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Abstract: In dynamic propagation environments, beamforming algorithms may suffer
from strong interference, steering vector mismatches, a low convergence speed and a
high computational complexity. Reduced-rank signal processing techniques provide a
way to address the problems mentioned above. This paper presents a low-complexity
robust data-dependent dimensionality reduction based on an iterative optimization with
steering vector perturbation (IOVP) algorithm for reduced-rank beamforming and steering
vector estimation. The proposed robust optimization procedure jointly adjusts the
parameters of a rank reduction matrix and an adaptive beamformer. The optimized rank
reduction matrix projects the received signal vector onto a subspace with lower dimension.
The beamformer/steering vector optimization is then performed in a reduced dimension
subspace. We devise efficient stochastic gradient and recursive least-squares algorithms for
implementing the proposed robust IOVP design. The proposed robust IOVP beamforming
algorithms result in a faster convergence speed and an improved performance. Simulation
results show that the proposed IOVP algorithms outperform some existing full-rank and
reduced-rank algorithms with a comparable complexity.
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1. Introduction

Adaptive beamforming algorithms often encounter problems when they operate in dynamic
environments with large sensor arrays. These problems include steering vector mismatches, high
computational complexity and snapshot deficiency. Steering vector mismatches are often caused by
calibration/pointing errors, and a high complexity is usually introduced by an expensive inverse operation
of the covariance matrix of the received data. High computational complexity and snapshot deficiency
may prevent the use of adaptive beamforming in important applications, like sonar and radar [1,2]. The
adaptive beamforming techniques are usually required to have a trade-off between performance and
complexity, which depends on the designer’s choice of the adaptation algorithm.

In order to overcome this computational complexity issue, adaptive versions of the
linearly-constrained beamforming algorithms, such as minimum variance distortionless response
(MVDR) with stochastic gradient and recursive least squares [1–3], have been extensively reported.
These adaptive algorithms estimate the data covariance matrix iteratively, and the complexity is reduced
by recursively computing the weights. However, in a dynamic environment with large sensor arrays,
such as those found in radar and sonar applications, adaptive beamformers with a large number of array
elements may fail in tracking signals embedded in strong interference and noise. The convergence
speed and tracking properties of adaptive beamformers depend on the size of the sensor array and the
eigen-spread of the received covariance matrix [2].

Regarding the steering vector mismatches often found in practical applications of beamforming,
they are responsible for a significant performance degradation of algorithms. Prior work on robust
beamforming design [4–7] has considered different strategies to mitigate the effects of these mismatches.
However, a key limitation of these robust techniques [4–7] is their high computational cost for large
sensor arrays and their suitability to dynamic environments. These algorithms need to estimate the
covariance matrix of the sensor data, which is a challenging task for a system with a large array and
operates in highly dynamic situations. Given this dependency on the number of sensor elements M , it is
thus intuitive to reduce M while simultaneously extracting the key features of the original signal via an
appropriate transformation.

Reduced-rank signal processing techniques [7–17] provide a way to address some of the problems
mentioned above. Reduced dimension methods are often needed to speed up the convergence of
beamforming algorithms and reduce their computational complexity. They are particularly useful in
scenarios in which the interference lies in a low-rank subspace, and the number of degrees of freedom
required to mitigate the interference through beamforming is significantly lower than that available in
the sensor array. In reduced-rank schemes, a rank reduction matrix is introduced to project the original
full-dimension received signal onto a lower dimension. The advantage of reduced-rank methods lies in
their superior convergence and tracking performance achieved by exploiting the low-rank nature of the
signals. It offers a large reduction in the required number of training samples over full-rank methods [2],
which may also addresses the problem of snapshot deficiency at low complexity. Several reduced-rank
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strategies for processing data collected from a large number of sensors have been reported in the last few
years, which include beamspace methods [7], Krylov subspace techniques [13,14] and methods of joint
and iterative optimization of parameters in [15–17].

