPEN ACCESS

Algorithms 2015, 8 191

possible solutions. Therefore, there is a clear need to design an efficient algorithm that can eliminate

certain cases from consideration. More than this, our goal is to design an optimal algorithm, whereby

all infeasible solutions can be ignored. That is, it directly generates all feasible solutions without

visiting any infeasible solutions. For example, we have proposed an algorithm for generating all

permutations of {1, 2, … , n} with a given number of inversions, while never visiting any of the

unqualified permutations [2]. In most applications of permutation generation we are interested in

minimizing the total running time, not the maximum time between successive visits [1].

In this study, by utilizing the enumeration results of a previous study [3] and the method of integer

partition, we propose an optimal algorithm for generating 2D lattice L(n1, n2) paths according to a
given number of turns. It identically generates two-item }B,{A 21 nn multiset permutations according to

a given number of turns. Herein, 2D lattice L(n1, n2) denotes an integer rectangular lattice that has a

horizontal x-axis and a vertical y-axis. A path is a route that starts at point (0, 0) then moves through a

succession of steps, usually under the step set {<1, 0>, <0, 1>}, and finally ends at the target point

(n1, n2). In other words, after leaving the starting point (0, 0), the path can apply unit steps only

eastward or northward, but can change direction at any point (x, y) until it reaches the target point
(n1, n2). Some studies deal with an under-diagonal path that only contains points (x, y) with yx  , for

example [4]. Some studies deal with a higher dimensional lattice, for example [5]. For a

comprehensive survey on the topic of lattice paths, please see [6].

The word “multiset” (often shortened to mset) which abbreviates the term “multiple-membership

set”, is now the commonly accepted name for replacing “bag”, “bunch”, “weighted set”, “occurrence

set”, “heap”, “sample”, and “fireset” [7]. A multiset is a set such that each item in the set has a

multiplicity that specifies how many times the item repeats, and the cardinality of a multiset is the sum

of the multiplicities of its all items. In short, a multiset is a set with repeated items. Obviously, a set is a

special case of multiset in which each item occurs only once. Multisets are of interest in mathematics,

physics, philosophy, logic, linguistics and computer science [7]. Many studies have been devoted to

multiset permutations [8–15]. However, we know of no published algorithms for generating multiset

permutations with a given number of turns.

There are various motivations behind the interest in the turn enumeration of lattice paths.

Krattenthaler described three motivations from probability, statistics, and commutative algebra,

respectively [16]. He also showed the wide diversity of connections and applications in other domains

like combinatorics, representation theory, and q-series. The motivation of our studies on the topic of

lattice path was inspired by trying to solve a kind of open shop scheduling problem that is concerned

with setup time among different types of machines [17]. Here, setup time means the delay time that

occurs when we arrange the processing route (or path) of a job from one type of machine to another.

This kind of open shop scheduling problem is, intrinsically, a multiset permutation problem, while the

latter is, essentially, a lattice path enumeration problem.

Therefore, in this study, turn has three meanings. In open shop scheduling problems, it means that

we transfer a job from one type of machine to another type of machine; in multiset permutation

problems, it refers to two consecutive elements of a permutation that belong to two different items (In

fact, the number of turns of a multiset permutation is equal to the number of blocks of a multiset

permutation minus one, if we call a block as a maximal sequence of consecutive elements that are

belonging to same item. Note that, in a permutation of a set of n integers, a maximal sequence of

Algorithms 2015, 8 192

consecutive integers that appear in consecutive positions is called a block. For example, the

permutation π = (456723189) contains four blocks namely 4567, 23, 1, and 89.); in lattice path

enumeration problems, it means that the path changes its direction either from eastward to northward

(called an EN-turn) or from northward to eastward (called an NE-turn). Viewed in this light, the

number of turns of paths in a 2D lattice L(n1, n2) can be regarded in the same way as in a permutation
statistics, referring to turns of a two-item }n,{e 21 nn multiset permutation. Here, notation “e” denotes

eastward, and notation “n” denotes northward. Since we have studied the enumeration of a 2D lattice

path with a given number of turns, it is natural to a step further: from enumerating to generating.

The remainder of this paper is organized as follows. In Section 2, the proposed algorithm is

described. In Section 3, analyses of algorithms are discussed. In Section 4, some experimental results

are presented. In Section 5, two applications, scheduling and cryptography, are discussed. Finally,

conclusions are summarized and a concomitant problem is proposed for future research.

2. Algorithms

In this Section, we propose an optimal algorithm for generating 2D lattice L(n1, n2) paths according

to a given number of turns. For completeness, the following results are introduced without proof [3].

Note that, throughout the paper, all variables are positive integers.

Definition 1. Let t denote the number of turns of a path that has a EN-turns and b NE-turns, that is,

bat  .

Lemma 1. 0 ba or 1 ba .

Lemma 2. If t is even)2(k , then kba  . If t is odd)12(k , then ka  and 1 kb when first

step is eastward, or 1 ka and kb  when first step is northward.

Lemma 3. For a 2D integer rectangular lattice L(n1, n2), 01 n and 02 n , assume that 21 nn  the

minimum number of turns of a path is one and the maximum number of turns of a path is 12 1 n if

21 nn  or 12n if 21 nn  .

