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Abstract: A parallel search strategy based on sparse representation (PS-L1 tracker) is
proposed in the particle filter framework. To obtain the weights of state particles, target
templates are represented linearly with the dictionary of target candidates. Sparse constraints
on the coefficient guarantee that only true target candidates can be selected, and the
nonnegative entries denote the associate weights of efficient target states. Then the optimal
target state can be estimated by the linear combination of above weighted states. In this
way, efficient target states are selected simultaneously from all the particles, which we call
a parallel search strategy. Experimental results demonstrate excellent performance of the
proposed method on challenging infrared images.
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1. Introduction

Infrared sensors have been employed in many applications such as military, industrial and civil fields.
Moreover, the cost reduction is dramatic due to technological advancements. Thus, infrared sensors are
expected to be employed in more fields. In fact, the infrared image reflects thermal radiation of the object
in the scene which is not influenced by its surface features and illumination conditions. Specifically,
much attention has been paid to long-wave infrared (LWIR) light in the range of 8–12 nm which can
transmit in the conditions of smoke, fog, haze, etc. [1].
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Target tracking is a key component in many vision-based tasks and many algorithms have been
proposed. For an infrared image, its intensity denotes temperature and radiated heat; thus, very limited
information can be employed to represent the target. Besides, infrared images are usually characterized
by low signal to noise ratio (SNR), poor target visibility, and time-varying target appearances [2]. All
factors mentioned above make target tracking in infrared image still a challenging problem.

Sparse representation has drawn much attention in visual tracking. In L1 tracker [3], the tracking
problem is formulated to find a sparse representation of the target candidate using templates. A set of
trivial templates is introduced to deal with occlusion, noise, and other challenging issues seamlessly.
Similarity measurement is performed between each candidate and the target templates. Thus, hundreds
of `1 norm minimization problems must be solved in each frame, which is equal to the number of
target candidates. Finally, the target candidate with the smallest reconstruction error is treated as the
optimal one.

In this paper, a parallel search strategy based on sparse representation is proposed to track target in
infrared images. In the particle filter framework, all target candidates are treated as whole to compose
an overcomplete dictionary. When the target templates are represented linearly with such a dictionary,
the entries of the coefficient denote the weights of target candidates. Nonnegative sparse constraints are
imposed to choose the efficient target states; thus, the efficient states with associate weights are selected
simultaneously from all the particles. Finally, the optimal target state can be estimated by the weighted
combination of such efficient states.

The rest of this paper is organized as follows. Section 2 will review the related work about L1
tracker. In Section 3, we propose a parallel search strategy based on sparse representation in the particle
filter framework. Experimental results and analysis for infrared images are shown in Section 4, and the
conclusion is given in Section 5.

2. Related Work

Target tracking is an important topic in computer vision which has been studied for decades. In fact,
the existing methods can be divided in two categories: generative and discriminative [4]. For generative
methods, an appearance model is used to represent the target observation and tracking is formulated to
search the similar area. One representative example is the subspace model which assumes that the target
observations lie in a low dimensional manifold. For example, object appearance is represented with
an eigenspace [5], affine warps of learned linear subspaces [6], incrementally learned low-dimensional
subspace [7], incremental tensor subspace [8], online appearance model [9], etc.

Discriminative models treat tracking as a binary classification problem with the goal to separate
target from background. A feature vector is constructed for each pixel of the reference image, then
an adaptive ensemble of classifiers is trained to separate target pixels from background pixels [10].
The TLD tracker [11] uses P-N learning [12] to exploit the data structures and get feedback about the
performance of the classifier. It is shown to be reliable in long sequence tracking.

Sparse representation has been applied to tracking problem which shows excellent performance [3].
In the particle filter framework, each target candidate is represented sparsely as a linear combination of
target templates and trivial templates. Group sparsity is integrated and very high dimensional features are
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used for improving tracking robustness [13]. To make full use of the sparse coefficients to discriminate
between the target and the background, a robust tracking method is developed based on the structural
local sparse appearance model [14]. Besides, object tracking can be formulated as a multi-task sparse
learning problem, and particles are modeled as linear combinations of dictionary templates which are
updated dynamically to learn the representation of each particle [15]. To exploit the relationship between
particles which are represented as sparse linear combinations of dictionary templates, the tracking
problem is casted as a low-rank matrix learning problem [16].

The coefficient is obtained via solving either `0 or `1 norm minimization problem in these approaches.
In [3], the `1 norm minimization is solved based on interior point method [17], which is very slow when
solving large-scale `1 minimizations. A real-time tracker is proposed by adopting compressive sensing
and a customized Orthogonal Matching Pursuit (OMP) algorithm to accelerate the tracking [18]. A
very fast numerical solver is developed to solve the `1 norm minimization problem with guaranteed
quadratic convergence based on the accelerated proximal gradient approach [19]. A tracking algorithm
is developed with a static sparse dictionary and dynamic online updated basis distribution [20].

