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Abstract:

 This paper focuses on the parameter identification problem for Wiener nonlinear dynamic systems with moving average noises. In order to improve the convergence rate, the gradient-based iterative algorithm is presented by replacing the unmeasurable variables with their corresponding iterative estimates, and to compute iteratively the noise estimates based on the obtained parameter estimates. The simulation results show that the proposed algorithm can effectively estimate the parameters of Wiener systems with moving average noises.
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1. Introduction

In actual industry processes, block-oriented nonlinear systems are often introduced to model nonlinear systems. Block-oriented nonlinear systems can be commonly divided into Hammerstein systems and Wiener systems [1,2,3]. Hammerstein systems consist of a linear block following a static nonlinear block [4,5,6]. Wiener systems are composed of a linear block preceding a static nonlinear block [7,8,9]. The output of Wiener systems is nonlinear, so the modeling for Wiener systems is more sophisticated than that for Hammerstein systems. Differing from the work in [8,9], this paper focuses on the identification problem for Wiener nonlinear systems with moving average noises which are called Wiener output error moving average (OEMA) systems. In most existing works, the nonlinear part of Wiener systems is assumed a linear combination or a piecewise-linear function [10], or has a invertible and monotone function representation over the operating range [11,12]. Wang and Ding derived a least squares-based and a gradient-based iterative identification algorithms for Wiener nonlinear systems by separating one bilinear cost function into two linear cost functions [13]. Hagenblad et al. presented a maximum likelihood method to identify Wiener models [14].

The stochastic gradient (SG) algorithm has less computational burden and slower convergence rate than the recursive least squares algorithm [15,16,17]. Some new algorithms were presented to improve the convergence rate of the SG algorithm [18,19,20]. For example, Ding et al. introduced the convergence index to the SG algorithm and obtained a faster convergence rate than stochastic gradient algorithm [21]; Liu et al. derived the multi-innovation extended stochastic gradient algorithm for controlled autoregressive moving average models by expanding the scalar innovation to an innovation vector and analyzed its performance in detail [22]. Recently, the gradient-based iterative (GI) algorithm was also presented to improve the convergence rate of the SG algorithm [23,24,25]. By making sufficient use of all the measured information, the GI algorithm can obtain a faster convergence rate than the SG algorithm. Wang et al. presented a gradient-based iterative identification algorithms for Box-Jenkins systems with finite measurement input-output data [26]. Li et al. proposed a gradient based iterative algorithm to determine the parameters of a nonlinear system by using the negative gradient search [27]. Zhang et al. derived a hierarchical gradient based iterative estimation algorithm for multivariable output error moving average systems using the hierarchical identification principle [28].

To the best of our knowledge, few contributions have addressed the modeling and estimation issues for Wiener nonlinear OEMA systems, which are the focus of this work. For Wiener nonlinear OEMA systems, our objectives are as follows:


	To establish the identification model of the Wiener nonlinear OEMA system from input to output.


	To present a gradient-based iterative identification algorithm for the Wiener nonlinear OEMA model.


	To analyze the performances of the proposed algorithm using a numerical simulation, including the convergence rates and the estimation errors of this algorithm.




The rest of this paper is organized as follows. Section 2 establishes the identification model of the Wiener nonlinear OEMA system. Section 3 presents a gradient-based iterative identification algorithm for the Wiener nonlinear OEMA model. Section 4 provides an example to illustrate the effectiveness of the proposed algorithm. The conclusions of the paper are summarized in Section 5.



2. The Derivation of the Wiener OEMA Model

Let us firstly introduce some notations. The superscript T denotes the matrix transpose; [image: there is no content] represents an n-dimensional column vector whose elements are 1; the norm of a matrix X is defined by [image: there is no content].



