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Abstract:

 We study the local convergence of an eighth order Newton-like method to approximate a locally-unique solution of a nonlinear equation. Earlier studies, such as Chen et al. (2015) show convergence under hypotheses on the seventh derivative or even higher, although only the first derivative and the divided difference appear in these methods. The convergence in this study is shown under hypotheses only on the first derivative. Hence, the applicability of the method is expanded. Finally, numerical examples are also provided to show that our results apply to solve equations in cases where earlier studies cannot apply.
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1. Introduction

In this study, we are concerned with the problem of approximating a locally-unique solution [image: there is no content] of equation:



[image: there is no content]



(1)




where F is a differentiable function defined on a convex subset [image: there is no content] of [image: there is no content] with values in [image: there is no content], where [image: there is no content] is [image: there is no content] or [image: there is no content].
Many problems from applied sciences, including engineering, can be solved by means of finding the solutions of equations in a form like Equation (1) using mathematical modeling [2,3,4,5,6,7]. Except in special cases, the solutions of these equations can be found in closed form. This is the main reason why the most commonly-used solution methods are usually iterative. The convergence analysis of iterative methods is usually divided into two categories: semi-local and local convergence analysis. The semi-local convergence matter is, based on the information around an initial point, to give criteria ensuring the convergence of iteration procedures. A very important problem in the study of iterative procedures is the radius of convergence. In general, the radius of convergence is small. Therefore, it is important to enlarge the radius of convergence. Another important problem is to find more precise error estimates on the distances ∥xn−[image: there is no content]∥.

The most popular method for approximating a simple solution [image: there is no content] of Equation (1) is undoubtedly Newton’s method, which is given by:



xn+1=xn−[image: there is no content](xn)−1F(xn),foreachn=0,1,2….



(2)




provided that [image: there is no content] does not vanish in [image: there is no content] [2,13]. To obtain a higher order of convergence, many methods have been proposed [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41]. We study the local convergence of the three-step method defined for each [image: there is no content] by:



yn=xn−[image: there is no content](xn)−1F(xn),zn=yn−F(xn)+βF(yn)F(xn)+(β−2)F(yn)[image: there is no content](xn)−1F(xn),xn+1=xn−F(zn)An,



(3)




where [image: there is no content] is an initial point, [image: there is no content] and:


An=2[xn,zn;F]−2[xn,yn;F]+[zn,yn;F]+(yn−zn)[yn,xn,xn;F],[xn,yn;F]=F(xn)−F(yn)xn−yn,and[yn,xn,xn;F]=[xn,yn;F]−[image: there is no content](xn)yn−xn.








The eighth order of convergence for Method (3) was established in [1], when [image: there is no content], using Taylor expansions and hypotheses reaching up to the eighth derivative of F, although only the first derivatives and the divided difference appear in these methods. This method is also an optimal in the sense of Traub with efficiency index [image: there is no content] [4]. The advantages of Method (3) over other competing methods were also shown in [1]. However, the hypotheses of higher order derivatives limit the applicability of these methods. As a motivational example, define function F on [image: there is no content], [image: there is no content] by:



F(x)=x3lnx2+x5−x4,x≠00,x=0.








Then, we have that:



[image: there is no content](x)=3x2lnx2+5x4−4x3+2x2,










[image: there is no content]








and:


[image: there is no content]








Then, obviously, function [image: there is no content] is unbounded on [image: there is no content]. Hence, the results in [1], cannot apply to show the convergence of Method (3) or its special cases requiring hypotheses on the third derivative of function F or higher. Notice that, in particular, there is a plethora of iterative methods for approximating solutions of nonlinear equations [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41]. These results show that if the initial point [image: there is no content] is sufficiently close to the solution [image: there is no content], then the sequence [image: there is no content] converges to [image: there is no content]. However, how close to the solution [image: there is no content] should the initial guess [image: there is no content] be? These local results give no information on the radius of the convergence ball for the corresponding method. The same technique can be used for other methods.

