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Abstract: In this contribution a comparative study of modern heuristics on the school 

timetabling problem is presented. More precisely, we investigate the application of two 

population-based algorithms, namely a Particle Swarm Optimization (PSO) and an 

Artificial Fish Swarm (AFS), on the high school timetabling problem. In order to 

demonstrate their efficiency and performance, experiments with real-world input data have 

been performed. Both algorithms proposed manage to create feasible and efficient high 

school timetables, thus fulfilling adequately the timetabling needs of the respective high 

schools. Computational results demonstrate that both algorithms manage to reach efficient 

solutions, most of the times better than existing approaches applied to the same school 

timetabling input instances using the same evaluation criteria. 

Keywords: school timetabling; particle swarm optimization; artificial fish swarm 

 

1. Introduction 

The problem faced in this contribution belongs to the wide family of educational timetabling 

problems which are NP-complete in their general form [1,2]. The main categories of educational 

timetabling problems are examination timetabling, university course timetabling, and high school 
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timetabling [3]. In the current work we focus on the high school timetabling problem, which involves 

the weekly scheduling for all lecturers of a high school.  

The school timetabling problem requires the assignment of lectures (events) to timeslots in such a 

way that no teacher/class (resources) is involved in more than one lecture simultaneously, while many 

other significant constraints are satisfied. These constraints include both hard and soft constraints. 

Hard constraints must be satisfied by all means, while soft constraints represent preferences and are 

used to evaluate the solution’s quality [4]. The goal is to find a feasible solution, satisfying all hard 

constraints, which is as qualitative as possible; that is, satisfying the maximum number of soft 

constraints. In the respective literature many variants of the high school timetabling problem have been 

presented, which mainly differ due to the educational system of each country [5–7]. In recent  

years many papers have been published describing specific techniques applied to the high school 

timetabling problem [8–15]. 

In current work, we investigate the application of two heuristic algorithms on the Greek school 

timetabling problem, namely Particle Swarm Optimization (PSO) [16] and Artificial Fish Swarm 

(AFS) [17]. The algorithms are applied to real-world input data coming from different Greek high 

schools. Simulation results demonstrate that both algorithms proposed manage to create feasible and 

efficient high school timetables, thus adequately fulfilling the timetabling needs of the respective high 

schools. The specific input instances used for their performance evaluation and comparison is the  

well-established Beligiannis benchmark [7]. This school timetabling data set has been already used as 

a benchmark by many researchers in the respective literature [6,7,18,19].  

The PSO algorithm presented in current contribution is based on the PSO algorithm introduced  

in [20]. However, the proposed algorithm has significant differences compared to that algorithm, 

which are the following (see Section 3.1 for more details): 

• The population size of the PSO based algorithm used in current work equals 15, while  

in [20] equals to 50. 

• In the proposed PSO algorithm procedure SwapWithProbability() is applied to two 

randomly selected timeslots, while in [20] one of the two timeslots selected should have a 

hard clash (if such a timeslot exists) . 

• In [20] procedure SwapWithProbability() accepts swaps causing a hard clash with 

probability 2.2%, while in current algorithm this probability is set to 50%. 

• In the proposed PSO algorithm procedure SwapWithProbability() accepts swaps which 

cause a raise in the individual’s fitness with probability equal to 0.5% while in [20] this 

probability is set to 2.2%. 

• In [20] the probability of exiting the While Loop Structure which purpose is to produce a 

new particle with at least equal fitness value to the fitness value of the global best of the 

current generation, for each given particle, is set to 1.1%, while in current algorithm this 

probability is set to 1.08%.  

These differences enable the proposed PSO algorithm to perform significantly better compared to 

the PSO algorithm presented in [20] as demonstrated by experimental results in Section 4.  

The AFS algorithm presented in current contribution is a novel approach since, although there are 

plenty of population based algorithms applied to timetabling problems in the literature, there is no 
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specific AFS based approach, to the best of our knowledge, applied to the high school timetabling 

problem. The structure of the proposed AFS approach is given in detail in Section 3.2.  

Both algorithms presented in the current contribution use the same formalism for modeling the 

timetabling problem, try to minimize the same fitness function, and use the same performance criteria 

in order to evaluate the quality of each resulted timetable. Thus, a straightforward comparison of their 

experimental results is fair. Additionally, since there are other approaches in the respective literature 

using the same fitness function and evaluation criteria [21], a comparison of the proposed heuristic 

approaches with other approaches can be also performed on a fair basis. 

All timetables created by the proposed algorithms are compared on the basis of three criteria, which 

are well-established school timetabling performance criteria in the respective literature. The first 

criterion, which investigates how evenly each teacher’s hours are distributed among the days she/he is 

available at school, is the teachers’ teaching hours’ distribution. The second criterion, which presents 

how uniformly distributed are the hours of the same lesson for each class among its teaching days, is 

the lessons’ hours’ distribution. Finally, the third criterion, which checks whether there are idle hours 

between teaching hours of each teacher, is the teachers’ gaps. 

Numerical results demonstrate that both proposed algorithms achieve very satisfactory results and 

justify that modern heuristics constitute a very useful family of algorithms to cope effectively with this 

kind of problems. Moreover, one major advantage of the proposed algorithms lies in their inherent 

adaptive behavior. More specifically, both algorithms, by assigning weights that can be defined by the 

user to each specific constraint that should be satisfied, are able to fulfill adequately different 

timetabling needs of each respective school. 

This paper is organized as follows. In Section 2 we present the mathematical model of the school 

timetabling problem faced. Section 3 describes the structure and operation of the proposed algorithms. 

Section 4 assesses and compares the performance of the proposed algorithms to each other and to that 

of existing approaches. Finally, Section 5 summarizes the conclusions and presents future work. 

2. Problem Definition  

The problem faced in this contribution is the weekly high school timetabling. This problem is 

affected by many parameters and has to satisfy a large number of hard and soft constraints [21]. Hard 

constraints are the ones that have to be fulfilled in order a timetable to be feasible, while soft 

constraints are the ones that affect the quality of a timetable. In Section 2.1, we list all hard and soft 

constraints considered in current contribution, while in Section 2.2 we present the mathematical model 

of the problem at hand. 

2.1. Constraints 

The hard constraints considered in current contribution are the following: 

1. Teachers’ clash: each teacher can teach to only one class at a given time period. 

2. Classes’ clash: each class can be taught only one lesson at a given time period. 

3. Teachers-classes-lessons assignment: each teacher can teach a limited number of hours and 

lessons to each class, which is predefined by input data. 