Consider a Wiener nonlinear OEMA system shown in Figure 1:

Figure 1. The Wiener nonlinear OEMA system.
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where [image: there is no content] is the system input, [image: there is no content] is the system output and [image: there is no content] is an additive noise with zero mean; the inner variable [image: there is no content] (namely, the output of the linear block) is unmeasurable; [image: there is no content], [image: there is no content] and [image: there is no content] are polynomials in the shift operator [image: there is no content] with
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The nonlinear part [image: there is no content] in the Wiener system is a polynomial of a known order as follows:



[image: there is no content]



(3)




where [image: there is no content] is the polynomial orders.
Equation (1) can be rewritten to



[image: there is no content]



(4)




In order to get unique parameter estimates, we introduce the key term separation technique presented in [7,29] and let the first coefficient of the nonlinear part be unity, i.e., [image: there is no content]. Then, we have



y(t)=m(t)+∑i=2[image: there is no content]γimi(t)+D(z)v(t)



(5)




Here [image: there is no content] in Equation (5) is called as the key term. Substituting Equation (4) into Equation (5) gives



y(t)=[1-A(z)]m(t)+B(z)u(t)+∑i=2[image: there is no content]γimi(t)+D(z)v(t)



(6)




Define the information vectors and the parameter vectors



ϕs(t):=[-m(t-1),-m(t-2),⋯,-m(t-na),u(t-1),u(t-2),⋯,u(t-nb)]T∈ℝna+nbϕγ(t):=[m2(t),m3(t),⋯,m[image: there is no content](t)]T∈ℝ[image: there is no content]-1ϕn(t):=[v(t-1),v(t-2),⋯,v(t-nd)]T∈ℝnd










ϕ(t):=[[image: there is no content]ϕγ(t)ϕn(t)]∈ℝna+nb+[image: there is no content]+nd-1










[image: there is no content]:=[a1,a2,⋯,ana,b1,b2,⋯,bnb]T∈ℝna+nbϑγ:=[γ2,γ3,⋯,γ[image: there is no content]]T∈ℝ[image: there is no content]-1ϑn:=[d1,d2,⋯,dnd]T∈ℝnd










ϑ:=[[image: there is no content]ϑγϑn]∈ℝna+nb+[image: there is no content]+nd-1








Thus, Equation (4) can be written in a vector form



[image: there is no content]



(7)




Combining Equations (6) and (7), we can obtain the following identification model:



y(t)=ϕsT(t)[image: there is no content]+ϕγT(t)ϑγ+ϕnT(t)ϑn+v(t)=ϕT(t)ϑ+v(t)



(8)




The objective of this paper is to present a gradient based iterative identification algorithm to estimate the parameters ai, bi, γi, and di for the Wiener nonlinear OEMA model using the auxiliary model identification idea in [23].



3. The Gradient-Based Iterative Algorithm

This section derives the gradient-based iterative identification algorithm for the Wiener nonlinear OEMA model.

Define the stacked output vector [image: there is no content], the stacked information vector [image: there is no content] and the white noise vector [image: there is no content] as



[image: there is no content]:=[y(N),y(N-1),⋯,y(1)]T∈RN



(9)






[image: there is no content]:=[ϕ(N),ϕ(N-1),⋯,ϕ(1)]T∈RN×n0



(10)






[image: there is no content]:=[v(N),v(N-1),⋯,v(1)]T∈RN



(11)






n0:=na+nb+[image: there is no content]+nd-1








From Equations (8) to (11), we have



[image: there is no content]=Ψ(N)ϑ+V(N)



(12)




Define a quadratic criterion function



[image: there is no content]



(13)




Let [image: there is no content] be an iteration variable, and [image: there is no content] be the iterative estimate of ϑ.

Using the negative gradient search for the optimization problem in Equation (13), we obtain the iterative algorithm of computing [image: there is no content] as follows:



[image: there is no content]=[image: there is no content]-1[image: there is no content]grad[J([image: there is no content])]=[image: there is no content]+1[image: there is no content]ΨT(N)[Y(N)-Ψ(N)[image: there is no content]]



(14)






[image: there is no content]



(15)




However, [image: there is no content] in Equations (14) and (15) containing unknown inner variable [image: there is no content] and the unmeasurable noise term [image: there is no content] lead to a difficulty that the iterative solution [image: there is no content] of ϑ is impossible to be computed. In order to solve this difficulty, the approach here is based on the auxiliary model idea. Let [image: there is no content] and [image: there is no content] be the estimate of [image: there is no content] and [image: there is no content] at iteration k, respectively, and define



[image: there is no content]