In the present study, we study the local convergence of Method (3) using hypotheses only on the first derivative of function [image: there is no content] We also provide the radius of the convergence ball, computable error bounds on the distances involved and the uniqueness of the solution result using Lipschitz constants. Such results were not given in [1] or the earlier related studies [8,9,10,11,12]. This way, we expand the applicability of Method (3).

The rest of the paper is organized as follows: We present the local convergence analysis of Method (3) in Section 2. Numerical examples are given in the concluding Section 3.



2. Local Convergence

In this section, we present the local convergence analysis of Method (3). Let [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. It is convenient for the local convergence analysis that follows to introduce some functions and parameters. Define functions [image: there is no content], p and [image: there is no content] on the interval [image: there is no content] by:



[image: there is no content](t)=Lt2(1−L0t),p(t)=12L0t+2M|β−2|[image: there is no content](t),[image: there is no content](t)=p(t)−1,








and parameter [image: there is no content] by:


[image: there is no content]=22L0+L.








We have that [image: there is no content](0)=−1<0 and [image: there is no content](t)→∞ as [image: there is no content]. It follows from the intermediate value theorem that function [image: there is no content] has zeros in the interval 0,1L0. Denote by [image: there is no content] the smallest such zero. Moreover, define functions [image: there is no content] and [image: there is no content] on the interval [0,[image: there is no content]) by:



[image: there is no content](t)=1+M2(1+|β|[image: there is no content](t))(1−p(t))(1−L0t)[image: there is no content](t)








and:


[image: there is no content](t)=[image: there is no content](t)−1.








Then, we get [image: there is no content](0)=−1<0 and [image: there is no content](t)→∞ as [image: there is no content]. Denote by [image: there is no content] the smallest zero of function [image: there is no content] on the interval (0,[image: there is no content]). Furthermore, define functions q and [image: there is no content] on the interval [0,[image: there is no content]] by:



q(t)=[4L1+(3L1+L2)[image: there is no content](t)+[image: there is no content](t)]t,








and:


[image: there is no content](t)=q(t)−1.








We have that [image: there is no content](0)=−1<0 and [image: there is no content](t)→∞ as [image: there is no content]. Denote by [image: there is no content] the smallest zero of function [image: there is no content] on the interval (0,[image: there is no content]). Finally, define functions [image: there is no content] and [image: there is no content] on the interval [0,[image: there is no content]) by:



[image: there is no content](t)=1+M1−q(t)[image: there is no content](t),








and:


[image: there is no content](t)=[image: there is no content](t)−1.








We get that [image: there is no content](0)=−1<0 and [image: there is no content](t)→∞ as [image: there is no content]. Denote by [image: there is no content] the smallest zero of function [image: there is no content] on the interval (0,[image: there is no content]). Set:



r=min{[image: there is no content],[image: there is no content]}.



(4)




Then, we have that:



0<r≤[image: there is no content],



(5)




and for each t∈[0,r):


0≤[image: there is no content](t)<1,



(6)






[image: there is no content]



(7)






0≤[image: there is no content](t)<1,



(8)






[image: there is no content]



(9)




and:


0≤[image: there is no content](t)<1.



(10)




Let U(γ,ρ), U¯(γ,ρ) stand, respectively, for the open and closed balls in [image: there is no content], with center [image: there is no content] and of radius [image: there is no content]. Next, we present the local convergence analysis of Method (3) using the preceding notation.