Algorithms 2015, 8 726 

 

 

4. Teachers’ availability: each teacher can teach only in periods he/she is available, which is 

predefined by input data. 

5. Classes’ idle timeslots: must be only at the last hour of a day. 

6. Co-teaching restrictions: two or more teachers who teach the same lesson to the same class 

must be assigned to it at the same time period. For example, one class can be firstly joined 

with another class and then divided into two sub-classes, one for “English language for 

beginners” and one for “English language for intermediates” [22]. 

7. Sub-classes restrictions: two or more teachers who teach different lessons to the same class 

at the same time period must be simultaneously assigned to it. For example, one class can be 

divided into two sub-classes, one for “Gymnastics” and one for “Economics” [22].  

For a more detailed description of how both presented algorithms deal with co-teaching and  

sub-classes cases the interested reader can refer to [20]. 

The soft constraints considered in current contribution are the following: 

1. Teachers’ teaching hours’ distribution: checks how evenly each teacher’s hours are 

distributed among the days she/he is available at school. 

2. Lessons’ hours’ distribution: checks how uniformly distributed are the hours of the same 

lesson for each class among its teaching days. 

3. Teachers’ gaps: checks whether there are idle hours between teaching hours of each teacher. 

2.2. Mathematical Model 

The necessary data sets needed for the problem’s model definition are the following: 

• ܶ = ሼ1,… , ܶ݁ܽܿℎ݁݋ܰݏݎሽ; the set of teachers 

ܥ • = ሼ1,… ,  ሽ; the set of classes݋ܰݏ݁ݏݏ݈ܽܥ

ܦ • = ሼ1,… ,  ሽ; the set of teaching days in a week݋ܰݏݕܽܦ

ܮ • = ሼ1, … ,   ሽ; the set of lessons݋ܰݏ݊݋ݏݏ݁ܮ

ܪ • = ሼ1,… ,    ሽ; the set of teaching hours in a day݋ܰݏݎݑ݋ܪ

  ௔௩௔௜௟௔௕௟௘; the set of time periods teacher t is not available at school	௧௡௢௧ܪ •

 ௟௔௦௧; the set of the last hours of all daysܪ •

• ܷ; a set of tuples (݉, ݊) for ݉, ݊ ∈ ܲ: ݊ ≥ ݉ + 1 

݁ a set of meetings (events) such that to each meeting ;ܧ • ∈  a class-teacher pair and a ܧ
given number of lessons that must be scheduled is preassigned [23] 

 ௧; a set of meetings assigned to teacher tܧ •

The necessary variables and functions needed for the problem’s model definition are the following: 

௧௖ௗ௛ݔ • = ൜1,														if	teacher	ݐ	teaches	class	ܿ	at	day	݀	at	hour	ℎ0, if	teacher	ݐ	does	not	teach	class	ܿ	at	day	݀	at	hour	ℎ 

௟௖ௗ௛ݕ • = ൜1,								if	lesson	݈	is	taught	at	class	ܿ	at	day	݀	at	hour	ℎ0, if	lesson	݈	is	not	taught	at	class	ܿ	at	day	݀	at	hour	ℎ 

(ߙ)߯ • = ൜1, if	ߙ	is	true0, if	ߙ	is	false 



Algorithms 2015, 8 727 

 

 

 ௧ௗ is the maximum number of teaching hours that can be assigned to teacher t݀݊ݑ݋ܤݎ݁݌݌ܷ •
at day d so as his/her teaching hours are uniformly distributed 

 ௧ௗ is the minimum number of teaching hours that can be assigned to teacher t݀݊ݑ݋ܤݎ݁ݓ݋ܮ •
at day d so as his/her teaching hours are uniformly distributed 

 ௧௖ is the number of different subjects that teacher t teaches to class cݏݐ݆ܾܿ݁ݑܵ •

• ܶ݁ܽܿℎ݁ݏݎݑ݋ܪ_݈ܽݐ݋ܶ_ݎ௧ is the total number of teaching hours that teacher t can teach in  
a week 

௖ݏݎݑ݋ܪ_݈ܽݐ݋ܶ_ݏݏ݈ܽܥ •  is the total number of teaching hours that class c can be taught in  
a week 

 ௧ௗ௡௠ is the idle times of teacher t between time slots m and n on day d [23]ݖ •

௘ௗ௣ݒ • = ൜1, if	the	event	݁	is	scheduled	to	timeslot	(݀, ,0	(݌ otherwise																																																																	 
Except for that, the following soft constraint costs are defined: 

ݐݏ݋ܿ	݊݋݅ݐݑܾ݅ݎݐݏ݅݀	′ݏݎݑ݋ℎ	ℎ݅݊݃ܿܽ݁ݐᇱݏݎℎ݁ܿܽ݁ݐ • = ଵݓܿݏ × ∑ ∑ ௧ௗ஽ௗୀଵ௧்ୀଵܦ ,	 
where  

௧ௗܦ = ൞1, ݂݅	 ൭෍ݔ௧௖ௗ௛ ≥ ௧ௗ݀݊ݑ݋ܤݎ݁݌݌ܷ + 1஼
௖ୀଵ ൱൭෍ݔ௧௖ௗ௛ ≤ ௧ௗ݀݊ݑ݋ݎ݁ݓ݋ܮ − 1஼

௖ୀଵ ൱ , ݐ	∀ ∈ ܶ	, ݀ ∈ ,ܦ ℎ ∈ ,0ܪ otherwise																																																																																																																																																														  

and ݓܿݏଵ is the respective soft constraint weight as described in [20].  
ݐݏ݋ܿ	݊݋݅ݐݑܾ݅ݎݐݏ݅݀	′ݏݎݑ݋ᇱℎݏ݊݋ݏݏ݈݁ • = ଶݓܿݏ × ∑ ௧௖ௗ௧்ୀଵܩ ,	 

where ܩ௧௖ௗ = ൜1, ݂݅	 ∑ ௧௖ௗ௛ு௛ୀଵݔ ≥ ,௧௖ݏݐ݆ܾܿ݁ݑܵ	 ݐ	∀ ∈ ܶ	, ܿ ∈ ,ܥ ݀ ∈ ,0		ܦ otherwise																																																																													  
and ݓܿݏଶ  is the respective soft constraint weight as described in [20]. If  ∑ x୲ୡୢ୦ୌ୦ୀଵ ≥ 	 Subjects୲ୡ, this means that teacher t teaches, at least one subject, at class c at day 

d more than one hour (twice or more). 
ݐݏ݋ܿ	ݏ݌ᇱ݃ܽݏݎℎ݁ܿܽ݁ݐ • = ଷݓܿݏ × ∑ ∑ ௧ௗ௠௡(௠,௡)∈௎஽ௗୀଵݖ ,	 

where ݖ௧ௗ௠௡ ≥ 0, ݐ	∀ ∈ ܶ, ݀ ∈ ,ܦ (݉, ݊) ∈ ܷ and  ݖ௧ௗ௠௡ ≥ (݊ − ݉ − 1) × ൫−1 + ∑ ൫ݒ௘ௗ௠ + ௘ௗ௡ݒ − ∑ ௘ௗ௣௠ழ௣ழ௡ݒ ൯௘∈ா೟ ൯, ݐ	∀ ∈ ܶ, ݀ ∈ ,ܦ (݉, ݊) ∈ ܷ. 