Despite the improved convergence and tracking performance achieved with Krylov methods [13,14],
they are relatively complex and may suffer from numerical problems. On the other hand, the joint
iterative optimization (JIO) technique reported in [16] outperforms the Krylov-based method with
efficient adaptive implementations. However, the theoretical JIO dimensionality reduction transform
matrix, Equation (63) in [16], is in fact rank-one; the column space of the JIO matrix is precisely
the MVDR line. The rank selection scheme may fail to work; performance degradation is then
expected. In order to address this problem, in this paper, we introduce a low-complexity robust
data-dependent dimensionality reduction algorithm for reduced-rank beamforming and steering vector
estimation. The proposed iterative optimization with steering vector perturbation (IOVP) design
strategy jointly optimizes a projection matrix and a reduced-rank beamformer by introducing several
independently-generated small perturbations of the assumed steering vector. With these vectors, the
scheme updates a different column of the projection matrix in each recursion and concatenates these
columns to ensure that the projection matrix has a desired rank.

The contributions of this paper are summarized as follows:

• A bank of perturbed steering vectors is proposed as candidate array steering vectors around the
true steering vector. The candidate steering vectors are responsible for performing rank reduction,
and the reduced-rank beamformer forms the beam in the direction of the signal of interest (SoI).

• We devise efficient stochastic gradient (SG) and recursive least-squares (RLS) algorithms for
implementing the proposed robust IOVP design.

• We introduce an automatic rank selection scheme in order to obtain the optimal beamforming
performance with low computational complexity.

Simulation results show that the proposed IOVP algorithms outperform existing full-rank and
reduced-rank algorithms with a comparable complexity.

This paper is organized as follows. The system model is described in Section 2. The reduced-rank
MVDR beamforming with IOVP is formulated in Section 3. A robust version of IOVP is investigated in
Section 4, and simulations are discussed in Section 5.

2. System Model

Let us consider a uniform linear array (ULA) with M sensor elements, which receive K narrowband
signals where K ≤ M . The directionsof arrival (DoAs) of the K signals are θ0, . . . θK−1. The received
vector x[i] ∈ CM×1 at the i-th snapshot (time instant) can be modelled as:

x[i] = A(θ)s[i] + n[i], i = 1, . . . , N (1)

where θ = [θ0, . . . , θK−1]T ∈ RK×1 convey the DoAs of the K signal sources.
A(θ) = [a(θ0), . . . ,a(θK−1)] ∈ CM×K comprises K steering vectors, which are given as:

a(θk) = [1, e−2πj ι
λc

cos(θk), . . . , e−2πj(M−1) ι
λc

cos(θk)]T (2)
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where λc is the wavelength and ι is the inter-element distance of the ULA. The K steering vectors
a{θk} ∈ CM×1 are assumed to be linearly independent. The source data are modelled as s ∈ CK×1, and
n[i] ∈ CM×1 is the noise vector, which is assumed to be zero-mean; N is assumed to be the observation
size, and [i] denotes the time instant. For full-rank processing, the adaptive beamformer output for the
SoI is written as:

yk[i] = ωHk [i]x[i] (3)

where the beamformer ωk ∈ CM×1 is derived according to a design criterion. The optimal weight vector
is obtained by maximizing the signal-to-interference plus noise ratio (SINR) and:

SINRopt =
ωHoptRkωopt

ωHoptRi+nωopt
(4)

whereRk andRi+n denote the SoI and interference plus noise covariance matrices, respectively.

2.1. Minimum Variance Distortionless Response

The MVDR/SCBwas reported as the optimal design criterion of the beamformer ωk. The MVDR
criterion obtains ωk[i] by solving the following optimization problem:

minJMVDR(ωk[i]) = ωHk [i]Rωk[i],

subject to ωHk [i]a(θk) = 1
(5)

where R = E
[
x[i]xH [i]

]
∈ CM×M is the covariance matrix obtained from the sensor array, and

the array response a(θ) can be calculated by employing a DoA estimation procedure. By using the
technique of Lagrange multipliers, the solution of (5) is easily derived as:

ωk[i] =
R−1ak(θk)

aHk (θk)R
−1ak(θk)

(6)

whereR is the covariance matrix of the received signal. In practical applications,R is approximated by
the sample covariance matrix R̂, where:

R̂ =
1

N

N∑
i=1

x[i]x[i]H (7)

with N being the number of snapshots. Larger arrays require longer duration snapshots due to the longer
transit time of sound across the array. The computation of a reliable covariance matrix R̂ requires
a higher number of N > M . More snapshots are needed due to the many elements. Usually, this leads
to snapshot-deficient processing [18].
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2.2. Recursive Least-Squares

The matrix inversion operation in (6) requires significant computational complexity when M is large.
We derive an RLS adaptive algorithm for efficient computation of the MVDR beamformer. The inverse
covariance matrix R−1 can be obtained by solving the standard least-squares (LS) problem; the LS cost
function with an exponential window is given by:

Jk[i] =
i∑

τ=1

αi−τ
∣∣∣ωHk [i]xk[τ ]

∣∣∣2 (8)

where 0� α < 1 is the forgetting factor. By replacing the upper equation of (5) with (8), the Lagrangian
is obtained as:

LLS(ωk[i]) =
i∑

τ=1

αi−τ
∣∣∣ωHk [i]xk[τ ]

∣∣∣2 + 2<[λ(ωHa(θk)− 1)] (9)

Taking the gradient of (9) with respect to ω[i], equating the terms to a zero vector and solving for λ,
we obtain the beamformer as:

ωk[i] =
R[i]−1ak
aHk R[i]−1ak

(10)

where the estimated covariance matrix is:

R̂[i] =
i∑

τ=1

αi−τx[τ ]xH [τ ] (11)

By comparing Equations (6) and (10), we can see that the MVDR beamformer can be implemented
in an iterative manner, and the complexity can be significantly reduced. The filter ωk[i] can be estimated
efficiently via the RLS algorithm. However, the laws that govern their convergence and tracking
behaviours imply that they depend on the number of sensor elements M and on the eigenvalue spread of
the covariance matrixR. In order to estimateR−1 without matrix inversion, we use the matrix inversion
lemma [2], the gain vector and the Riccati equation for the RLS algorithm given as:

k[i] =
α−1R−1[i− 1]x[i]

1 + α−1xH [i]R−1[i− 1]x[i− 1]
(12)

R−1[i] = α−1R−1[i− 1]− α−1k[i]xH [i]R−1[i− 1] (13)

The inverse correlation matrix R−1 is obtained at each step by the recursive processes for reduced
computational complexity. Equation (13) is initialized by using an identity matrixR−1 = δI where δ is a
positive constant. The above-mentioned full-rank beamformers usually suffer from high complexity and
low convergence speed. In the following section, we focus on the design of the proposed low-complexity
reduced-dimension beamforming algorithms.



Algorithms 2015, 8 578

3. Problem Statement and the Dimension Reduction with IOVP

3.1. Reduced Rank Methods and the Projection Matrix

The filter ωk[i] in Equation (10) can be estimated efficiently via the RLS algorithm; however,
the convergence and tracking behaviours depend on M and on the eigenvalue spread of R.
Reduced-dimension methods are introduced to speed up the convergence of beamforming algorithms
and to reduce their computational complexity [5,8]. A reduced-rank algorithm must extract the most
important features of the processed data by performing dimensionality reduction. This transformation is
carried out by applying a matrix SD ∈ CM×D on the received data as given by:

x̄[i] = SHDx[i] (14)

where, in what follows, we denote the D-dimensional terms with a “bar” sign. The obtained received
vector x̄[i] is the new input to a filter given by the vector ω̄ = [ω̄1, ω̄2, . . . , ω̄D]T , and the resulting filter
output is:

ȳk[i] = ω̄Hk x̄[i] (15)

In order to design the reduced-rank filter ω̄k, from Equation (6), we consider the following
optimization problem:

minJreduced-rank(ω̄k[i]) = ω̄Hk [i]R̄ω̄k[i],

subject to ω̄Hk [i]ā(θk) = 1
(16)

The solution to the above problem is:

ω̄k[i] =
R̄
−1
āk(θk)

āHk (θk)R̄
−1
āk(θk)

(17)

where the dimensional reduced covariance matrix is given by R̄ = E
[
x̄[i]x̄H [i]

]
= SHDRSD and

the reduced-rank steering vector is obtained by ā(θk) = SHDa(θk), where E[·] denotes the expectation
operation. The above contents show how a projection matrix SD can be used to perform dimensionality
reduction on the received signal and resulting in improved convergence and tracking performance over
the full-rank filter listed in Equations (6) and (10).