Theorem 1. Let),,(21 tnnP denote the number of paths with a given number of turns t, then:

1 2 2 1
1 2

1 1 1 1
(, , 2)

1 1

n n n n
P n n k

k k k k

        
            

, (1)

and

1 2
1 2

1 1
(, , 2 1) 2

1 1

n n
P n n k

k k

   
       

. (2)

In the identity (1), the term of 

















 
1

11 21

k

n

k

n
 stands for the number of paths that their first step is

eastward, and the term of 

















 
1

11 12

k

n

k

n
 stands for the number of paths that their first step is

northward. The reason is explained as follows. For a path with even (2k) turns, by Definition 1 and

Lemma 2, we know that it must be composed of k EN-turns and k NE-turns. Thus, when the first step

Algorithms 2015, 8 193

is eastward, what we need to do in the whole route is choose k points from 11 n points and

choose 1k points from 12 n points; when the first step is northward, what we need to do in the

whole route is choose k points from 12 n points and choose 1k points from 11 n points. Since the

first step is either eastward or northward, we have the identity (1).

Similarly, for a path with odd (12 k) turns, by Definition 1 and Lemma 2, we know that it must be

composed of k NE-turns and 1k EN-turns when first step is northward, or that it must be composed

of k EN-turns and 1k NE-turns when first step is eastward. Thus, when the first step is northward,
what we need to do in the whole route are choose 1k points from 12 n points and choose 1k

points from 11 n points; when the first step is eastward, what we need to do in the whole path are

choose 1k points from 11 n points and choose 1k points from 12 n points. Since the first step

is either northward or eastward, we have the identity (2).

Based on Theorem 1, we propose the Algorithm G2DLP where two Algorithms H and L, borrowed

from others with some amendments and additions to meet the purpose of this study, are embedded

respectively in Algorithms Partition and Permute. (The Algorithm G2DLP is put in Appendix)

Algorithm Partition is based on an Algorithm H that generates all partitions of an integer [18] (p. 38).

Since Algorithm H treats, for example partitioning integer 11 into 4 parts, a partition of 8111 as same

as another partition of 1811, we need to call Algorithm Permute to permute the partitions produced by

Algorithm H. On the other hand, Algorithm Permute is based on an Algorithm L that generates all

permutations of a multiset in lexicographic order [1] (pp. 39–40). Since Algorithm L assumes that the

initial elements are in a non-decreasing order but Algorithm H produces partitions of an integer in a

colex order (That is, lexicographic order of the reflected sequence.), we have to reverse the elements of

a partition, provided by Algorithm H, in accordance with Algorithm L.

The strategy of G2DLP is divide-and-combine. According to a given number of turns t, we first

delicately divide n1 and n2, the x-axis and vertical y-axis of a 2D lattice L(n1, n2), to several small parts

respectively, totally 1t parts. The division is based on the identities (1) and (2) and achieved by aid

of an integer partition algorithm (Partition) and a multiset permutation algorithm (Permute). Then

combine these small parts, by Algorithm Concatenate, to a path that is we require.

Note that, in 2D lattice L(n1, n2), from the starting point (0, 0), if the first step is eastward then
totally there are 11 n points the path can choose that will not arrive directly to the target point (n1, n2);

if the first step is northward then totally there are 12 n points the path can choose that will not arrive

directly to the target point (n1, n2). It is also worth noting that the upper indexes 11 n and 12 n in

Theorem 1 stands for how many choices of point we can choose to change a path’s direction, and the
parameters 1_n and 2_n in Algorithm G2DLP stand for what integer we want to partition. The

relations between parameters (1_n and 2_n) and upper indexes (1n and 2n) are 11_ nn  and

22_ nn  respectively. Similarly, the lower indexes 1k and k in Theorem 1 stand for how many

decisions of point we have to make to change a path’s direction, and that the parameters k and k+1 in

Algorithm G2DLP stand for how many parts we want to partition an integer. The relation between

parameters (k and k+1) and lower indexes (1k and k) is k k.
Why are 11 n and 12 n in the upper index of Theorem 1 but we use n_1 and n_2 in Algorithm

G2DLP? Why are 1k and k in the lower index of Theorem 1 but we use k and k+1 in Algorithm
G2DLP? The reasoning is that when we choose 1k (or k) points from 11 n (or 12 n) points it

means we partition an integer 1n (or 2n) into k (or 1k) parts.

Algorithms 2015, 8 194

We will present the experimental results, in Section 4, on some cases of 2D lattice L(n1, n2) in Table 1.

For a 2D lattice L(3, 4), if we set 2t , then after two callings of Algorithm Partition and those

concomitant callings of Algorithm Permute, the contents of arrays perm1 and perm2 are {(1, 2), (2, 1)}

and {(4)} respectively. Now, when calling Concatenate (parts, “e”, “n”), we alternatively access these

two array through three pickups. The first parameter of algorithm Concatenate, parts, means we have

decomposed a path to parts parts. Here, since t = 2 we have parts = 3. Therefore, we need three

pickups to construct a path. First, we pick up the first element of (1, 2), here is 1, then pick up the first

element of (4) and finally pick up the second element of (1, 2), here is 2, thus we have one “e”, four

“n”, and two “e”, that is “ennnnee.” Next, we pick up the first element of (2, 1), here is 2, then pick up

the first element of (4) and finally pick up the second element of (2, 1), here is 1, thus we have two “e”,

four “n”, and one “e”, that is “eennnne.” The two paths, numbered 3 and 4, can be found in Table 2,

which is presented in Section 4.