Theorem 1. 
Let [image: there is no content]be a differentiable function. Let [.,.;F]:D×D→L(S)be a divided difference of order one. Suppose that there exist [image: there is no content]∈D, [image: there is no content], [image: there is no content], [image: there is no content], L1≥0,L2≥0, [image: there is no content], such that for all x,y∈D:



F([image: there is no content])=0,[image: there is no content]([image: there is no content])≠0



(11)






|[image: there is no content]([image: there is no content])−1([image: there is no content](x)−[image: there is no content]([image: there is no content])|≤L0|x−[image: there is no content]|,



(12)






|[image: there is no content]([image: there is no content])−1([image: there is no content](x)−[image: there is no content](y)|≤L|x−y|,



(13)






|[image: there is no content]([image: there is no content])−1[image: there is no content](x)|≤M,



(14)






|[image: there is no content]([image: there is no content])−1[x,y;F]−[image: there is no content]([image: there is no content])|≤L1|x−[image: there is no content]|+|y−[image: there is no content]|,



(15)






|[image: there is no content]([image: there is no content])−1[x,y;F]−[image: there is no content](x)|≤L2|x−y|



(16)




and:


U¯([image: there is no content],r)⊆D,



(17)




where the radius r is defined by Equation (4). Then, the sequence [image: there is no content]generated for [image: there is no content]∈U([image: there is no content],r)−{[image: there is no content]}by Method (3) is well defined, remains in U([image: there is no content],r)for each [image: there is no content]and converges to [image: there is no content]. Moreover, the following estimates hold:


|yn−[image: there is no content]|≤[image: there is no content](|xn−[image: there is no content]|)|xn−[image: there is no content]|≤|xn−[image: there is no content]|<r,



(18)






|zn−[image: there is no content]|≤[image: there is no content](|xn−[image: there is no content]|)|xn−[image: there is no content]|<|xn−[image: there is no content]|



(19)




and:


|xn+1−[image: there is no content]|≤[image: there is no content](|xn−[image: there is no content]|)|xn−[image: there is no content]|<|xn−[image: there is no content]|,



(20)




where the “g” functions are defined previously. Furthermore, for [image: there is no content], the limit point [image: there is no content]is the only solution of equation [image: there is no content]in U¯([image: there is no content],T)∩D.



Proof. 
We shall show estimate Equations (18)–(20) using mathematical induction. By hypothesis [image: there is no content]∈U([image: there is no content],r)−{[image: there is no content]}, Equations (4) and (12), we get:



|[image: there is no content]([image: there is no content])−1([image: there is no content]([image: there is no content])−[image: there is no content]([image: there is no content]))|≤L0|[image: there is no content]−[image: there is no content]|<L0r<1.



(21)






It follows from the Equation (21) and the Banach lemma on invertible operators [2,3,14] that [image: there is no content]([image: there is no content])≠0 and:



|[image: there is no content]([image: there is no content])−1[image: there is no content]([image: there is no content])|≤11−L0|[image: there is no content]−[image: there is no content]|.



(22)




Hence, [image: there is no content] is well defined by the first sub-step of Method (3) for [image: there is no content]. Then, we have by Equations (4), (5), (11), (13) and (22) that:



|[image: there is no content]−[image: there is no content]|=|[image: there is no content]−[image: there is no content]−[image: there is no content]([image: there is no content])−1F([image: there is no content])|≤|[image: there is no content]([image: there is no content])−1[image: there is no content]([image: there is no content])||∫01[image: there is no content]([image: there is no content])−1[image: there is no content]([image: there is no content]+θ([image: there is no content]−[image: there is no content]))−[image: there is no content]([image: there is no content])([image: there is no content]−[image: there is no content])dθ|≤L|[image: there is no content]−[image: there is no content]|22(1−L0|[image: there is no content]−[image: there is no content]|)=[image: there is no content](|[image: there is no content]−[image: there is no content]|)|[image: there is no content]−[image: there is no content]|<|[image: there is no content]−[image: there is no content]|<r,



(23)




which shows Equation (18) for [image: there is no content] and [image: there is no content]∈U([image: there is no content],r). We can write by Equation (11) that:


F([image: there is no content])=F([image: there is no content])−F([image: there is no content])=∫01[image: there is no content]([image: there is no content]+θ([image: there is no content]−[image: there is no content]))([image: there is no content]−[image: there is no content])dθ.