3.2. Problem Statement and the Proposed IOVP

In previous works, the JIO approach reported in [16] outperforms the Krylov-based method with
efficient adaptive implementations; however, there was a problem in this approach. Specifically, the
theoretical JIO dimensionality reduction transform matrix, Equation (63) in [16], is in fact rank-one.
Consequently, when the reduced dimension is selected as greater than one, so that the JIO projection
matrix has more than one column, pre-processing with the JIO projection matrix will yield a singular,
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non-invertible reduced-rank covariance matrix, which means that the reduced dimensional weights will
not exist; the rank-one column space of the JIO matrix is precisely the MVDR line, and the rank selection
may fail to work.

In order to address this issue, in the following, we detail a set of novel reduced-rank algorithms
based on the proposed IOVP design of beamformers. The proposed IOVP design strategy jointly
optimizes a projection matrix SD[i] and a reduced-rank beamformer ω̄k[i] by introducing several
independently-generated small perturbations of the assumed steering vector and recursively updates a
different column of the projection matrix to ensure a desired rank. The bank of adaptive beamformers
in the front-end is responsible for performing dimensionality reduction, which is followed by a
reduced-rank beamformer, which effectively forms the beam in the direction of the SoI. This two-stage
scheme allows the adaptation with different update rates, which could lead to a significant reduction in
the computational complexity per update. Specifically, this complexity reduction can be obtained as the
dimensionality reduction performed by the rank reduction matrix could be updated less frequently than
the reduced-rank beamformer.

The principle of the proposed IOVP reduced rank scheme is depicted in Figure 1, which employs a
projection matrix SD[i] ∈ CM×D to perform dimensionality reduction on data vector x[i] ∈ CM×1. The
rank-reduced filter ω̄k[i] ∈ CD×1 processes the reduced-rank data vector x̄[i] ∈ CD×1 to obtain a scalar
estimate ȳk[i] of the k-th desired signal.

Projection Matrix
SD[i] ∈ CM×D

Reduced-Rank Filter
ω̄D[i] ∈ CD×1

Design Algorithm

x[i] ∈ CM×1

r̄[i] ∈ CD×1

y[i] = ω̄H
D [i]x̄[i]

Figure 1. Schematic of the proposed reduced-rank scheme.

The design criterion of MVDR-IOVP beamformer is given by the following optimization problem:

min
ω,sd

ω̄HR̄ω̄ = ωHSHDRSDω,

subject to ω̄H
D∑
d=1

qds
H
d ad = 1

(18)

where R is the covariance matrix obtained from sensors and vector qd with dimension D × 1 is a zero
vector except its d-th element being one. The vector sd ∈ CM×1 is the d-th column of the projection
matrix SD ∈ CM×D. The vectors ad, d = 1 . . . D represent the assumed steering vector and D − 1

independently-generated small perturbations of the assumed steering vector. Different from the JIO
approach in [16], where the columns of SD are jointly designed under the same criterion, the proposed
IOVP approach (18) uses the vector qd to orthogonalize the columns of the projection matrix, and the
columns can be independently updated with the perturbation vector in each recursion. The scheme
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updates a different column of the projection matrix in each recursion and concatenates these columns
to form the projection matrix SD; the concatenation procedure ensures that the projection matrix has a
desired rank. According to Equation (28) in Section 3.4, an increased rank of SD is obtained for higher
d, and the rank-one problem in [16] can be avoided. The constrained optimization problem in (18) can
be solved by using the method of Lagrange multipliers [4]. The Lagrangian of the MVDR-IOVP design
is expressed by:

f(ω, sd) = E
{∣∣∣ωH D∑

d=1

qds
H
d x
∣∣∣2}+ λ

(
ωH

D∑
d=1

qds
H
d a− 1

)
(19)

In order to efficiently solve the above Lagrangian, in the following subsections, we introduce the
stochastic gradient adaptation and the recursive least-squares adaptation methods.