The latter inequality defines that, if variables are activated and there are no teaching periods 

between them, the value of ݖ௧ௗ௠௡  equals (݊ − ݉ − 1)  which is the number of idle times 

between m and n. This formulation of teachers’ gaps cost was firstly presented in [23]. 

Accordingly, ݓܿݏଷ is the respective soft constraint weight as described in [20]. 

Thus, the mathematical model of the problem can be expressed as follows: ݉݅݊(ܿܽ݁ݐℎ݁ݏݎᇱܿܽ݁ݐℎ݅݊݃	ℎ′ݏݎݑ݋	݊݋݅ݐݑܾ݅ݎݐݏ݅݀	ݐݏ݋ܿ + ݐݏ݋ܿ	݊݋݅ݐݑܾ݅ݎݐݏᇱ݀݅ݏݎݑ݋ᇱℎݏ݊݋ݏݏ݈݁ ݐ	∀ ,(ݐݏ݋ܿ	ݏ݌ᇱ݃ܽݏݎℎ݁ܿܽ݁ݐ+ ∈ ܶ, ܿ ∈ ,ܥ ݈ ∈ ,ܮ ݀ ∈ ,ܦ ℎ ∈ ,ܪ ݁ ∈  ܧ

under the following constraints: 

• ∑ ߯ ൬൫ݔ௧௖೔ௗ௛ = 1൯ ቀݔ௧௖ೕௗ௛ = 1ቁ൰௧்ୀଵ ≤ 0, ∀	ܿ௜, ௝ܿ ∈ ݅)	ܥ ≠ ݆), ݀ ∈ ,ܦ ℎ ∈  (Teachers’ clash) ;ܪ

• ∑ ߯ ൬൫ݔ௟೔௖ௗ௛ = 1൯ ቀݔ௟ೕ௖ௗ௛ = 1ቁ൰஼௖ୀଵ ≤ 0, ∀	݈௜, ௝݈ ∈ ݅)	ܮ ≠ ݆), ݀ ∈ ,ܦ ℎ ∈  (Classes’ clash) ;ܪ
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• ∑ ∑ ∑ ௧௖ௗ௛ு௛ୀଵ஽ௗୀଵ஼௖ୀଵݔ = ܶ݁ܽܿℎ݁ݏݎݑ݋ܪ_݈ܽݐ݋ܶ_ݎ௧, ݐ	∀ ∈ ܶ	; (Teachers’ teaching hours) 

• ∑ ∑ ∑ ௧௖ௗ௛ு௛ୀଵ஽ௗୀଵ௧்ୀଵݔ = ,௖ݏݎݑ݋ܪ_݈ܽݐ݋ܶ_ݏݏ݈ܽܥ ∀	ܿ ∈  (Classes’ teaching hours) ;	ܥ

• ∑ ߯ ቀ(ݔ௧௖ௗ௛ = 1)	ℎ ∈ ௔௩௔௜௟௔௕௟௘ቁ௧்ୀଵ	௧௡௢௧ܪ ≤ 0, ∀	ܿ ∈ ,	ܥ ݀ ∈ ,ܦ ℎ ∈  (Teachers’ availability) ;ܪ

• ∑ ߯൫(ݕ௟௖ௗ௛ = 0)	ℎ		ܪ௟௔௦௧൯஼௖ୀଵ ≤ 0, ∀	݈ ∈ ,	ܮ ݀ ∈ ,ܦ ℎ ∈  (Classes’ idle time slots) ;ܪ

• ∑ ߯൬൫݀ܿ݅ݐݔℎ = 1൯ ቀ݆݀ܿݐݔℎ = 1ቁ	ܿܽ݁ݐℎ݁ݏݎ	݅ݐ	݀݊ܽ	݁ݎ݆ܽݐ	ݐ݋݊	݀݁ݒ݈݋ݒ݊݅	݊݅	݋ܿ − ℎ݅݊݃൰ܿܽ݁ݐ ≤ 0஼௖ୀଵ ,௜ݐ	∀ , ௝ݐ ∈ ܶ	(݅ ≠ ݆), ݀ ∈ ,ܦ ℎ ∈   (co-teaching/sub-classes) ;ܪ

3. The Proposed Algorithms  

3.1. Description of the Proposed PSO Algorithm 

The population of the proposed PSO algorithm consists of 15 particles, each one comprising a  

two-dimensional array. Although the population size is different from the one used in [20], the particle 

encoding is the same. The number of rows of each particle equals the number of different classes of each 

school, while the number of columns is 35, since the timeslots of a weekly Greek school timetable are 35 at 

the most [20]. Each particle’s cell contains a number ranging from 1 to the number of different teachers of 

each school or a “−1” value. For example, if cell [i,j] equals “4”, that means that the 4th teacher teaches one 

of his/her lessons at the i-th class at the j-th timeslot. If cell [i,j] equals “−1”, that means that the i-th class has 

the j-th timeslot empty. The interested reader can find more details about the particle encoding used in [20]. 

In Algorithm 1, the pseudo code of the proposed PSO based algorithm is presented. The algorithm 

is a hybrid one consisting of two basic components: 

• the main algorithm, which has four basic differences compared to the algorithm presented  

in [20]. 

• a local search procedure, which is the same as the one used in [20] and aims improving the 

quality of the resulted timetable after the execution of the main algorithm.  

In this contribution we limit our description on the main algorithm, since all differences between the 

proposed PSO algorithm and the one presented in [20] lie there. The interested reader can find more 

details about the local search procedure in [20]. The differences of the proposed PSO algorithm 

compared to the algorithm presented in [20] are the following: 

• Line 3: The number of particles P (i.e., the population size) is set to 15, while in [20] equals 50. 