3. Analyses

Obviously, the problem of generating 2D lattice L(n1, n2) paths according to a given number of

turns is more challenging than a simple multiset permutation problem. This is because, for a simple

multiset permutation algorithm, to generate permutations with a given number of turns, it requires both

a time to generate all permutations and a time to perform additional comparisons and calculations to

pick out those permutations with a given number of turns. Furthermore, if we want generate all paths

in a specified order of turns, for example a decreasing or an increasing, we must spend additional time

to sort them according to the number of turns they have. Not surprisingly, we can easily prove the

following theorem.

Theorem 2. The time complexity of a simple multiset permutation algorithm for generating

two-item }B,{A 21 nn multiset permutations according to a given number of turns is)(5.0
2

5.0
1

5.1

21 



 nn

n

nn

n
O ,

here 21 nnn  ; and in case of 21 nn  the time complexity is).2(15.0 nnO

Proof. For a two-item multiset permutation, there are totally
!!

!

21 nn

n
 permutations, and each one

needs 1n comparisons to calculate how many turns it has. It is well known that the factorial function

is exponential growth. By using the Stirling approximation,
n

e

n
nn 






 2! , we have:

1 21 2

0.5

0.5 0.5
1 2 1 21 2

1 2

2
! 1

! ! 2
2 2

n

n

n nn n

n
n

n ne
n n n nn n

n n
e e




 



 

 
 
  

   
   
   

,

then after multiplying the term by 1n we have)(5.0
2

5.0
1

5.1

21 



 nn

n

nn

n
O . Moreover, in the case of 21 nn 

the time complexity is).2(15.0 nnO In other words, the running time is exponential growth on the

problem size n. □

Algorithms 2015, 8 195

Fortunately, the proposed Algorithm G2DLP significantly reduces this time complexity to a linear

order. Now, let us analyze the complexity of three components of Algorithm G2DLP individually.

Since the amendments and additions to Algorithms H and L have little influence in time complexity,

we can directly use the time complexity of Algorithms H and L, respectively, to stand for the time

complexity of Algorithms Partition and Permute. First, if we let
m

n
 denote the number of partitions

of n that have exactly m parts, then the running time per partition of Algorithm Partition is
m

n
m /3 .

By Knuth [18] (p. 39), we know that the total running time of Algorithm H is at most a small constant

multiplied by the number of partitions visited, plus O(m). The key quantity is the value of j, in H4, the
smallest subscript for which 11  aa j . Let)(ncm be the accumulated total value of 1j summed

over all of the
m

n
 partitions generated by Algorithm H. Knuth [18] (p. 50) has proved that the cost

measure)(ncm for Algorithm H is at most m
m

n
3 . Regard

m

n
ncm /)(as a good indicator of the

running time per partition, therefore, the running time per partition of Algorithm H is
m

n
m /3 .

Second, with regard to the Algorithm Permute, the running time is reasonably efficient [1] (p. 40).

When the partition produced by Algorithm H is simply a set containing distinct elements, for example

5321 as a partition of partitioning integer 11 into 4 parts, the means of the number of comparisons by

step L2 and step L3 are about 1.718 and 1.359, respectively [1] (pp. 101–102); and the average number

of interchanges in step L4 is about 0.543 [1] (p. 102). On the other hand, when the partition produced

by Algorithm H is a multiset, for example 7211 as a partition of partitioning integer 11 into 4 parts, the

means of the number of comparisons by step L2 and step L3 are a little more complicated; even so, it

is reasonably efficient. For details, see [1] (p. 102).

Finally, as to the Algorithm Concatenate, for generating a path, it only performs n_1 + n_2

concatenations (either “e” or “n”). These concatenations are accomplished by parts pickups that access

the two arrays, perms1 and perms2, alternatively. Moreover, since Algorithm G2DLP generates all

feasible paths without visiting any infeasible ones, we claim that Algorithm G2DLP is a linear time, or

CAT algorithm. An algorithm runs in constant amortized time (CAT) if the amount of computation,

after a small amount of preprocessing, is proportional to the number of objects that are generated [19].

What they call CAT has been called linear by Reingold, Nievergelt, and Deo [20], and in

several papers [21]. The experimental results, in next Section, Tables 3 and 4 and Figure 1 will support

this assertion, Table 5 and Figure 2 will support the Theorem 2.

4. Experimental Results

In the following, we present path distributions with respect to their number of turns on some cases
of two-item }n,{e 21 nn multiset in Table 1. Among then, all paths of the 2D lattice L(3, 4) generated by

G2DLP are presented, according to the number of turns, in Table 2.

Algorithms 2015, 8 196

Table 1. The path distributions with respect to their number of turns.

Turns
n1 3 4 4 4 4 4 5 5 5 5 5 5
n2 4 6 7 8 9 10 6 7 8 9 10 11

1 2 2 2 2 2 2 2 2 2 2 2 2
2 5 8 9 10 11 12 9 10 11 12 13 14
3 12 30 36 42 48 54 40 48 56 64 72 80
4 9 45 63 84 108 135 70 96 126 160 198 240
5 6 60 90 126 168 216 120 180 252 336 432 540
6 1 40 75 126 196 288 100 180 294 448 648 900
7 0 20 40 70 112 168 80 160 280 448 672 960
8 0 5 15 35 70 126 30 80 175 336 588 960
9 0 0 0 0 0 0 10 30 70 140 252 420

10 0 0 0 0 0 0 1 6 21 56 126 252
Total Paths 35 210 330 495 715 1001 462 792 1287 2002 3003 4368

Table 2. All paths of the 2D lattice L(3, 4).