3.3. Stochastic Gradient Adaptation

In this subsection, we present a low-complexity SG [2] adaptive reduced-rank algorithm for efficient
implementation of the IOVP algorithm. By computing the instantaneous gradient terms of (19) with
respect to ω[i]∗ and sd[i]∗, we obtain:

ω̄[i+ 1] = ω[i]− µwP w[i]SHD [i]x[i]z∗[i] (20)

sd[i+ 1] = sd[i]− µsP s[i]x[i]z∗[i]w∗d[i], d = 1, . . . , D (21)

where wd is the d-th element of the reduced-rank beamformer ω[i] and the projection matrices that
enforce the constraints are:

P w[i] = ID − (aHD [i]aD[i])−1aD[i]aHD [i] (22)

P s[i] = IM − (aH [i]a[i])−1a[i]aH [i] (23)

the scalar z∗[i] = xH [i]SD[i]ω̄[i] = x̃H [i]ω̄, and:

aD[i] =
D∑
d=1

qdsd[i]
Ha[i] ∈ CD×1 (24)

is the estimated steering vector in reduced dimension. The calculation of P ω̄[i] requires a number of
D2 +D+ 1 complex multiplications; the computation of P s[i] and z[i] requires D2 +DM +M + 1 and
DM + D complex multiplications, respectively. Therefore, we can conclude that for each iteration, the
SG adaptation requires 4MD + 4D2 + 3D +M + 6 complex multiplications.
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3.4. Recursive Least-Squares Adaptation

Here, we derive an adaptive reduced-rank RLS [2] type algorithm for efficient implementation of the
MVDR-IOVP method. The reduced-rank beamformer ω̄[i] is updated as follows:

ω̄[i] =
R−1
D [i]aD[i]

aHD [i]R−1
D [i]aD[i]

(25)

where:

k̃[i+ 1] =
α−1R−1

D [i]x̃[i+ 1]

1 + α−1x̃H [i+ 1]R−1
D [i]x̃[i]

(26)

R−1
D [i+ 1] = α−1R−1

D [i]− α−1k̃[i+ 1]x̃H [i+ 1]R−1
D [i] (27)

The columns sd[i] of the rank reduction matrix are updated by:

sd[i] =
R−1[i]ad[i]a

H
d [i]βd[i]

aHd [i]R−1[i]ad[i]wd[i]
, d = 1, . . . , D (28)

where βd[i] =
∑D

d=1 sd[i]wd[i]−
∑D

l=1,l 6=d sl[i]wl[i] and:

k[i+ 1] =
α−1R−1[i]x[i+ 1]

1 + α−1xH [i+ 1]R−1[i]x[i]
(29)

R−1[i+ 1] = α−1R−1[i]− α−1k[i+ 1]xH [i+ 1]R−1[i] (30)

where 0 � α < 1 is the forgetting factor. The inverse of the covariance matrix R−1 is obtained
recursively. Equation (30) is initialized by using an identity matrix R−1[0] = δI where δ is a positive
constant. From Equation (28), we can see that with the proposed IOVP approach, by orthogonalizing the
columns of the projection matrix sd[i], the M weights can be independently updated in each recursion,
and the rank-one problem in Equation (22) of [16] can be addressed. The computational complexity
of the proposed adaptive reduced-rank RLS-type MVDR-IOVP method requires 4M2 + 3D2 + 3D + 2

complex multiplications. The MVDR-IOVP algorithm has a complexity significantly lower than a
full-rank scheme if a low rank (D �M ) is selected.