(16)




where


ϕ^s,k(t)=[-m^k-1(t-1),-m^k-1(t-2),⋯,-m^k-1(t-na),u(t-1),u(t-2),⋯,u(t-nb)]Tϕ^γ,k(t)=[m^k-12(t),m^k-13(t),⋯,m^k-1[image: there is no content](t)]Tϕ^n,k(t)=[v^k-1(t-1),v^k-1(t-2),⋯,v^k-1(t-nd)]T








Replacing [image: there is no content] and [image: there is no content] in Equation (7) with [image: there is no content] and [image: there is no content], respectively, the iterative estimate [image: there is no content] can be obtained by the following auxiliary model:



m^k(t)=ϕ^s,kT(t)[image: there is no content],t=1,2,⋯,N



(17)




Similarly, from Equation (8), the estimate [image: there is no content] can be computed by



v^k(t)=y(t)-ϕ^kT(t)[image: there is no content]



(18)




Define



[image: there is no content]



(19)




Let [image: there is no content]=[image: there is no content]ϑ^γ,kϑ^n,k be the estimate of ϑ=[image: there is no content]ϑγϑn at iteration k. Using [image: there is no content] in place of [image: there is no content] in Equations (14) and (15), we have



[image: there is no content]=[image: there is no content]+1[image: there is no content]Ψ^kT(N)[Y(N)-Ψ^k(N)[image: there is no content]]



(20)






[image: there is no content]



(21)




Equations (14)–(21) form the gradient-based iterative (GI) identification algorithm for the Wiener nonlinear OEMA model, which can be summarized as follows:



[image: there is no content]=[image: there is no content]+1[image: there is no content]Ψ^kT(N)[Y(N)-Ψ^k(N)[image: there is no content]]



(22)






[image: there is no content]



(23)






[image: there is no content]=ϕ^kT(N)ϕ^kT(N-1)⋮ϕ^kT(1)



(24)






[image: there is no content]=[y(N),y(N-1),⋯,y(1)]T



(25)






[image: there is no content]=[[image: there is no content],ϑ^γ,k,ϑ^n,k]T



(26)






[image: there is no content]



(27)






[image: there is no content]=[-m^k-1(t-1),-m^k-1(t-2),⋯,-m^k-1(t-na),u(t-1),u(t-2),⋯,u(t-nb)]T



(28)






ϕ^γ,k(t)=[m^k-12(t),m^k-13(t),⋯,m^k-1[image: there is no content](t)]T



(29)






[image: there is no content]



(30)






[image: there is no content]=ϕ^s,kT(t)[image: there is no content],t=1,2,⋯,N



(31)






[image: there is no content]=y(t)-ϕ^kT(t)[image: there is no content]



(32)




The steps involved in computing the parameter estimate [image: there is no content] in the GI algorithm are listed as follows:


	Collect the input-output data [image: there is no content] and form [image: there is no content] by Equation (25).


	To initialize, let [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], form [image: there is no content] by Equations (27) to (30) and [image: there is no content] by Equation (24).


	Form [image: there is no content] by Equations (27) to (30) and [image: there is no content] by Equation (24).


	Compute [image: there is no content] by Equation (23) and update the estimate [image: there is no content] by Equation (22).


	Compute [image: there is no content] and [image: there is no content] by Equations (31) and (32), respectively.


	Compare [image: there is no content] with [image: there is no content]: if ∥[image: there is no content]-[image: there is no content]∥2⩽ε, then terminate the procedure and obtain the iterative times k and estimate [image: there is no content]; otherwise, increment k by 1 and go to step 3.






4. Example

An example is given to demonstrate the feasibility of the proposed algorithm. Consider the following Wiener nonlinear OEMA system:



[image: there is no content]=[1-A(z)]m(t)+B(z)u(t)+γ2m2(t)+γ3m3(t)+D(z)v(t)










[image: there is no content]=1+a1z-1+a2z-2=1+0.20z-1+0.44z-2[image: there is no content]=b1z-1+b2z-2=0.99z-1+0.30z-2[image: there is no content]=1+d1z-2=1+0.21z-1










[image: there is no content]












For this example system, [image: there is no content] is taken as persistent excitation signal with zero mean and unit variance, and [image: there is no content] as a white noise process with zero mean and constant variance [image: there is no content] and [image: there is no content]. Here, we take the whole data lengths [image: there is no content], and then apply the proposed GI algorithm in Equations (22)–(32) to estimate the unknown parameters ([image: there is no content]) of this nonlinear system. The parameter estimates and their errors with different noise variances are shown in Table 1 and Table 2, and the parameter estimation errors δ versus k are shown in Figure 2, where δ:=∥[image: there is no content](t)-ϑ∥/∥ϑ∥.