Path Number Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Number of Turns
1 e e e n n n n 1
2 n n n n e e e 1
3 e n n n n e e 2
4 e e n n n n e 2
5 n e e e n n n 2
6 n n n e e e n 2
7 n n e e e n n 2
8 e n e e n n n 3
9 e n n n e e n 3

10 e n n e e n n 3
11 e e n e n n n 3
12 e e n n n e n 3
13 e e n n e n n 3
14 n e n n n e e 3
15 n e e n n n e 3
16 n n n e n e e 3
17 n n n e e n e 3
18 n n e n n e e 3
19 n n e e n n e 3
20 e n e n n n e 4
21 e n n n e n e 4
22 e n n e n n e 4
23 n e n e e n n 4
24 n e e n e n n 4
25 n e n n e e n 4
26 n e e n n e n 4
27 n n e n e e n 4
28 n n e e n e n 4
29 e n e n e n n 5
30 e n e n n e n 5
31 e n n e n e n 5
32 n e n e n n e 5
33 n e n n e n e 5
34 n n e n e n e 5
35 n e n e n e n 6

Algorithms 2015, 8 197

To confirm the claim that the Algorithm G2DLP is a linear time algorithm, we perform a series of

experiments and present the results in Table 3 and Figure 1. The running time (h: m: s) is for

generating only but without printing out the paths, by using an Acer ® notebook with an

Intel® Core™ i5-4200U CPU @ 1.6 GHz and a VBA program executed under the Microsoft Excel

environment. Based on the experimental results in Table 3 and Figure 1, we confirm that Algorithm

G2DLP is a linear time algorithm.

Table 3. Running Time of G2DLP vs. Total Paths.

n1 n2 Total Paths Running Time (h:m:s) n1 n2 Total Paths Running Time (h:m:s)
7 13 77520 0:00:01 9 15 1307504 0:00:13
9 10 92378 0:00:01 11 12 1352078 0:00:12
7 14 116280 0:00:01 10 14 1961256 0:00:18
8 12 125970 0:00:01 11 13 2496144 0:00:23
9 11 167960 0:00:01 12 12 2704156 0:00:25
7 15 170544 0:00:01 10 15 3268760 0:00:31

10 10 184756 0:00:02 11 14 4457400 0:00:43
8 13 203490 0:00:02 12 13 5200300 0:00:51
9 12 293930 0:00:03 11 15 7726160 0:01:17
8 14 319770 0:00:02 12 14 9657700 0:01:38

10 11 352716 0:00:04 13 13 10400600 0:01:46
8 15 490314 0:00:05 12 15 17383860 0:03:09
9 13 497420 0:00:04 13 14 20058300 0:03:31

10 12 646646 0:00:07 13 15 37442160 0:06:43
11 11 705432 0:00:06 14 14 40116600 0:07:11
9 14 817190 0:00:07 14 15 77558760 0:14:31

10 13 1144066 0:00:13 15 15 155117520 0:29:36

Figure 1. Running Time of G2DLP vs. Total Paths.

In order to highlight the superiority of Algorithm G2DLP, we perform a series of experiments and

present the running times for generating 2D lattice L(15, 15) paths, according to the number of turns,

in the following Table 4. Note that we skip the two trivial paths that with number of turns 1. From the

results of Table 4, it is easy to know that, on average, the running time of Algorithm G2DLP for

generating a path is almost a constant (mean: 6109  seconds, standard deviation: 6108.7  seconds).

This result confirms again that Algorithm G2DLP is a linear time algorithm.

Algorithms 2015, 8 198

Table 4. Running Time of G2DLP for 2D lattice L(15, 15).

Number of
Turns

Number of
Paths

Running Time
(h:m:s)

Number of
Turns

Number of
Paths

Running Time
(h:m:s)

2 28  0:00:00 16 20612592 0:04:36
3 392  0:00:00 17 18036018 0:04:03
4 2548  0:00:00 18 12024012 0:02:50
5 16562  0:00:00 19 8016008 0:01:56
6 66248  0:00:00 20 4008004 0:01:01
7 264992 0:00:03 21 2004002 0:00:32
8 728728 0:00:08 22 728728 0:00:12
9 2004002 0:00:21 23 264992 0:00:04

10 4008004 0:00:44 24 66248 0:00:01
11 8016008 0:01:43 25 16562  0:00:00
12 12024012 0:02:19 26 2548  0:00:00
13 18036018 0:03:32 27 392  0:00:00
14 20612592 0:04:11 28 28  0:00:00
15 23557248 0:04:59* 29 2  0:00:00

* Please refer to the running time listed at the bottom row of Table 5.