3. Proposed Method

In a tracking system, when the target state is available in current frame, it is desired to locate it in
subsequent frames. From the point of statistics, the tracking problem can be formulated to estimate the
posteriori probability of target state.

3.1. Particle Filter

Particle filter is a recursive Bayesian filter by Monte Carlo (MC) simulations which generalize the
traditional Kalman filter [21]. It consists of two steps of prediction and update for estimating the posterior
distribution of state. In particle filter framework, the posterior probability density function (PDF) is
estimated with a set of samples with associated weights. If the number of samples is large enough, MC
characterization estimates the true posterior pdf well to achieve the optimal Bayesian estimate. In most
practical applications, the kinetic model of maneuvering target is nonlinear and pdf of target state is
non-Gaussian. Particle filter can deal with it well because it can estimate the state pdf regardless of the
underlying distribution.

Concretely, affine transform parameters are used as target state xt at t frame, and
y1:t−1 = {y1, y2, · · · , yt−1} denotes the available observations up to t − 1 frame. The predicting
distribution given all available observations can be computed recursively as

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (1)

After observation yt is available at t frame, the probability of target state is updated with the
Bayesian principle

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(2)

where p(yt|xt) denotes the observation probability.
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Then the posterior pdf is estimated by N samples Xt = {x1t , x2t , · · · , xNt } with associated
weights Wt = {w1

t , w
2
t , · · · , wNt }. The samples are generated by sequential importance distribution

q(xt|y1:t, x1:t−1) and weights are updated as

wit = wit−1
p(yt|xit)p(xit|xit−1)
q(xt|x1:t−1, y1:t)

(3)

For bootstrap filter, q(xt|x1:t−1, y1:t) = p(xt|xt−1) and the weight has a simple form of
wit ∝ wit−1p(yt|xit).

However, the variance of the weights will increase over time thus most particles only have negligible
weight after several iterations. In other words, most computational cost is spent on updating weights
of those particles which are useless to estimate the posterior probability. To avoid such degeneracy
phenomenon, resampling is performed according to weights and a set of new samples with equal weights
are obtained in each frame. The number that xit appears in the new set is equal to N × p(yit|xit).

3.2. Parallel Search Strategy

Given the target state in current frame, the goal of tracking is to locate it in the subsequent frames.
In the particle filter framework, plenty of particles with associated weights are used to estimate the
posterior pdf of target state. Generally speaking, the target candidates are compared to the templates
in turn. For original L1 tracker, each candidate is represented sparsely in the linear space spanned by
target templates and trivial templates. Then, target candidate with minimum reconstruction error in target
template subspace is taken as the optimal estimation.

In such structure, plenty `1 minimization must be solved in each frame which is equal to the number
of particles; thus, it has to suffer heavy computational burden. Besides, it is not reliable to estimate
the target state only with one state particle. In fact, target state is a continuous variable and it is more
reliable to estimate it with more particles with associated weights. The weights can be obtained by the
similarity measurement between candidates and templates. In fact, all target candidates can be divided
into two categories. Those containing true target belong to the first category. By contraries, background
is dominate in the second category. It is more reasonable to estimate the optimal target state only with
the true candidates.

A parallel search strategy based on sparse representation is proposed to select efficient target
candidates which are used to estimate the optimal target state. At the t frame, plenty of state particles
Xt = {x1t , x2t , · · · , xNt } are obtained by sampling, and the corresponding measurement are target
candidates Yt = {y1t , y2t , · · · , yNt }. In fact, the number of particles is much lager than that of target
templates Tt = {T 1

t , T
2
t , · · · , T nt }, which means n� N .

Given that target templates and true candidates lie in the same linear subspace, each template can be
represented as a linear combination of the true candidates. Sparse constraints on the coefficient guarantee
that only true target candidates can be selected. In principle, the coefficients can be any real numbers
without any restrictions; thus, candidates with reversed intensity patterns may be selected. It is necessary
to impose nonnegative constraints on the coefficient to eliminate such false candidates; thus, the entries
can reflect the associated weights of efficient target candidates. Then the optimal state can be estimated
by the linear combination of such weighted states.
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The above idea can be described as follows. For each target template T it , all target candidates
constitute an overcomplete dictionary (Yt ∈ Rd×N , d < N ) then the weights of target candidates can
be obtained simultaneously by solving

α̂it = argmin
αi
t

‖Ytαit − T it ‖22 + λ‖αit‖1 s.t. αit < 0 (4)

where α̂it ∈ RN is the coefficient for the ith target template. When the target template are used to search
for efficient target states, their contribution are different. It can be measured with the reconstruction
error; thus, the weights of target templates can be defined as

wT
i
t = e−τ‖Ytα

i
t−T i

t ‖22 (5)

where τ is used to control the shape of weight distribution. Then the coefficients of all target templates
can be fused as