4. Proposed Robust Capon IOVP Beamforming

In this section, we present a robust beamforming method based on the robust capon beamforming
(RCB) technique reported in [4] and the IOVP detailed in the previous section for robust beamforming
applications with large sensor arrays. The proposed technique, denoted RCB-IOVP, gathers the
robustness of the RCB approach [4] against uncertainties and the low complexity of IOVP techniques.
Assuming that the DoA mismatch is within a spherical uncertainty set, the proposed RCB-IOVP
technique solves the following optimization problem:
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min
ad,sd

aHd S
H
DR

−1SDad,

subject to
∥∥SHDad − SHDā∥∥2

= ε
(31)

where ā is the assumed steering vector and ad is the updated steering vector for each iteration.
The constant ε is related to the radius of the uncertainty sphere. The Lagrangian of the RCB-IVOP
constrained optimization problem is expressed by:

fRCB(ad, sd) =

(
D∑
d=1

qds
H
d ad

)H

R−1
D

(
D∑
d=1

qds
H
d ad

)
+

λRCB

∥∥∥∥∥
D∑
d=1

qds
H
d ad −

D∑
d=1

qds
H
d ā

∥∥∥∥∥
2

− ε

 (32)

where R−1
D = SHDR

−1SD is the reduced rank covariance matrix. From the above Lagrangian, we will
devise efficient adaptive beamforming algorithms in what follows.

4.1. Stochastic Gradient Adaptation

We devise an SG adaptation strategy based on the alternating minimization of the Lagrangian in (32),
which yields:

ãd[i+ 1] = ãd[i]− µa[i]ga[i],
sd[i+ 1] = sd[i]− µs[i]gs[i]

(33)

where µa[i] and µs[i] are the step sizes of the SG algorithms, the parameter vectors ga[i] and gs[i] are the
partial derivatives of the Lagrangian in (32) with respect to ã∗d[i] and s∗d[i], respectively. The recursion
for ga[i] is given by:

ga[i] =

(
1

λRCB[i]
SHD [i]R−1[i]SD[i] + ID

)−1

SHD [i]ãd[i] (34)

where:

gs[i] = ad[i]ǎ
H
d [i]rd[i] + τd[i]ad[i]a

H
d [i]sd[i]

+ λRCB[i]αd[i]α
H
d [i]sd[i]

(35)

and:

ãd =
D∑
d=1

qds
H
d ad = SHDad ∈ CD×1 (36)

ǎd =
D∑

l=1,l 6=d

qls
H
l al ∈ CD×1 (37)
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We denote αd ∈ CM×1 as the difference between the updated steering vectors and the assumed one.
The scalar τd is the d-th diagonal element of R−1

D . The term rd denotes the d-th column vector of R−1
D .

The Lagrange multiplier obtained is expressed as:

λRCB[i] = −
(
SD[i]Hαd[i]α

H
d [i]sd[i]

)†
R−1
D [i]ãd[i]a

H
d [i]sd[i] (38)

The proposed RCB-IOVP SG algorithm corresponds to (7) to (9) and (33) to (38). The calculation
of λRCB requires MD + D2 + 4M + D complex multiplications, and the computation of ga[i] and gs[i]
needs D3 +MD +D and 5M +D + 2 multiplications, respectively.

4.2. Recursive Least-Squares Adaptation

We derive an RLS version of the RCB-IOVP method. The steering vector and the columns of the rank
reduction matrix are updated as:

ãd[i] =
[
ãd[i]−

(
ID + λRCB[i]R−1

D [i]
)−1

ãd[i]
]

(39)

sd = −
(
τd[i]ad[i]a

H
d [i] + λRCB[i]αd[i]α

H
d [i]
)−1

ad[i]ǎ
H
d [i]rd[i] (40)

k̃[i+ 1] =
α−1R−1

D [i]x̃[i+ 1]

1 + α−1x̃H [i+ 1]R−1
D [i]x̃[i]

(41)

R−1
D [i+ 1] = α−1R−1

D [i]− α−1k̃[i+ 1]x̃H [i+ 1]R−1
D [i] (42)

where (39) to (42) need 2D3 + 7D2 + 4D + 3 complex multiplications, and the projection operations
need a complexity of MD complex multiplications. It is obvious that the complexity is significantly
decreased if the selected rank D � M . The proposed RCB-IOVP RLS algorithm employs (25) and
(39) to (42). The key of the RCB-IOVP RLS algorithm is to update the assumed steering vector ãd[i]
with RLS iterations, and the updated beamformer ω̄[i] is obtained by plugging (39) into (25) without
significant extra complexity.