To confirm the assertion of Theorem 2, we perform a series of experiments, by using a simple

multiset permutation algorithm Permute+. Here, we only include the L2, L3, L4 parts of Algorithm

Permute, and substitute L1 part with a loop of statements to perform comparisons and calculations to

pick out those permutations according to a given number of turns. The running times for generating 2D
lattice L(n1, n2) paths, with 21 nn  according to a given number of turns are presented in the following

Table 5 and Figure 2. Based on the experimental results in Table 5 and Figure 2, we have supported

the assertion of Theorem 2.

Table 5. Running Time of Permute+.

n = n1 + n2 Number of Turns Number of Paths Total Paths Running Time (h:m:s)
4 2 2 6 0:00:00
6 3 8 20 0:00:00
8 4 18 70 0:00:00

10 5 72 252 0:00:00
12 6 200 924 0:00:00
14 7 800 3432 0:00:00
16 8 2450 12870 0:00:00
18 9 9800 48620 0:00:00
20 10 31752 184756 0:00:01
22 11 127008 705432 0:00:04
24 12 426888 2704156 0:00:16
26 13 1707552 10400600 0:01:07
28 14 5889312 40116600 0:04:29
30 15 23557248 155117520 0:17:52**

**Note that, although there are some differences in the running time for generating the paths with a different number of

turns, but the difference is very small. For example, in the case of 30n even for generating the paths with a given

number of turns 2, only 28 paths, its running time is 0:17:54. Therefore, for each case of n, we only run Permute+ for

generating the paths with a given number of turns 1n that will have the maximum number of paths; for example, in the

case of 30n please refer to the data in Table 4 where the number 23557248 is the maximum.

Algorithms 2015, 8 199

Figure 2. Running Time of Permute+ vs. Problem Size.

5. Applications

Lattice paths have been applied in several areas, for example to solve interesting and nontrivial

problems in the theory of queues [22]. In addition, scholars engaged in cryptography have long been

aware of the importance of lattices and lattice reduction in cryptography, both for cryptographic

construction and cryptographic analysis [23]. Kaparthi [5] points out that, it has been shown, by [24],

that lattice path enumeration problems are equivalent to the partial orders enumeration problems that

have applications in the area of computer science in deciding the efficiency of sorting algorithms [25],

and in social choice theory in studying various kinds of discrete ranking structures, and preference

orders among decision makers [26]. Here, we propose two potential applications as follows.

5.1. Scheduling

As mentioned in Introduction, the motivation of this study was inspired by trying to solve a kind of

open shop scheduling problem that is concerned with setup time among different types of machines [17].

Here, setup time means delay time that occurs when we arrange the processing route (or path) of a job

from one type of machine to another type of machine. In scheduling problems, if the paths of jobs are

fixed beforehand, and are the same for all jobs, it is called a flow-shop [27]; on the other hand, if the

paths of jobs are not given in advance, but chosen by the scheduler, it is called an open-shop [28].

What we are trying to solve is an open shop scheduling problem that comprised a set of J jobs,

{1, 2, …, J}, and n machines with two types of A and B. That is, every job must pass through all n

machines for each machine once.
Assume that n1 and n2 be the number of machines of type A and B respectively, and that 21 nnn  .

Now, let 1 2π π π πj j j jn  be a path of job j where π jk , for all },,,2,1{ nk  can be a symbol of “A”

or “B” that stands for the kth operation of job j is processed by a machine of type A or B, respectively.
To be a valid path, obviously, in a path π j of a job j there must have n1 A’s, and n2 B’s. For example, if

41 n and 61 n then π AAABBABBBBj  and 'π AABBBABBBAj  can be two feasible paths of

Algorithms 2015, 8 200

a job j. It is trivial that there are totally
!!

!

21 nn

n
 different feasible paths for a job. If we assume that there

are no two jobs with the same path, there are totally














J
!!

!

21 nn

n
 different feasible schedules can be

chosen by the scheduler. How to choose a schedule depends on what objective the scheduler aims at.

One widely used objective is to minimize the make span, the time needed to complete all jobs.

Traditionally, it is common to assume that, when its previous operation has been completed by a

machine, a job is immediately available to be processed by another machine. However, in practice,

there is often a significant time delay between the completion of an operation and the start of the next

operation of the same job. Furthermore, in some cases, the processing times might be negligible

compare to the delay times. Therefore, they have a small influence on the make span [29]. Several real

world applications can be found in [30]. The open shop scheduling problem with time delays was first

introduced in [31], and shown to be NP-hard even for two machines and identical time delays.

Let d stand for the delay times needed to transfer a job from a machine of type A (or B) to a

machine of type B (or A), and Dj stand for the total delay times needed for a job j to complete its path.

Here, we assume that transfer a job between two machines of the same type does not cause any delay

time. Without loss of generality, we can set delay times .1d Therefore, for two paths such as

1π AAABBABBBB and 2π AABBBABBBA, we have 31 D and .42 D Our objective is to

minimize the total delay times of all jobs, that is, to minimize .
J

1 



j

j jD

Since a path of a job can be viewed as a permutation of a two-item }B,{A 21 nn multiset, the feasible

paths of a job can be obtained by an algorithm that can generate all feasible permutations of this

multiset. The question is how to choose J permutations, from the
!!

!

21 nn

n
 feasible permutations, for

these J jobs such that  



J

1

j

j jD is minimized. Note that in the multiset permutation, we call there is a

turn if two consecutive elements are belonging to two different items. That is, a turn occurs if we

transfer a job from a machine of type A (or B) to a machine of type B (or A). This means that the delay

time of a job that goes through a path with t turns is t.