(24)




Notice that |[image: there is no content]+θ([image: there is no content]−[image: there is no content])−x0*|=θ|[image: there is no content]−[image: there is no content]|<r; hence, [image: there is no content]+θ(xo−[image: there is no content])∈U([image: there is no content],r). Then, by Equations (14) and (24), we obtain that:



|[image: there is no content]([image: there is no content])−1F([image: there is no content])|=∫01[image: there is no content]([image: there is no content])−1[image: there is no content]([image: there is no content]+θ([image: there is no content]−[image: there is no content]))([image: there is no content]−[image: there is no content])dθ≤M|[image: there is no content]−[image: there is no content]|.



(25)




We also get that:



|[image: there is no content]([image: there is no content])−1F([image: there is no content])|≤M|[image: there is no content]−[image: there is no content]|≤M[image: there is no content](|[image: there is no content]−[image: there is no content]|)|[image: there is no content]−[image: there is no content]|.



(26)




Next, we shall show that F([image: there is no content])+(β−2)F([image: there is no content])≠0. We have by Equations (4), (6), (11), (12), (22) and (26) that:



|([image: there is no content]([image: there is no content])([image: there is no content]−[image: there is no content]))−1F([image: there is no content])−F([image: there is no content])−[image: there is no content]([image: there is no content])([image: there is no content]−[image: there is no content])+(β−2)F([image: there is no content])|≤|[image: there is no content]−[image: there is no content]|−1|[image: there is no content]([image: there is no content])−1(F([image: there is no content])−F([image: there is no content])−[image: there is no content]([image: there is no content])([image: there is no content]−[image: there is no content]))|+|β−2||[image: there is no content]([image: there is no content])−1F([image: there is no content])|≤|[image: there is no content]−[image: there is no content]|−1L02|[image: there is no content]−[image: there is no content]|2+M|β−2||[image: there is no content]−[image: there is no content]|≤12L0|[image: there is no content]−[image: there is no content]|+2M|β−2|[image: there is no content]|[image: there is no content]−[image: there is no content]|=p(|[image: there is no content]−[image: there is no content]|)<p(r)<1.



(27)




Hence, we have that:



|(F([image: there is no content])+(β−2)F([image: there is no content]))−1[image: there is no content]([image: there is no content])|≤1|[image: there is no content]−[image: there is no content]|(1−p(|[image: there is no content]−[image: there is no content]|)).



(28)




Hence, [image: there is no content] is well defined by the second sub-step of Method (3) for [image: there is no content] Then, using Equations (4), (7), (17), (23)–(26) and (28), we get in turn that:



|[image: there is no content]−[image: there is no content]|≤|[image: there is no content]−[image: there is no content]|+|F([image: there is no content])+(β−2)F([image: there is no content])−1[image: there is no content]([image: there is no content])||[image: there is no content]([image: there is no content])−1F([image: there is no content])+β[image: there is no content]([image: there is no content])−1F([image: there is no content])|×|[image: there is no content]([image: there is no content])−1[image: there is no content]([image: there is no content])||[image: there is no content]([image: there is no content])−1F([image: there is no content])|≤|[image: there is no content]−[image: there is no content]|+M2|[image: there is no content]−[image: there is no content]|+|β||[image: there is no content]−[image: there is no content]||[image: there is no content]−[image: there is no content]||[image: there is no content]−[image: there is no content]|1−p(|[image: there is no content]−[image: there is no content]|)(1−L0|[image: there is no content]−[image: there is no content]|)≤1+M21+|β|[image: there is no content](|[image: there is no content]−[image: there is no content])1−p(|[image: there is no content]−[image: there is no content]|)(1−L0|[image: there is no content]−[image: there is no content]|)|[image: there is no content]−[image: there is no content]|≤[image: there is no content]|[image: there is no content]−[image: there is no content]||[image: there is no content]−[image: there is no content]|<|[image: there is no content]−[image: there is no content]|<r,



(29)




which shows Equation (19) for [image: there is no content] and [image: there is no content]∈U([image: there is no content],r). We must show that [image: there is no content]. Notice that, we can write:


A0=2[[image: there is no content],[image: there is no content];F]−[image: there is no content]([image: there is no content])−2[image: there is no content]([image: there is no content])−[[image: there is no content],[image: there is no content];F]+[[image: there is no content],[image: there is no content];F]−[image: there is no content]([image: there is no content])+([image: there is no content]−[image: there is no content])+([image: there is no content]−[image: there is no content])[[image: there is no content],[image: there is no content];F]−[image: there is no content]([image: there is no content])[image: there is no content]−[image: there is no content].