Note that the complexity introduced by the pseudo-inverse operation can be removed if SD has
orthogonal column vectors; this can be achieved by incorporating the Gram–Schmidt procedure in
the calculation of SD. Furthermore, an alternative recursive realization of the robust adaptive linear
constrained beamforming method introduced by [19] can be used to further reduce the computational
complexity requirement to obtain the diagonal loading terms.
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5. Rank Selection

Selecting the rank number is important for the sake of computational complexity and performance. In
this section, we examine the efficient implementation of two stopping criteria for selecting the rank
number d. Unlike prior methods for rank selection, which utilize MSWF-based algorithms [20] or
AVF-based recursions [21], we focus on an approach that jointly determines the rank number d based
on the LS criterion computed by the filters SD[i] and ω̄[i]. In particular, we present a method for
automatically selecting the ranks of the algorithms based on the exponentially-weighted a posteriori
least-squares type cost function described by:

C (SD[i], ω̄[i]) =
l=1∑
i

αi−1|ω̄[i− 1]HSD[i− 1]r[l]|2 (43)

where α is the forgetting factor and ω̄[i] is the reduced-rank filter with rank d. For each time interval i, we
can select the rank dopt that minimizes the cost function C (SD[i], ω̄D[i]), and the exponential weighting
factor α is required as the optimal rank varies as a function of the data record. The key quantities to be
updated are the projection matrixSD[i], the reduced-rank filter ω̄[i], the associated reduced-rank steering
vector ā(θk) and the inverse of the reduced-rank covariance matrix R−1

D [i]. To this end, we define the
following extended projection matrix SD[i] as:

SD =


s1,1 s1,2 · · · s1,Dmin · · · s1,Dmax

s2,1 s2,2 · · · s2,Dmin · · · s1,Dmax

...
... . . . ... . . . ...

sM,1 sM,2 · · · sM,Dmin · · · sM,Dmax

 (44)

and the extended reduced-rank filter weight vector ω̄[i] as:

ω̄ =



ω1

ω2

...
ωmin

...
ωmax


(45)

The extended projection matrix SD and the extended reduced-rank filter weight vector ω̄ are updated
along with the associated quantities ā(θk) andR−1

D [i] (only for the RLS) for the maximum allowed rank
dmax, and then, the proposed rank adaptation algorithm determines the rank that is best for each time
instant i using the cost function (43). The proposed rank adaptation algorithm is then given by:

Dopt = arg min
Dmin≤d≤Dmax

C (SD[i− 1], ω̄[i− 1]) (46)
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where d is an integer and Dmin and Dmax are the minimum and maximum ranks allowed for the
reduced-rank filter, respectively. Note that a smaller rank may provide faster adaptation during the initial
stages of the estimation procedure and a greater rank usually yields a better steady-state performance.
Our studies reveal that the range for which the rank d of the proposed algorithms have a positive impact
on the performance of the algorithms is limited. These values are rather insensitive to the system load
and the number of array elements and work very well for all scenarios.

6. Simulations

In this section, we consider simulations for arrays with 64 and 320 sensor elements; the arrays are
ULA with regular λc/2 spacing between the sensor elements. The covariance matrix R̂ is obtained by
time-averaging recursions with N = 1, . . . , 120 snapshots. The DoA mismatch is also considered in
order to verify the robustness of various beamforming algorithms. For the robust designs, we use the
spherical uncertainty set, and the upper bound is set to ε = 140 for 64 sensor elements and ε = 800 for
320 sensor elements, respectively. There are four incident signals; while the first is the SoI, the other
three signals’ relative power with respect to the SoI and their DoAs in degrees are detailed in Table 1.
The algorithms are trained with 120 snapshots, and the signal-to-noise ratio (SNR) is set to 10 dB for all
of the simulations.

Table 1. Interference and direction of arrival (DoA) scenario, P(dB)relative to the desired
User 1/DoA (degree). SoI, signal of interest.