Being a scheduler, a reasonable strategy for us is to choose, as soon as possible, those feasible and

available paths that possess minimum turns. To do that, we are confronted with two issues. The first

one is to answer the question of what is the number of permutations that possess a given number of

turns, the second one is to design an algorithm that can generate the paths in a non-decreasingly order

of turns. The first question has been resolved in [3], and now we have answered the second question.

Therefore, the result of this study can provide for a scheduler as a good start to plan his scheduling.

5.2. Cryptography

The proposed algorithm can be used in cryptography. For example, we can combine the G2DLP

with a substitution cipher system to become a product cipher system [32], [33] (p. 67). Since there are

in total 10230 2103978417619937.8!29  possible permutations of 29 characters (include 26 letters

of the English alphabet plus comma, period and space), we can use any integer κ, !29κ1  , as a

Algorithms 2015, 8 201

secret key to choose a permutation of {A, B, …, Z, “,”, “.”, “”} as a substitution Σ. This can be

accomplished by an unranking algorithm that we proposed in a previous study [34]. For example, if we

select 3022911316475575.7κ  E as a secret key, then by using the unranking algorithm, we can

obtain a substitution Σ as the following Table 6.

Table 6. A substitution Σ of 29 characters.

A B C D E F G H I J K L M N O

X K . Q V H N J F W C Z , A S
24 11 28 17 22 8 14 10 6 23 3 26 27 1 19

P Q R S T U V W X Y Z , . - Not Available
O T E B P L M U I D G R Y Not Available
15 20 5 2 16 12 13 29 21 9 4 7 18 25 Not Available

By using the substitution Σ, we can encrypt a plaintext Ψ of l characters into a cipher text Ω1 of l

numbers that each one is an integer between 1 and 29. Then, by using the G2DLP, we can choose two
integers, for example 151 n and 152 n , as a pair of secret keys to encrypt the cipher text Ω1 into a

new cipher text Ω2 of strings of)(21 nn  bits. On the other hand, we can use a decoder to compute

the number of turns of each string to obtain the cipher text Ω1 of l numbers. Finally, by using the

substitution Σ-1, we can transfer the cipher text Ω1 into the plaintext Ψ of l characters. The

cryptosystem mentioned above is presented as following Figure 3.

Figure 3. Encryption-Decryption Scheme.

The characteristic of the proposed cryptosystem is threefold. First, to be a polyalphabetic

cryptosystem [33] (p. 13), we can run the unranking algorithm several times, each time use the same

secret key κ and the latest generated substitution Σ that is initialized as {A, B, …, Z, “,”, “.”, “”} at

first. Therefore, as being a polyalphabetic cryptosystem, it can exempt from the cryptanalysis that is

based on the statistical properties of usage frequencies of English alphabet [33] (p. 27). Second, the

proposed cryptosystem can encrypt a character into one of different numbers of strings. For example, if
we use 151 n and 152 n as a pair of secret keys to encrypt the cipher text Ω1 into a new cipher text

Algorithms 2015, 8 202

Ω2, then we can encrypt the character “P” into one of 20612592 different strings of 30 bits, and encrypt

the character “M” into one of 18036018 different strings of 30 bits. This is because, see Table 6, the

letter “P” represents the number 16, and the character “M” represents the number 13; and in a 2D

lattice L(15, 15), see Table 4, there are totally 20612592 different paths possess 16 turns, and

18036018 different paths possess 13 turns. If someone tries to break the cryptosystem but he does not

know the decryption scheme, this will make his attack very difficult. Third, it is easy to implement the

proposed cryptosystem to become a non-synchronous stream cipher [33] (p. 24). That is, we can use

the unranking algorithm as a key stream generator that depends not only on the secret key κ but also on

the plaintext itself. This strategy can greatly increase the complexity of breaking the proposed

cryptosystem. Based on the characteristics mentioned above, we can say that the proposed

cryptosystem can be an applicable and safe system.

6. Conclusions

Basically, the problem of generating 2D lattice L(n1, n2) paths, equivalent to two-item multiset
}B,{A 21 nn permutations, according to a given number of turns is more challenging than a simple

multiset permutation problem. The time complexity of a simple multiset permutation algorithm for
generating two-item }B,{A 21 nn multiset permutations according to a given number of turns is

)(5.0
2

5.0
1

5.1

21 



 nn

n

nn

n
O , here 21 nnn  ; and in case of 21 nn  the time complexity is).2(15.0 nnO

We propose an efficient Algorithm G2DLP that significantly reduces this time complexity to a

linear order.

The principle behind Algorithm G2DLP is divide-and-combine. According to a given number of

turns t, we first delicately divide n_1 and n_2, the horizontal x-axis and vertical y-axis of a 2D lattice

L(n1, n2), to several small parts respectively, totally 1t parts. The division is based on the

enumeration results of a previous study and is achieved by aid of an integer partition algorithm

(Partition) and a multiset permutation algorithm (Permute). Then combine these small parts, by a

concatenate algorithm (Concatenate), to the paths we require. The experimental results confirm that

Algorithm G2DLP is a linear time, or CAT (constant amortized time), algorithm. That is,

its amount of computation, after a small amount of preprocessing, is proportional to the number of

paths it generates.