(30)




Using equations, namely, Equations (4), (9), (15), (16), (23), (29) and (30), we get:



|[image: there is no content]([image: there is no content])−1(A0−[image: there is no content]([image: there is no content]))|≤2L1(|[image: there is no content]−[image: there is no content]|+|[image: there is no content]−[image: there is no content]|)+2L1(|[image: there is no content]−[image: there is no content]|+|[image: there is no content]−[image: there is no content]|)+L1(|[image: there is no content]−[image: there is no content]|+|[image: there is no content]−[image: there is no content]|)+L2(|[image: there is no content]−[image: there is no content]|+|[image: there is no content]−[image: there is no content]|)≤4L1|[image: there is no content]−[image: there is no content]|+(3L1+L2)|[image: there is no content]−[image: there is no content]|+(3L1+L2)|[image: there is no content]−[image: there is no content]|≤4L1+(3L1+L2)[image: there is no content](|[image: there is no content]−[image: there is no content]|)+(3L1+L2)[image: there is no content](|[image: there is no content]−[image: there is no content]|)|[image: there is no content]−[image: there is no content]|≤q(|[image: there is no content]−[image: there is no content]|)<q(r)<1.



(31)




Hence, we get:



|A0−1[image: there is no content]([image: there is no content])|≤11−q(|[image: there is no content]−[image: there is no content]|).



(32)




It follows that [image: there is no content] is well defined by the third sub-step of Method (2) for [image: there is no content]. Then, it follows from Equations (4), (10), (22), (25) (for[image: there is no content]=[image: there is no content]), (29) and (32) that:



|[image: there is no content]−[image: there is no content]|≤|[image: there is no content]−[image: there is no content]|+|A0−1[image: there is no content]([image: there is no content])||[image: there is no content]([image: there is no content])−1F([image: there is no content])|≤|[image: there is no content]−[image: there is no content]|+M|[image: there is no content]−[image: there is no content]|1−q(|[image: there is no content]−[image: there is no content]|)≤1+M1−q(|[image: there is no content]−[image: there is no content]|)|[image: there is no content]−[image: there is no content]|≤1+M1−q(|[image: there is no content]−[image: there is no content]|)[image: there is no content](|[image: there is no content]−[image: there is no content]|)|[image: there is no content]−[image: there is no content]|≤[image: there is no content](|[image: there is no content]−[image: there is no content]|)|[image: there is no content]−[image: there is no content]|<|[image: there is no content]−[image: there is no content]|<r,



(33)




which shows Equation (20) for [image: there is no content] and [image: there is no content]∈U([image: there is no content],r). By simply replacing [image: there is no content], [image: there is no content],[image: there is no content], [image: there is no content] by [image: there is no content], yk,zk, [image: there is no content] in the preceding estimates, we arrive at Equations (18)–(20). Using the estimates ∥[image: there is no content]−[image: there is no content]∥<∥[image: there is no content]−[image: there is no content]∥<r, we deduce that limk→∞[image: there is no content]=[image: there is no content] and [image: there is no content]∈U([image: there is no content],r). Finally, to show the uniqueness part, let Q=∫01[image: there is no content](y*+θ([image: there is no content]−y*))dθ for some y*∈U¯([image: there is no content],T) with [image: there is no content].
Using Equation (12), we get that:



∥[image: there is no content]([image: there is no content])−1(Q−[image: there is no content]([image: there is no content]))∥≤∥∫01L0|y*+θ([image: there is no content]−y*)−[image: there is no content]∥dθ≤∫01(1−t)∥y*−[image: there is no content]∥dθ≤L02T<1.