Snapshots Signal 1 (SoI) Signal 2 Signal 3 Signal 4

1 to 120 10/90 20/35 20/135 20/165

In Figure 2, we compare various beamforming techniques with a steering array of 64 elements.
We introduce a maximum of two degrees of DoA mismatch, which is independently generated by
a uniform random generator in each simulation run. The proposed IOVP-RLS and IOVP-SG algorithms
are implemented in both non-robust MVDR [2] and robust RCB [4] schemes, respectively. The
competitors including two conventional full-rank beamformers, such as MVDR-RLS and RCB-RLS,
as well as two reduced-rank beamformers, such as MVDR-Krylov and RCB-Krylov [14]. In
this simulation, we select D = 2 for all reduced rank schemes, including MVDR-Krylov,
RCB-Krylov, MVDR-IOVP-RLS/SG and RCB-IOVP-RLS/SG. A non-orthogonal Krylov projection
matrix SD[i] ∈ C64×2 and a non-orthogonal IOVP rank reduction matrix are also generated for rank
reduction. It is also important to note that the projection matrix SD[i] can be initialized as SD[0] = [ITD,
0TD×(M−D)], and the inverse of the covariance matrix R̂

−1
[i] for each snapshot can be obtained by using

the proposed RCB-IOVP-RLS algorithm.
In Figure 3, we choose a similar scenario, but without DoA mismatch. We can see from the plots that

the IOVP and Krylov algorithms have a superior SINR performance to other existing methods, and this is
particularly noticeable for a reduced number of snapshots. By comparing the curves in Figures 2 and 3,
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we can see that by introducing the DoA mismatch, the conventional MVDR-RLS and RCB-Krylov-RLS
schemes have about a 10-dB SINR loss; their performances are prone to steering vector mismatch. In
contrast, all of the proposed IOVP reduced-rank schemes experience less than 2.5 dB of performance
loss, which implies that these schemes are robust to steering vector mismatch. On the other hand, by
comparing the performance of their robust rivals (such as RCB-RLS, MVDR-Krylov-RLS), the proposed
schemes may provide higher SINR performance and much higher convergence speed.

In Figure 4, we compare the output SINRs of the Krylov and the proposed IOVP rank reduction
technique using a spherical constraint in the presence of steering vector errors with 320 sensor elements.
We assume a DoA mismatch with two degrees and four interferences with the profile listed in Table 1.
With Krylov and IOVP rank reduction, the MVDR-Krylov, MVDR-IOVP, RCB-Krylov and RCB-IOVP
have superior SINR performance and a faster convergence compared to their full-rank rivals.
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Figure 2. Signal-to-interference plus noise ratio (SINR) performance vs. the
number of snapshots, with steering vector mismatch due to 2°DoA mismatch. The
spherical uncertainty set is assumed for robust beamformers ε = 140 (RLS
indicates that the value R̂

−1
is obtained by using RLS adaptation), non-orthogonal

SD[i] ∈ C64×2 projection matrix.
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Figure 3. SINR performance against the number of snapshots without steering
vector mismatch.
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Figure 4. SINR performance against the number of snapshots with steering vector mismatch
due to 2°DoA mismatch. The spherical uncertainty set is assumed for robust beamformers
with ε = 800, non-orthogonal SD[i] ∈ C320×2 rank reduction matrix.
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7. Conclusions

In this paper, we proposed a robust rank reduction algorithm for steering vector estimation with
the method of iterative parameter optimization and vector perturbation. In this algorithm, a bank
of perturbed steering vectors was introduced as candidate array steering vectors around the true
steering vector. The candidate steering vectors are responsible for performing rank reduction, and
the reduced-rank beamformer forms the beam in the direction of the signal of interest (SoI). The
perturbation vectors and the vector qd were introduced in order to break the correlations among the
columns of the projection matrix, and the rank number can be controlled. Additionally, we devised
efficient stochastic gradient (SG) and recursive least-squares (RLS) algorithms for implementing the
proposed robust IOVP design. Finally, we derived the automatic rank selection scheme in order to
obtain the optimal beamforming performance with low computational complexity. The simulation
results for a digital beamforming application with a large array showed that the proposed IOVP and
algorithms outperformed in convergence and tracking the existing full-rank and reduced-rank algorithms
at comparable complexity.
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