α̂t =
1

n

n∑
i=1

wT
i
t × α̂it (6)

whose nonzero entries denote the associated weights of efficient state particles. The normalized weights
of states are obtained by

wX
i
t =

α̂t(i)∑N
i=1 α̂t(i)

(7)

where
∑N

i=1wX
i
t = 1. Due to the fact that the target state is a continuous vector, particles with associated

weights are used to approximate the posterior pdf. The optimal state can be estimated as

x̂t =
N∑
i=1

wX
i
t × xit (8)

3.3. Template Update

Intuitively, object appearance may remain unchanged only for a certain period of time; thus, fixed
templates will not be available all the time. So they must be updated to deal with the appearance
variation. However, error is inevitable to be introduced when templates are updated. If we update
them too frequently, the tracker is easy to drift from the ground target due to accumulated error.

A method of updating templates dynamically is employed to alleviate the problem. This means that
a target template is updated only when it is not similar to the tracking result ŷk. The similarity function
is defined as cos(θ), where θ is the angle between the two normalized vectors. A suitable threshold θthr
is selected to determine whether to update the target template. Once the maximal angle θmax exceeds
the threshold, this target template can be replaced by the optimal estimation to be updated. The whole
algorithm is summarized in Algorithm 1.
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Algorithm 1 PS-L1 tracker
Input:

current frame Ft, sample set Xt−1, target template Tt−1;
Output:

the optimal state x̂t, sample set Xt, target template Tt;
1: for t = 1 to the number of frames do
2: Draw the new samples xit from xit−1 with respect to p(xt|xt−1);
3: for i = 1 to the number of templates do
4: Each target template is represented sparsely with all the target candidates (4);
5: The reconstruction error is treated as the weight of each target template (5);
6: end for
7: The fused coefficient α̂t is obtained by (6) then normalized as (7);
8: The optimal state x̂t is estimated as (8);
9: Resample to obtain Xt to avoid degeneracy phenomenon;

10: if θmax > θthr then
11: Target template with maximal angle θmax is replaced by the optimal estimation to be updated;
12: end if
13: end for

4. Experiments

In our experiments, we compare the tracking results of PS-L1 tracker with L1 tracker and APG-L1
tracker, besides blue, red and green bounding boxes are used to denote them respectively. All algorithm
are evaluated on the AMCOM FLIR dataset which comprises FLIR sequences in grayscale format
(128× 128 pixels).

Algorithm parameters are set as follows.The template size is 10×10 and variances of affine parameters
are (0.03, 0.0005, 0.0005, 0.03, 1, 1). Besides, 10 target templates are used and the number of state
particles is 400. The angle threshold θthr is 40 to determine whether to update a target template. Several
numerical experiments are performed on the personal computer with 2.67GHz Inter(R) Core(TM) I3
CPU and 2GB memory. Besides, Windows 7 and MATLAB R2010a are installed. The `1 minimization
problem is solved by SPAMS software package for the PS-L1 tracker.

The first experiment is performed on the sequence of LW-16-08 and the results are shown in Figure 1.
The challenge of this sequence is the disturbance of similar target. A stationary target is at the center
position whose size becomes larger with time, and another target with similar appearance moves to the
existing one. Partial occlusion happens when they are close enough. The experimental results show that
both L1 tracker and APG-L1 tracker fail after the two targets encounter though the latter can handle
occlusion. The PS-L1 tracker also fails for a short time, it recovers soon to lock on the target during the
rest frames of the sequence.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 1. Tracking results of three trackers for sequence LW-16-08.

The second experiment is performed on the sequence of LW-17-20 and the results are shown in
Figure 2. The challenge of this sequence is the obvious variance of size and pose. A target moves along
the road then turns right. It can be seen that both L1 tracker and APG-L1 tracker only lock on a little
part of the target after its size becomes larger. For PS-L1 tracker, it can lock on the whole target though
more background pixels are contained. The reason is that all the three trackers use the generative model
thus various target appearance and background are hard to discriminate. In fact, holistic templates based
on raw intensity values do not take large appearance variability into account which do not perform well
in a situation of obvious variance of pose.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2. Tracking results of three trackers for sequence LW-17-20.

The third experiment is performed on the sequence of LW-19-NS and the results are shown in
Figure 3. The challenges of this sequence are occlusion and background clutter. Two targets move
along the road. At first, occlusion happens due to vehicle exhaust; thus, only part of the first target is
visible. All the three trackers perform well before the target turns right because sparse representation is
insensitive to occlusion. Then the target appearance changes with time and the background clutter also
causes disturbance. It can be seen that our tracker is more stable to lock on the target while the other two
lose it.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3. Tracking results of three trackers for sequence LW-19-NS.