• Lines 22–23: Procedure SwapWithProbability() is applied to two randomly selected timeslots, 

while in [20] one of the two timeslots selected should have a hard clash (if such a timeslot exists) . 

• Line 22: Procedure SwapWithProbability() accepts swaps causing a hard clash with probability 

equal to 50%, while in [20] this probability equals 2.2%. 

• Line 22: Procedure SwapWithProbability() accepts swaps which cause a raise in the 

individual’s fitness with probability equal to 0.5%, while in [20] this probability equals 2.2%. 

• Lines 29–34: The probability of exiting the While Loop Structure is set to 1.08%, while in [20] 

equals 1.1%.  
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Algorithm 1: The pseudo code of the main PSO algorithm. 
In what follows, P is the number of particles (i.e., the population size), particle(p) is the p-th 
particle of the population, Personal_best(p) is the personal best achieved by particle p till current 
generation and Global_best is the globally best particle among all particles till current generation, 
i.e. the particle with smallest fitness. In addition, F() stands for the fitness function, F stands for the 
fitness function value, while auxiliary_particle is a structure identical to any particle’s structure that 
serves for temporal storage of a particle. 

 
1. Start of hybrid PSO algorithm 
2.    Start of main algorithm 
3.    Read input Data; // i.e. teachers, classes, hours, co teachings etc.    
4.    Initialize P particles with random structure; 
5.    For each particle(p) { 
6.           Personal_best(p)  particle(p); 
7.           F(Personal_best(p))  F(particle(p)); 
8.    } // end For 
9.    Global_best  the particle with smallest fitness; 
10.    F(Global_best)  the smallest fitness among all particles; 
11.    While generation < numOfGenerations {  // numOfGenerations is set to 10,000 
12.              For each particle(p) { 
13.                     F(particle(p))  compute fitness of particle(p); 
14.                     If (F(particle(p)) <= F(Personal_best(p)) then { 
15.                                   F(Personal_best(p))  F(particle(p));  
16.                                   Personal_best(p)  particle(p); 
17.                                   If F(particle(p) <= F(Global_best) then { 
18.                                                 F(Global_best)  F(particle(p)); 
19.                                                 Global_best  particle(p); 
20.                                   } // end If 
21.                       } // end If 
22.                       Select two different timeslots t1, t2 at random; 
23.                       Execute procedure SwapWithProbability(particle(p), t1, t2); 
24.                       Select a timeslot t at random; 
25.                       Execute procedure InsertColumn(Personal_best(p), particle(p), t); 
26.                       Select a timeslot t at random; 
27.                       Execute procedure InsertColumn(Global_best, particle(p), t); 
28.                       F_before_entering_While_Loop_Structure  F(particle(p)); 
29.                       auxiliary_particle  particle(p); 
30.                       While F(particle(p)) > F(Global_best) { // this is the While Loop Structure 
31.                              Every 10 loop-cycles break the while-loop with a fixed probability; 
32.                              Select a timeslot t at random; 
33.                              Execute procedure InsertColumn(Global_best, particle(p), t); 
34.                              F(particle(p))  compute fitness of particle(p); 
35.                        } // end While (While Loop Structure) 
36.                        If F(particle(p)) > F_before_entering_While_Loop_Structure then { 
37.                             particle(p)  auxiliary_particle; 
38.                             F(particle(p))  F_before_entering_While_Loop_Structure; 
39.                        } // end If 
40.              } // end For each particle(p) 
41.    ++generation; 
42.    } // end While termination criterion is not met 
43.    End of main algorithm //Here is where the main algorithm ends and the refinement phase 
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starts 
44.    Execute Local Search Procedure 
45.    output  Global_best; 
46. End of hybrid PSO algorithm 

As seen in Algorithm 1, the main algorithm involves three major components, namely, procedure 

SwapWithProbability(), procedure InsertColumn() and a While Loop Structure. These three parts are 

described in short in the next paragraphs. The interested reader can find more details about these parts in [20].  

The parameters of procedure SwapWithProbability() are the current particle (particle(p)) and two 

different timeslots t1 and t2. Procedure SwapWithProbability() investigates all swaps between the cells 

of timeslots (columns) t1 and t2 for all classes of particle(p). Swaps that cause no hard clash and result 

in a smaller or equal fitness value are always accepted and executed. Swaps that cause hard constraint 

violations are accepted with probability equal to 50%. Swaps that do not cause hard constraint 

violations but lead to larger (worse) fitness function values are accepted with probability equal to 

0.5%. Note that the acceptance of invalid swaps permits the algorithm to escape from local optima in  

most cases.  

Procedure InsertColumn() is used in order to substitute timeslots of current particle (particle(p)) 

with timeslots either from the personal best of current particle (Personal_best(p)) or the global best 

(Global best) found until that point. Procedure InsertColumn() takes as first parameter either 

Personal_best(p) or Global_best, as second parameter particle(p) and as third parameter a random 

selected timeslot t, which is the timeslot to be replaced in particle(p) either from Personal_best(p) or 

Global_best.  

The While Loop Structure tries to discover, for each particle(p), a particle with the best or equal 

fitness value to the fitness value of Global_best, by applying procedure InsertColumn() between 

Global_best and particle(p). In order to avoid being trapped into an infinite loop, the algorithm can exit 

the While Loop Structure with a probability set to 1.08%, no matter what the achieved fitness value is, 

every time 10 more loops are executed. 

3.2. Description of the Proposed AFS Algorithm 

The population of the proposed AFS algorithm consists of 24 fish, each of which is a  

two-dimensional array. The fish encoding is the same as the one used by the proposed PSO algorithm 

and the algorithm presented in [20]. In Algorithm 2, the pseudo code of the proposed AFS based 

algorithm is presented. The algorithm is a hybrid one consisting of two basic components: 

• the main algorithm, which will be analytically described in the following paragraphs. 

• a local search procedure, which is the same as the one used by the proposed PSO algorithm and 

the algorithm presented in [20].  