The advantage of G2DLP is twofold. First, it is optimal in the sense that it directly generates all

feasible paths without visiting any infeasible path. Second, it can generate all paths in any specified

order of turns, for example, a decreasing order or an increasing order. In practice, the result of this

study can provide a good starting point for a scheduler attempting to deal with an open shop

scheduling problem, and can be used as an encryption scheme of a cryptosystem. Finally, a

concomitant problem, how to design an algorithm that can generate 3D lattice L(n1, n2, n3) paths

according to a given number of turns, is proposed for future research.

Algorithms 2015, 8 203

Appendix

Algorithm 1. Sub G2DLP ()

Public flag, parts, perm1(1 To 1000, 1 To 1000), perm2(1 To 1000, 1 To 1000), no_of_perms1,

no_of_perms2, so_far_no_perms1, so_far_no_perms2
n_1 = 3 *****input lattice size, assume that 2_1_ nn  , for example (3, 4) *****

n_2 = 4

t = 2 *****input a given number of turns, for example t = 2 *****

Path = “”

k = Int((t + 1) / 2)

parts = t + 1 *****parts = blocks *****

Select Case t Mod 2

Case 0 *****number of turns is even *****

 flag = 1

 Call Partition (n_1, k + 1)

 flag = 0

 Call Partition (n_2, k)

 Call Concatenate (parts, “e”, “n”)

 flag = 1

 Call Partition (n_2, k + 1)

 flag = 0

 Call Partition (n_1, k)

 Call Concatenate (parts, “n”, “e”)

Case 1 ***** number of turns is odd *****

 flag = 1

 Call Partition (n_1, k)

 flag = 0

 Call Partition (n_2, k)

 Call Concatenate (parts, “e”, “n”)

flag = 1

 Call Partition (n_2, k)

 flag = 0

 Call Partition (n_1, k)

 Call Concatenate (parts, “n”, “e”)

End Select

End Sub

Algorithm 2. Sub Partition (ii, pp)

so_far_no_perms1 = 0

so_far_no_perms2 = 0

Algorithms 2015, 8 204

n = ii

m = pp

If n < m Then GoTo Terminate

If m = 1 Then GoTo H2

H1: *****Initialize *****

a(1) = n − m + 1

For j = 2 To m

 a(j) = 1

Next j

a(m + 1) = − 1

H2:*****Visit *****

Call Permute

If m = 1 Then GoTo Terminate

If a(2) >= a(1) − 1 Then GoTo H4

H3: *****Tweak a(1) and a(2) *****

 a(1) = a(1) − 1

 a(2) = a(2) + 1

GoTo H2

H4: *****Find j *****

j = 3

s = a(1) + a(2) − 1

While a(j) >= a(1) − 1

 s = s + a(j)

 j = j + 1

Wend

H5: ***** Increase a(j) *****

 If j <= m Then

 x = a(j) + 1

 a(j) = x

 j = j − 1

 Else: GoTo Terminate

 End If

H6: ***** Tweak a(1) … a(j) *****

While j > 1

 a(j) = x

 s = s − x

 j = j − 1

Wend

a(1) = s

GoTo H2

Terminate:

Algorithms 2015, 8 205

If flag = 1 Then

 no_of_perms1 = so_far_no_perms1

Else

 no_of_perms2 = so_far_no_perms2

End If

End Sub

Algorithm 3. Sub Permute ()

For i = 1 To m

b(m − i + 1) = a(i)*****Reverse the elements of a partition. *****

Next i

L1:*****Store all permutations, equivalently store all partitions.*****

If flag = 1 Then

so_far_no_perms1 = so_far_no_perms1 + 1

 For i = 1 To m

 perm1(so_far_no_perms1, i) = b(i)

Next i

 Else

 so_far_no_perms2 = so_far_no_perms2 + 1

 For i = 1 To m

 perm2(so_far_no_perms2, i) = b(i)

 Next i

 End If

L2: *****Find r*****

 r = m − 1

 While b(r) >= b(r + 1)

 r = r − 1

 Wend

 If r = 0 Then Exit Sub

L3: *****Increase b(r) *****

 e = m

 While b(r) >= b(e)

 e = e − 1

 Wend

 temp = b(r)

 b(r) = b(e)

 b(e) = temp

L4: *****Reverse b(r+1) … b(m) *****

kk = r + 1

 e = m

 While kk< e

Algorithms 2015, 8 206

 temp = b(kk)

 b(kk) = b(e)

 b(e) = temp

 kk = kk + 1

 e = e − 1

 Wend

GoTo L1

End Sub

Algorithm 4. Sub Concatenate (parts, first_step, second_step)

For p1 = 1 To no_of_perms1

For p2 = 1 To no_of_perms2

 For i = 1 To parts

 q =Int((i+1) / 2)

 If (i Mod 2) = 1 Then

For j = 1 To perm1(p1, q)

 Path = Path + first_step

 Next j

 Else

 For j = 1 To perm2(p2, q)

 Path = Path + second_step

 Next j

 End If

 Next i

 rank = rank + 1

 Cells(rank, 1) = Path*****output the path*****

 Path = “”

Next p2

Next p1

End Sub

Acknowledgments

The author is grateful to anonymous referees for making a number of helpful suggestions.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Knuth, D.E. The Art of Computer Programming, Volume 4, Fascicle 2: Generating all Tuples and

Permutations, Addison-Wesley: Boston, MA, USA, 2005.