The fourth experiment is performed on the sequence of LW-18-15 and the results are shown in
Figure 4. The challenge of this sequence is low contrast. A small target becomes close to the infrared
sensor whose size becomes larger with time. The target is small and dark, and it is very hard to
discriminate the target from background. At first, all the three trackers perform well because sparse
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representation can extract the principal features. Then the target appearance changes with time, the
APG-L1 tracker even fails to track the target. Although the L1 tracker and PS-L1 tracker can lock on
the target through the whole sequence, they do not perform well in estimation of target size. For the
L1 tracker, many background pixels are included, and only a little part of target is locked for the PS-L1
tracker. Though all the three trackers are not very satisfying, the proposed method performs better than
the others.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. Tracking results of three trackers for sequence LW-18-15.

In fact, the measurement of state particle usually introduces larger error during a challenging situation,
the PS-L1 tracker use efficient state particles with associated weights to estimate the target state which
is more reliable and stable to alleviate the problem. That is the reason that the PS-L1 tracker performs
better than the other two trackers.

Then the tracking results are quantitatively evaluated by two widely used criteria of position
error(PosErr) and F-score. The former measures the distance by pixels between the ground truth target
center and the tracking result center which is defined as

PosErr =
√

(cxtrk − cxgt)2 + (cytrk − c
y
gt)

2 (9)

where (cxtrk − c
y
trk) and (cxgt − c

y
gt) denote the central position of tracking and ground truth respectively.

The F-score evaluates tracking results by taking both the recall and precision into account which is
defined as

F -score =
TP × 2

TP × 2 + FP + FN
(10)

where TP, FP, and FN are the true positive, false positive, and false negative respectively. For an image,
F-score can be calculated as

F -score =
#(Rtrk

⋂
Rgt)× 2

#(Rtrk

⋂
Rgt) + #(Rtrk

⋃
Rgt)

(11)

whereRtrk denotes the target region within tracking bounding andRgt denotes the object region obtained
through ground truth. Besides, # denotes the number of pixels. The results of three trackers are shown
in Figures 5 and 6 and the numerical comparisons are shown in Tables 1 and 2.
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Figure 5. Quantitative comparison of three trackers in terms of position errors (in pixel).
(a) LW-16-08; (b) LW-17-20; (c) LW-19-NS; (d) LW-18-15.
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Figure 6. Quantitative comparison of three trackers in terms of F-score. (a) LW-16-08;
(b) LW-17-20; (c) LW-19-NS; (d) LW-18-15.

Table 1. Numerical Comparison of Average of PosErr.

Sequence
Methods

L1 APG-L1 PS-L1

LW-16-08 17.77 20.54 3.24
LW-17-20 8.44 8.33 5.83
LW-19-NS 5.85 5.50 4.45
LW-18-15 4.78 14.06 4.30

Table 2. Numerical Comparison of Average of F-score.

Sequence
Methods

L1 APG-L1 PS-L1

LW-16-08 0.496 0.504 0.777
LW-17-20 0.543 0.576 0.781
LW-19-NS 0.629 0.631 0.661
LW-18-15 0.625 0.548 0.659
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The computational cost of PS-L1 tracker is compared to that of L1 tracker and APG-L1 tracker on
the four sequences, and the speed is measured in frame/s. The comparative result is shown in Table 3.
It shows that the advantage of proposed algorithm is obvious. The speed of PS-L1 tracker is about two
times than the APG-L1 tracker, which is primarily achieved by the parallel strategy.

Table 3. Comparison of Computational Cost by Frames/s.

Sequence
Methods

L1 APG-L1 PS-L1

LW-16-08 0.90 14.54 30.23
LW-17-20 1.32 16.99 31.89
LW-19-NS 0.77 17.91 30.26
LW-18-15 0.88 16.29 27.12

In fact, the bottleneck of computation efficiency depends on solving `1 norm minimization problem.
Due to the parallel search strategy, efficient target states are selected simultaneously for each template.
Thus only n `1 norm minimization problems should be solved which is far less than the number of state
particles N .

5. Conclusions

In this paper, we propose a parallel search strategy based on sparse representation in the particle filter
framework. Efficient target states are selected simultaneously, and it is more reliable to estimate the
optimal state with such state particles. Experimental results demonstrate that the proposed tracker can
deal with challenging problems such as disturbance, appearance variance, occlusion, background clutter
and low contrast. Besides, the speed of PS-L1 tracker is improved obviously which is primarily achieved
by the parallel strategy. In future work, more sophisticated features instead of raw intensity should be
employed to represent the target; thus, it can deal with challenging problems.
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