As seen in Algorithm 2, the main algorithm includes seven basic procedures, namely, procedure 

Prey(), procedure InnerPrey(), procedure SwarmNChace(), procedure CreateNeighborhood(), 

procedure CalculateLocalCentre(), procedure Leap(), and procedure Turbulence(). A detailed 

description of these procedures is given in the following paragraphs.  
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We define Distance d between two fish f1 and f2 as the number of cells of the timetable, in which 

the two fish differ. The distance of two fish takes values in the interval [0, number of classes × 35]. As 

the algorithm progresses, the fish tend to approach each other and the population loses the desired 

diversity that allows fish to seek in wider solutions area. To prevent this phenomenon, a shaker process 

of the space of solutions is used, called procedure Turbulence() (Algorithm 2, Line 10). This procedure 

is activated when the current maximum distance between all fish becomes less than 

MIN_DISTANCE_COEF × number of classes × 35, wherein MIN_DISTANCE_COEF is a user 

defined “proximity factor”, constant throughout the execution of the algorithm. During the execution 

of procedure Turbulence(), a random fish, a random row (class) in this fish and two random periods are  

selected. Then, utilizing procedure Swap() teachers assigned to classes during these periods are 

swapped. Procedure Swap() is repeated a specified number of times, which in all experiments 

conducted was equal to TURBULENCE_ITERATIONS × NUMBER_OF_FISH, wherein 

TURBULENE_ITERATIONS is user defined, constant throughout the execution of the algorithm. The 

parameters of procedure Swap(), as used in procedure Turbulence(), are four: a randomly selected fish, 

a randomly selected row in this fish and two randomly selected columns in this fish. It swaps the 

values of two cells in the same row of the timetable of fish f, i.e., teachers who are assigned to the two 

periods of the timetable of the class. 

Procedure Leap() (Algorithm 2, Line 12) is activated when the improvement of the obtained best 

fitness (i.e., the fitness of minGlobalFish) during the last LEAP_NUMBER generations is less than 

MIN_IMR, where LEAP_NUMBER and MIN_IMR are user defined and constant. Parameter 

MIN_IMR is the threshold of desired fitness’ rate improvement in order to start the Leap() procedure 

(see also Table 1). Procedure Leap() is triggered repeatedly until the desired rate of improvement  

has been achieved or 10 executions without desired rate of improvement have been completed. In 

order to achieve the desired rate of improvement, procedure Leap() applies procedure Approach(), 

which forces current fish f to approach minGlobalFish. Procedure Approach() is repeated, inside the 

body of procedure Leap(), a specified number of times, which in all experiments conducted was equal 

to NUMBER_OF_FISH. 

The Approach() procedure is one of the two procedures (the second one is RandomApproach() 

presented below) aimed to make fish f1 approach fish f2. To achieve this, it initially identifies the  

cells in which the teachers in the timetables of the two fish are different. So, if the values of fish f1 and 

f2 in cell (i, j) are different, say, “Professor A” and “Professor B”, then it is certain that there will  

be another cell (i, m), having “Professor B” as a value (this is assured by the initialization  

procedure) (Figure 1). Procedure Approach() is executed as follows: It randomly selects two cells of f1 

among cells in which timetables of f1 and f2 are different. Then, utilizing procedure Swap(), the 

algorithm switches the values of cells (i, j) and (i, m) of f1 (Figure 2). In this way, the distance of the 

two fish is decreased by at least one unit (perhaps two if A = C). By choosing to make alternations per  

class (horizontal) we ensure that the number of hours that each teacher is assigned to each class is  

not violated (this has been ensured by the initialization procedure). The process ends when  

the percentage of the initial distance between the two fish becomes less than (1.0-STEP_RATIO), 

where STEP_RATIO is a user defined variable, constant throughout the execution of the algorithm. 
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Algorithm 2: The pseudo code of the main AFS algorithm. 
In what follows, minGlobalFish is the fish with best fitness in population, personalBest is the 
current personal best structure of each fish, localBest is the fish with the best fitness in a 
neighborhood, localCentre is the centre of a fish neighborhood and leapNumber is the number of 
generations every which the algorithm checks whether an improvement over threshold MIN_IMPR 
in the fitness of minGlobalFish has occurred.  

1. Start of hybrid AFS algorithm  
2.    Start of main algorithm 
3.    Read input Data; //i.e., teachers, classes, hours, co teachings etc. 
4.    Create initial population of fish, each fish having random structure; //The size of initial  
population is set to NUMBER_OF_FISH=24 
5.    minGlobalFish  The fish with best fitness in population; 
6.    Make every fish best position equal to current (i.e., initial) position; 
7.    generation  0;  
8.    While generation < NUM_OF_GENERATIONS {  // NUM_OF_GENERATIONS is set to 
10,000  
9. If maximum distance between all fish is less than a minimum threshold then 
 // Threshold is equal to MIN_DISTANCE_COEF × number of classes × 35 
10.                    Execute procedure Turbulence(); // perturb the population of fish 
11. If the % improvement of minGlobalFish fitness for the last LEAP_NUMBER generations is not 
bigger than MIN_IMPR then  
// MIN_IMPR is a threshold in the improvement of minGlobalFish 
12.   Execute procedure Leap(); // make fish approach minGlobalFish 
13.            For each fish f { 
14.                   If fitness of fish f has been improved then 
15.                           update fish f personalBest; 
16.                   Execute procedure CreateNeighborhood(f); // recreate the neighborhood of fish f 
17.           Execute procedure CalculateLocalCentre(f); // calculate the localCentre of the  
neighborhood of fish f and the localBest of fish f  
18.           If the neighborhood of fish f is sparse then // if it contains less than SPARSE_COEF × 
NUMBER_OF_FISH members 
19. Execute procedure Prey(f); // try to find for fish f, in the whole population, a structure having 
better fitness  
20.                   Else 
21.                   If the neighborhood of fish f is dense then // if it contains more than DENSE_COEF 
× NUMBER_OF_FISH members 
22. Execute procedure InnerPrey(f); // try to find for fish f, in its neighborhood, a structure having 
better fitness 
23.                   Else 
24. Execute procedure SwarmNChase(f); // try to find for fish f a structure having better fitness in 
case its neighborhood is neither dense nor sparse 
25.                   If fitness of fish f < = fitness of minGlobalFish then 
26.                           minGlobalFish  f; 
27.           } // end For each fish f 
28.    ++generation;     
29.    } // end While generation < numOfGenerations 
30.    End of main algorithm //Here is where the main algorithm ends and the refinement phase 
starts 
31.    Execute Local Search Procedure 
32.    output  minGlobalFish; 
33.  End of hybrid AFS algorithm  
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Figure 1. Two fish timetables which differ in cell (i, j). 
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Figure 2. The fish f1 after switching cells (i, j) and (i, m). 