Figure 2. The GI estimation error δ versus k.
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Table 1. The parameter estimates (ai, bi, γi, di) and their errors (σ2 = 0.402).













	k
	a1
	a2
	b1
	b2
	γ2
	γ3
	d1
	δ(%)





	10
	0.02215
	0.40793
	1.00446
	0.11168
	0.49314
	0.27343
	0.15400
	20.88476



	50
	0.14113
	0.43950
	0.97319
	0.23592
	0.53438
	0.27736
	0.17933
	8.15348



	100
	0.19382
	0.44038
	0.97556
	0.29595
	0.52870
	0.26852
	0.21157
	3.04925



	200
	0.21402
	0.44122
	0.99065
	0.32470
	0.50913
	0.24897
	0.23549
	2.97170



	300
	0.21692
	0.44127
	0.99601
	0.33017
	0.50279
	0.24304
	0.24145
	3.59966



	400
	0.21757
	0.44127
	0.99744
	0.33149
	0.50114
	0.24152
	0.24314
	3.79156



	500
	0.21773
	0.44127
	0.99780
	0.33182
	0.50071
	0.24112
	0.24364
	3.84560



	True values
	0.20000
	0.44000
	0.99000
	0.30000
	0.50000
	0.25000
	0.21000
	








Table 2. The parameter estimates (ai, bi, γi, di) and their errors (σ2 = 0.202).













	k
	a1
	a2
	b1
	b2
	γ2
	γ3
	d1
	δ (%)





	10
	0.02115
	0.40802
	1.02095
	0.10735
	0.47432
	0.25670
	0.12715
	21.79777



	50
	0.13019
	0.43964
	0.98093
	0.22118
	0.52043
	0.27002
	0.12067
	11.04226



	100
	0.18373
	0.43985
	0.97722
	0.28055
	0.52339
	0.26897
	0.13687
	6.58059



	200
	0.20564
	0.44044
	0.98854
	0.30949
	0.50892
	0.25355
	0.16558
	3.61544



	300
	0.20865
	0.44051
	0.99326
	0.31470
	0.50328
	0.24815
	0.18529
	2.28582



	400
	0.20927
	0.44054
	0.99454
	0.31591
	0.50170
	0.24670
	0.19970
	1.57463



	500
	0.20943
	0.44057
	0.99489
	0.31622
	0.50122
	0.24628
	0.21044
	1.39000



	True values
	0.20000
	0.44000
	0.99000
	0.30000
	0.50000
	0.25000
	0.21000
	








For the sake of performance comparison, we apply the Newton iterative (NI) algorithm in [30] to estimate the unknown parameters of the proposed Wiener nonlinear system. The parameter estimation errors δ versus k are shown in Figure 3.

Figure 3. The GI and NI estimation error δ versus k ([image: there is no content]).
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From Table 1 and Table 2, and Figure 2 and Figure 3, we can draw the following conclusions:


	It is clear that the estimation errors become smaller (in general) as k increases: see the error curves in Figure 2 and the estimation errors of the last columns of Table 1 and Table 2.


	A lower noise level results in a faster rate of convergence of the parameter estimates to the true parameters: see the error curves in Figure 2 and the estimation errors in Table 1 and Table 2.


	The NI algorithm has a faster convergence rate than the GI algorithm, but the GI algorithm can generate more accurate parameter estimates than the NI algorithm: see the error curves in Figure 3.










5. Conclusions

In this paper we have derived the gradient-based iterative identification algorithm for Wiener nonlinear OEMA systems. The proposed algorithm can simultaneously estimate the parameters of the linear and nonlinear parts of Wiener nonlinear OEMA systems. The simulation results showed the parameters of Wiener nonlinear OEMA systems can be estimate effectively by the proposed algorithm. The method in the paper can be applied to study identification problems for other linear or nonlinear systems.
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