Algorithms 2015, 8 207

2. Kuo, T. Using Ordinal Representation for Generating Permutations with a Fixed Number of

Inversions in Lexicographic Order. J. Comput. 2009, 19, 1–7.

3. Kuo, T. Enumeration of 2D Lattice Paths with a Given Number of Turns. J. Comput., in press.

4. Merlini, D.; Rogers, D.G.; Sprugnoli, R.; Verri, M.C. Underdiagonal lattice paths with unrestricted

steps. Discret. Appl. Math. 1999, 91, 197–213.

5. Kaparthi, S.; Rao, H.R. Higher dimensional restricted lattice paths with diagonal steps. Discret.

Appl. Math. 1991, 31, 279–289.

6. Humphreys, K. A history and a survey of lattice path enumeration. J. Stat. Plan. Inference 2010,

140, 2237–2254.

7. Blizard, W.D. The development of multiset theory. Modern Logic 1991, 1, 319–352.

8. Bratley, P. Permutations with Repetitions (Algorithm 306). Commun. ACM 1967, 10, 450–451.

9. Chase, P.J. Permutations of a Set with Repetitions (Algorithm 383). Commun. ACM 1970, 13,

368–369.

10. Hu, T.C.; Tien, B.N. Generating Permutations with Nondistinct Items. Am. Math. Mon. 1976, 83,

629–631.

11. Korsh, J.F.; Lipschutz, S. Generating Multiset Permutations in Constant Time. J. Algorithms 1997,

25, 321–335.

12. Korsh, J.F.; LaFollette, P.S. Loopless Arary Generation of Multiset Permutations. Comput. J. 2004,

47, 612–621.

13. Sag, T.W. Permutations of a Set with Repetitions. Commun. ACM 1964, 7, 585.

14. Yen, L. A Note on Multiset Permutations. SIAM J. Discret. Math. 1994, 7, 152–155.

15. Ziya, A.; Arnavut, M. Investigation of block-sorting of multiset permutations. Int. J. Comput.

Math. 2004, 81, 1213–1222.

16. Krattenthaler, C. The Enumeration of Lattice Paths with Respect to Their Number of Turns. In

Advances in Combinatorial Methods and Applications to Probability and Statistics; Birkhäuser:

Boston, MA, USA, 1997; pp. 29–58.

17. Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems; Springer: Berlin, Germany, 2012.

18. Knuth, D.E. The Art of Computer Programming, Volume 4, Fascicle 3: Generating all

Combinations and Partitions, Addison-Wesley: Boston, MA, USA, 2005.

19. Effler, S.; Ruskey, F. A CAT algorithm for generating permutations with a fixed number of

inversions. Inf. Process. Lett. 2003, 86, 107–112.

20. Reingold, E.M.; Nievergelt, J.; Deo, N. Combinatorial Algorithms: Theory and Practice;

Prentice-Hall: New Jersey, NJ, USA, 1977.

21. Ruskey, F. Combinatorial Generation. Preliminary Working Draft; University of Victoria, Victoria,

BC, Canada, 2003.

22. Böhm, W. Lattice path counting and the theory of queues. J. Stat. Plan. Inference 2010, 140,

2168–2183.

23. Silverman, J.H. (Ed.) Cryptography and Lattices. In Lecture Notes in Computer Science 2146, In

Proceedings of the International Conference CaLC 2001, Providence, RI, USA, 29–30 March

2001; Springer: Berlin, Germany, 2001.

24. Graham, R.L.; Yao, A.C.-C.; Yao, F.F. Some monotonicity properties of partial orders. SIAM J.

Algebraic Discret. Methods 1980, 1, 251–258.

Algorithms 2015, 8 208

25. Knuth, D.E. The Art of Computer Programming, Volume 3: Sorting and Searching,

Addison-Wesley: Boston, MA, USA, 1973.

26. Fishburn, P.C. Discrete mathematics in voting and group choice. SIAM J. Algebraic Discret.

Methods 1984, 5, 263–275.

27. Xiao, Y.Y.; Zhang, R.Q.; Zhao, Q.H.; Kaku, I. Permutation flow shop scheduling with order

acceptance and weighted tardiness. Appl. Math. Comput. 2012, 218, 7911–7926.

28. Strusevich, V.A. A heuristic for the two-machine open-shop scheduling problem with transportation

times. Discret. Appl. Math. 1999, 93, 287–304.

29. Munier-Kordona, A.; Rebaineb, D. The two-machine open-shop problem with unit-time

operations and time delays to minimize the makespan. Eur. J. Oper. Res. 2010, 203, 42–49.

30. Gonzalez, T. Open Shop Scheduling. In Handbook of Scheduling: Algorithms, Models, and

Performance Analysis; Leung, J.Y.-T., Ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2005;

pp. 1–14.

31. Rayward-Smith, V.J.; Rebaine, D. Open shop scheduling with delays. Theor. Inf. Appl. 1992, 26,

439–448.

32. Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715.

33. Stinson, D.R. Cryptography: Theory and Practice, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006.

34. Kuo, T. A new method for generating permutations in lexicographic order. J. Sci. Eng. Technol.

2009, 5, 21–29.

© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