Procedure CreateNeighborhood() (Algorithm 2, Line 16) plays a major role in the operation of the 

algorithm. Its aim is to create in every generation, the current neighborhood for each fish. As the fish 

move, their mutual distances change and they are getting far or near to each other. Thus, 

neighborhoods of fish evolve dynamically during execution of the algorithm. This means that in every 

generation, the neighborhood of each fish is recalculated. We define that a fish f1 is assumed to lie in 

the neighborhood of a fish f, if its distance from f is less than minDist + (maxDist – minDist) × 

VISUAL_SCOPE_COEF, where minDist and maxDist are respectively the minimum and maximum 

distance among all fish of current population and VISUAL_SCOPE_COEF is a user defined 

parameter, constant throughout the execution of the algorithm. As stated before, the distance d between 

two fish f1 and f2 is the number of cells of the timetable, in which the two fish differ. Procedure 

CreateNeighborhood() sets the fish in the neighborhood of f in increasing fitness order. So, the first 

fish in the neighborhood of f, is the one with the best fitness among all its neighbors. A neighborhood 

is considered “sparse” (Algorithm 2, Line 18), when containing less than SPARSE_COEF × 

NUMBER_OF_FISH members, where NUMBER_OF_FISH is the population size and 

SPARSE_COEF is a user defined parameter, constant throughout the execution of the algorithm. A 

neighborhood is considered “dense” (Algorithm 2, Line 21), when containing more than 

DENSE_COEF × NUMBER_OF_FISH members, where DENSE_COEF is a user defined parameter, 

constant throughout the execution of the algorithm. 

One of the key behaviors simulated in AFS algorithms is the tendency of fish to gather in flocks to 

maximize food-finding and survival chances [17]. The concentration of fish in flocks (swarming) is 

simulated by moving the fish to a “notional” fish located in the “center” of their neighborhood 

(localCentre fish). This “notional” fish, is created by procedure CalculateLocalCentre() (Algorithm 2,  

Line 17). At first, the localCentre fish is set equal to the first fish in the neighborhood of f, which is the 

fish with the best fitness among all fish in the neighborhood, since procedure CreateNeighborhood() 

sets the fish in the neighborhood of f in increasing fitness order (see above). Then, for an arbitrary 
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number of times (without, of course, exceeding the size of the neighborhood), the localCentre 

approaches the i-th fish of the neighborhood, utilizing procedure Approach(), with a diminishing step 

given by the expression 
ଵ௜ାଵ . For example, the localCentre approaches the second fish of the 

neighborhood with step equal to 
ଵଷ, the third fish of the neighborhood with step equal to 

ଵସ and so on. As 

a result, the participation of the most robust fish of the neighborhood to the creation of the localCentre 

is greater than that of the less robust.  

A fish f performs Prey() (Algorithm 2, Line 19) procedure when its neighborhood is not rich 

enough in fish, towards which it could make a move. A fish f1, different from f, is selected randomly 

from fish population and if it has better fitness than f then fish f moves towards f1 using procedure 

RandomApproach() and procedure Prey() is completed. If the fitness of f1 is not better than the fitness 

of f then f can also move towards f1 using procedure RandomApproach() with probability equal to ݁ି ೏೎೒೐೙ (dc is the difference in fitness between fish f1 and fish f and gen is the current generation) and 

procedure Prey() is completed, too. This is repeated PREY_TRY_NUMBER times at most, where 

PREY_TRY_NUMBER is a user defined parameter, constant throughout the execution of the 

algorithm. In case none of the above situations take place, fish f moves towards its personalBest using 

procedure RandomApproach(). The pseudo code of procedure Prey() is presented in Algorithm 3. 

Algorithm 3: The pseudo code of procedure Prey(). 
0. For try  1 to PREY_TRY_NUMBER {  
1. accept  random number between 0 and 1; 
2. pick a random fish f1 among the population; 
3. dc  fitness of f1 – fitness of f; 
4. If fitness of f1 <=  fitness of f then {  
5. Execute procedure RandomApproach(); // move randomly fish f towards fish f1; 
6. return; 
7. } // end If 

8. If (fitness of f1 >  fitness of f) and (݁ି ೏೎೒೐೙ > = accept) then { 
9. Execute procedure RandomApproach(); // move randomly fish f towards fish f1; 
10. return; 
11. } // end If 
12. } // end For 
13. Execute procedure RandomApproach(); // move randomly fish f towards its personalBest 
14. return; 

Procedure RandomApproach() works the same way as procedure Approach(), with the difference 

that it completes its operation if f1 achieves better fitness than its initial one during the execution of  

the procedure. It chooses, just like in procedure Approach(), a random location at which both  

fish differ and then tests all the swaps (in same way as described in procedure Approach()). From  

all these swaps, procedure RandomApproach() finally chooses to carry out the one that leads to  

better fitness among all available swaps. The process ends either when a better fitness to f1 is achieved 

or when—as in procedure Approach()—the percentage of the initial distance between the two  

fish becomes less than (1.0-STEP_RATIO). 

A fish f performs InnerPrey() (Algorithm 2, Line 22) procedure when its neighborhood is quite rich  

in fish, towards which it could make a move. A fish f1, different from f, is selected randomly from  
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the neighbors of f and if it has better fitness than f then fish f moves towards f1 using procedure 

RandomApproach() and procedure InnerPrey() is completed. If the fitness of f1 is not better  

than the fitness of f then f can also move towards f1 using procedure RandomApproach() with 

probability equal to ݁ି ೏೎೒೐೙ (dc is the difference in fitness between fish f1 and fish f and gen is the  

current generation) and procedure InnerPrey() is completed, too. This is repeated 

PREY_TRY_NUMBER times at most. In case none of the above situations take place, procedure 

Prey() is executed. The pseudo code of procedure InnerPrey() is presented in Algorithm 4. 

Algorithm 4: The pseudo code of procedure InnerPrey(). 
0. For try  1 to PREY_TRY_NUMBER {  
1. accept  random number between 0 and 1; 
2. pick a random fish f1 among its neighbors; 
3. dc  fitness of f1 – fitness of f; 
4. If fitness of f1 <=  fitness of f then {  
5. Execute procedure RandomApproach(); // move randomly fish f towards fish f1; 
6. return; 
7. } // end If 

8. If (fitness of f1 >  fitness of f) and (݁ି ೏೎೒೐೙ > = accept) then { 
9. Execute procedure RandomApproach(); // move randomly fish f towards fish f1; 
10. return; 
11. } end If 
12. } end For 
13. Execute procedure Prey(); // See Algorithm 3 
14. return; 

A fish f performs procedure SwarmNChase() (Algorithm 2, Line 24) when its neighborhood is 

neither “dense” nor “sparse” in fish. Fish f, using procedure RandomApproach(), moves separately and 

independently to the localCentre fish of its neighborhood (swarm behavior) and to the localBest fish of 

its neighborhood (chase behavior) [17,24]. The fish f finally takes the move which gives better fitness. 