(34)




It follows from Equation (34) that Q is invertible. Then, in view of the identity 0=F([image: there is no content])−F(y*)=Q([image: there is no content]−y*), we conclude that [image: there is no content]=y*.


Remark 1. 



	(a)

	In view of Equation (12) and the estimate:



|[image: there is no content]([image: there is no content])−1[image: there is no content](x)|=|[image: there is no content]([image: there is no content])−1([image: there is no content](x)−[image: there is no content]([image: there is no content]))+I|≤1+|[image: there is no content]([image: there is no content])−1([image: there is no content](x)−[image: there is no content]([image: there is no content]))|≤1+L0|[image: there is no content]−[image: there is no content]|








condition Equation (14) can be dropped, and M can be replaced by:



[image: there is no content]








or by [image: there is no content], since [image: there is no content]








	(b)

	The results obtained here can be used for operators F satisfying the autonomous differential equation [2,3] of the form:



[image: there is no content](x)=P(F(x)),








where P is a known continuous operator. Since [image: there is no content]([image: there is no content])=P(F([image: there is no content]))=P(0), we can apply the results without actually knowing the solution [image: there is no content].Let, as an example, [image: there is no content]Then, we can choose [image: there is no content].



	(c)

	The radius [image: there is no content]was shown in [2,3] to be the convergence radius for Newton’s method Equation (2) under conditions Equations (11) and (13). It follows from Equation (4) and the definition of [image: there is no content]that the convergence radius r of Method (3) cannot be larger than the convergence radius [image: there is no content]of the second order Newton’s method (2). As already noted that [image: there is no content]is at least as the convergence ball given by Rheinboldt [15]:



[image: there is no content]








In particular, for [image: there is no content], we have that:



[image: there is no content]<[image: there is no content]








and:



[image: there is no content][image: there is no content]→13asL0L→0.








That is our convergence ball [image: there is no content]that is at most three times larger than Rheinboldt’s. The same value for [image: there is no content]is given by Traub [4].



	(d)

	It is worth noticing that Method (3) is not changing if we use the conditions of Theorem 2.1 instead of the stronger conditions given in [1]. Moreover, for the error bounds, in practice, we can use the computational order of convergence (COC) [16]:



ξ=ln|xn+2−[image: there is no content]||xn+1−[image: there is no content]|ln|xn+1−[image: there is no content]||xn−[image: there is no content]|,foreachn=0,1,2,…








or the approximate computational order of convergence (ACOC) [16]:



ξ*=ln|xn+2−xn+1||xn+1−xn|ln|xn+1−xn||xn−xn−1|,foreachn=1,2,…








This way, we obtain, in practice, the order of convergence in a way that avoids the bounds involving estimates higher than the first Fréchet derivative.







3. Numerical Example and Applications

We present numerical examples in this section.


Example 1. 
Let S=R,D=[−1,1],[image: there is no content]=0, and define function F on D by:



[image: there is no content]



(35)






Then, we get [image: there is no content]and [image: there is no content]. Then, by the definition of the [image: there is no content]and [image: there is no content], we obtain:



[image: there is no content]=0.666667,[image: there is no content]=0.186589,








and as a consequence:


[image: there is no content]









Example 2. 
Let S=R,D=[−1,1],[image: there is no content]=0, and define function F on D by:



[image: there is no content]



(36)






Then, we get L0=e−1,L=e,L1=e−12,L2=e2and [image: there is no content]

Then, we get [image: there is no content]and [image: there is no content]. Then, by the definition of the [image: there is no content]and [image: there is no content], we obtain:



[image: there is no content]=0.324947,[image: there is no content]=0.032978,








and as a consequence:


[image: there is no content]









Example 3. 
Returning back to the motivation example in the Introduction, we have [image: there is no content], [image: there is no content]and [image: there is no content]



[image: there is no content]=0.0045456,[image: there is no content]=0.000553,








and as a consequence:


[image: there is no content]
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