If neither of the two moves lead to better fitness, the fish executes procedure InnerPrey(). The pseudo 

code of procedure SwarmNChase() is presented in Algorithm 5. 

Algorithm 5: The pseudo code of procedure SwarmNChase(). 
0. tempFish1  f; 
1. tempFish2 f; 
2. move randomly fish tempFish1 towards the localBest of neighborhood of f; 
3. move randomly fish tempFish2 towards the localCentre of neighborhood of f; 
4. tempFish  fish with the minimum fitness among tempFish1 and tempFish2; 
5. If fitness of tempFish <= fitness of f then 
6. f  tempFish; 
7. Else 
8. InnerPrey(f); // See Algorithm 4 
9. Return; 

As seen in the previous paragraphs, the proposed AFS algorithm uses many user-defined parameters 

that affect the algorithm’s convergence and efficiency. In Table 1 all user defined parameters are 

summarized and explained. Moreover, their values used in all experiments are listed. Although the 
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adjustment of user-defined parameter values remains an open issue, as there is no obvious way to tune 

them, after having conducted exhaustive experiments we decided to use the values presented in  

Table 1, since this combination of values resulted in the best performance of the proposed  

AFS algorithm. 

Table 1. The user defined parameters used by the proposed AFS algorithm. 

Parameter Value Comments 

NUMBER_OF_GENERATIONS 10,000 The number of generations the algorithm is executed 

NUMBER_OF_FISH 24 

The size of the population of fish. We decided to use 24 fish since, 
after exhaustive experiments we came to the conclusion, that this is 
the minimum number of fish which guarantees that the AFS 
algorithm will always reach feasible solutions. 

VISUAL_SCOPE_COEF 0.7 

A fish f1 is located in the neighborhood of a fish f, if its distance 
from f is less than minDist + (maxDist – minDist) × 
VISUAL_SCOPE_COEF, where minDist and maxDist are 
respectively the minimum and maximum distance among all fish of 
current population 

SPARSE_COEF 0.1 
A neighborhood is considered “sparse”, when containing less than 
SPARSE_COEF × NUMBER_OF_FISH individuals 

DENSE_COEF 0.8 
A neighborhood is considered “dense”, when containing more than 
DENSE_COEF × NUMBER_OF_FISH individuals 

STEP_RATIO 0.047 

Fish approaching factor. Procedures Approach() and 
RandomApproach() are completed when the percentage of the 
initial distance between two fish becomes less than (1.0 - 
STEP_RATIO) 

PREY_TRY_NUMBER 3 Number of iterations for procedures Prey() and InnerPrey() 

MIN_DIST_COEF 0.01 

The turbulence activating factor. Procedure Turbulence() is 
activated when the current maximum distance between all fish 
becomes less than MIN_DISTANCE_COEF × number of classes × 
35 

LEAP_NUMBER 100 
Procedure Leap() is activated when the improvement of the 
obtained best fitness (i.e. the fitness of minGlobalFish) during the 
last LEAP_NUMBER generations is less than MIN_IMR 

TURBULENCE_ITERATIONS 5 
Number of repetitions of procedure Swap() inside procedure 
Turbulence() equals to TURBULENCE_ITERATIONS × 
NUMBER_OF_FISH 

MIN_IMPR 0.01 
Threshold of desired fitness’ rate improvement in order to start the 
Leap() procedure 
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4. Computational Results 

The proposed algorithms were coded in C++ and run on i7–4770, 3.40 GHz and 16 GB of RAM, 

under the Windows 7 (64 bit) OS. All results presented in this section were accomplished using the 

same set of PSO parameters’ values for the PSO algorithm and the same set of AFS parameters’ values 

for the AFS algorithm. This was adopted in order to have a fair comparison of both algorithm’s 

efficiency and performance. Both algorithms use the same encoding described in Section 3.1 and 3.2. 

The population size was set to 15 for the PSO algorithm and to 24 for the AFS algorithm.  

The fitness function used for both algorithms is the one presented in [20], incorporates all hard and 

soft constraints listed in Section 2 and has the following form:  

f = cases_of_teachers’_unavailability × HCW × BASE3  

 + cases_of_classes’_empty_periods × HCW × (2 × BASE)BASE 

 + cases_of_parallel_teaching × HCW × BASEk 

+ cases_of_wrong_co-teaching × HCW × (2 × BASE)BASE 

+ cases_of_class_lessons’_dispersion × ICDW × HOURS × BASEDAYS   

+ cases_of_teachers’_empty_spaces × TEPW × HOURS × BASEDAYS 

+ cases_of_teacher_lessons’_dispersion × ITDW × absolute_error × BASEDAYS 

Moreover, all hard and soft constraints weights used in it have the exact same values as the ones 

used in [20] and are described as follows: 

• Hard Constraints’ Weight (HCW). This weight is utilized by the algorithm in order to 

distinguish feasible and infeasible timetables. Its value is set to 10. 

• Ideal Classes’ Dispersion Weight (ICDW). This weight is relevant to the classes’ lessons 

dispersion and its value is set to 0.95.  

• Teachers’ Empty Periods Weight (TEPW). This weight relates to teachers’ idle hours 

during any working day and its value is set to 0.06.  

• Ideal Teachers’ Dispersion Weight (ITDW). This weight is relevant to the teachers’ 

teaching hours’ dispersion and its value is set to 0.6. 

Apart from the above weights, another major parameter that affects the behavior of the evaluation 

function is the exponential rise base (BASE). This is a real number (typically between 1 and 2) that is 

used as a base for the exponential rise of the sub-costs corresponding to violations of a certain 

constraints in a timetable. For all experiments conducted, its value was set to 1.3. In order to 

demonstrate the performance and efficiency of both computational intelligence algorithms, their 

experimental results are compared with the respective results of four different heuristics that have been 

applied to the school timetabling problem in the literature [19,20,25,26]. The approach presented  

in [19] is a simulated annealing (SA)-based algorithm with a newly-designed neighborhood structure. 

Its main innovation is that, in search for the best neighbor, the heuristic performs a sequence of swaps 

between pairs of timeslots, instead of swapping two assignments, as in the standard simulated 

annealing. The algorithm presented in [25] is an evolutionary one (EA). The algorithm uses linear 

ranking selection, two mutation operators, and an elitism schema, while, on the other hand, it does not 
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use any crossover operator. The third algorithm presented in [20] comprises a hybrid particle swarm 

optimization (PSO)-based algorithm. It consists of a main PSO algorithm and a refining local search 

procedure which is applied in order to improve the best solution found by the main PSO algorithm. 

Finally, the fourth algorithm is a genetic algorithm selection perturbative hyper-heuristic  

(GASPHH) [26]. It comprises a two-phase approach, with the first phase focusing on hard constraints 

and the second phase on soft constraints. Both phases employ the same genetic algorithm selection 

perturbative hyper-heuristic, with the low-level heuristics differing for each phase.  

Both algorithms presented in the current contribution, as well as the four algorithms mentioned in 

the previous paragraph, use the same formalism for modeling the timetabling problem and the same 

three performance criteria (teachers’ teaching hours’ distribution, lessons’ hours’ distribution and 

teachers’ gaps) in order to evaluate their performance. Thus, we can perform a straightforward and fair 

comparison of their experimental results. The input instances selected in order to compare the 

performance of these algorithms is the well-established Beligiannis data set [6,7], which has been used 

by all these algorithms in the respective contributions. In Table 2 the major characteristics of the input 

instances used in the experimental results are presented. The interested reader can find a thorough 

description of these instances in [19,20].  

Table 2. Major characteristics of the Beligiannis school timetabling data set. 

Instance 
Number of 

Classes 
Number of 
Teachers 

Number of Teaching 
Hours 

Number of Teachers 
Involved 

in Co-Teaching 

Number of
Co-

Teachings 

1 11 34 385 9 36 
2 11 35 385 17 67 
3 6 19 210 0 0 
4 7 19 245 6 31 
5 6 18 184 0 0 
7 13 35 455 17 70 

The proposed PSO algorithm as well as the proposed AFS algorithm is by nature stochastic. As a 

result, different computational results may be obtained in different runs. So, in order to demonstrate 

their efficiency, in Table 3 we present not only the best but also the worst and the average fitness 

achieved together with the respective standard deviation. The average execution time as well as the 

respective standard deviation is presented, too. In Table 4 the best performance of both proposed 

algorithms is compared with the best timetables created by the evolutionary algorithm (EA) presented 

in [25], the simulated annealing (SA) algorithm presented in [19], the hybrid PSO algorithm presented 

in [20] and the genetic algorithm selection perturbative hyper-heuristic (GASPHH) presented in [26]. 

The reason why we decided to present and compare the best timetables constructed by the proposed 

algorithms is that in [19,20,25,26] also the best timetables constructed are presented. Thus, in this way 

a fair comparison between all algorithms can be performed. Note that in order to compare two different 

timetables, we define one unit cost for any soft constraint violation among the three performance 

criteria (teachers’ teaching hours’ distribution, lessons’ hours’ distribution, and teachers’ gaps) [26]. 

All values presented in Tables 3 and 4 are computed after executing 100 Monte Carlo runs. For both 

algorithms the average fitness achieved is very close to the best fitness. Additionally, the respective 
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STD value is rather small. This demonstrates their efficiency and stability. Furthermore, the STD 

concerning the execution time of both algorithms is really small. This also demonstrates that both 

algorithms are very stable. 

Table 3. Experimental results of the proposed stochastic algorithms. 

Instance 

Proposed PSO Proposed AFS 

Fitness Execution Time Fitness Execution Time 

Best Worst Average STD 
Average 

(min) 
STD Best Worst Average STD 

Average 
(min) 

STD 

1 11 21 16 2.5 36.6 3.4 16 31 22 3.8 120.8 2.4 
2 18 28 22.1 2.5 47.8 0.8 21 34 28.6 3.7 147.2 1.1 
3 5 9 7.4 0.8 3.9 0.4 7 13 10.4 1.7 28.5 0.9 
4 5 13 8.8 2.2 13.2 0.3 9 23 14.5 3.2 59.4 2.6 
5 0 0 0 0 3 0.1 0 5 2.4 1.5 24 0.1 
7 23 49 35.8 6.8 57.9 0.4 32 88 56.1 14.1 168 3 

Table 4. Comparing the performance of both proposed algorithms with the algorithms 

presented in [19,20,25,26]. 

Instance Proposed PSO Proposed AFS EA [25] SA [19] 
Hybrid PSO 

[20] 
GASPHH [26]

1 11 16 70 29 15 60 
2 18 21 76 37 17 66 
3 5 7 20 8 7 17 
4 5 9 41 28 8 43 
5 0 0 10 3 0 15 
7 23 32 109 40 32 83 

In Table 4 the best results, which are the best results found until today for the respective instances, 

are written in bold. The proposed PSO algorithm appears to have the best performance among all other 

algorithms achieving the best results ever found for 5/6 instances of the Beligiannis data set. The 

proposed AFS algorithm has also very satisfactory performance, since it surmounts the heuristic 

algorithms presented in [19,25,26]. At this point we have to call to mind that the proposed AFS 

algorithm uses many user-defined parameters that affect the algorithm’s convergence and efficiency. 

As a result, it is still an open issue to investigate thoroughly the best set of parameter values for the 

proposed AFS approach which will assist it to achieve even better results. 

5. Conclusions 

In this contribution a comparative study of modern heuristics on the school timetabling problem is 

presented. Two new heuristic population based algorithms, a particle swarm optimization (PSO) and 

an artificial fish swarm (AFS) one, are introduced and applied to the school timetabling problem. In 

order to demonstrate their efficiency and good performance both algorithms have been applied to the 

Beligiannis school timetabling data set and their results are compared with the results of four other 

heuristic algorithms published in the respective literature. Experimental results showed that the 

proposed PSO algorithm achieves the best results ever found for 5/6 instances of the Beligiannis data 
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set. On the other hand, the proposed AFS algorithm, which comprises the first attempt to apply an AFS 

algorithm to the school timetabling problem in the literature, exhibits also very satisfactory results, 

since it overcomes three other heuristic approaches. This demonstrates that the AFS algorithm can be 

effectively applied to solve the school timetabling problem. The application of the proposed PSO 

algorithm to problems belonging to other timetabling or scheduling domains, as well as the 

investigation of the best set of parameter values for the proposed AFS approach, will be the main 

issues of our future work. 
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