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Abstract: This paper considers identifying the multiple input single output finite impulse
response (MISO-FIR) systems with unknown time delays and orders. Generally, parameters,
orders and time delays of an MISO system are separately identified from different algorithms.
In this paper, we aim to perform the model identification and time delay estimation
simultaneously from a limited number of observations. For an MISO-FIR system with many
inputs and unknown input time delays, the corresponding identification model contains a
large number of parameters, requiring a great number of observations for identification
and leading to a heavy computational burden. Inspired by the compressed sensing (CS)
recovery theory, a threshold orthogonal matching pursuit algorithm (TH-OMP) is presented
to simultaneously identify the parameters, the orders and the time delays of the MISO-FIR
systems. The proposed algorithm requires only a small number of sampled data compared to
the conventional identification methods, such as the least squares method. The effectiveness
of the proposed algorithm is verified by simulation results.
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1. Introduction

In many industry processes, time delay is an unavoidable behavior in their dynamical models.
For example, in a chemical industry, analyzers need a certain amount of time to process an analysis,
which is used as a part of the control loop [1]. Analyzing and designing a controller for a system with
time delays depend on an effective dynamical system model. System identification is an effective way
to build mathematical models of dynamical systems from observed input-output data. Conventional
identification methods, such as the least squares methods [2], the stochastic gradient methods [3] and the
maximum likelihood estimation methods [4], usually require a large number of sampled data and that
the model structures, including time delays, are a priori known [5,6]. However, this is not the case in
many situations in practice for which the time delays and systems orders have to be estimated together
with the parameters. Most of the process industries, such as distillation columns, heat exchangers and
reactors, can be modeled as multiple input multiple output (MIMO) or multiple input single output
(MISO) systems with long time delays [1]. For a multiple input single output finite impulse response
(MISO-FIR) system with many inputs and unknown input time delays, the parameterized model contains
a large number of parameters, requiring a great number of observations and a heavy computational
burden for identification. Furthermore, the measuring cost is an issue. Especially for chemical processes,
it will take a long time to get enough data because of the long analysis time. Therefore, it is a challenging
work to find new methods to identify the time delays and parameters of multivariable systems with less
computational burden using a small number of sampled data.

System models of practical interest, especially the control-oriented models, often require low order,
which implies that the systems contain only a few non-zero parameters. Because the time delays and
orders are unknown, we can parameterize such an MISO-FIR system by a high-dimensional parameter
vector, with only a few non-zero elements. These systems can be termed as sparse systems. On the
other hand, a sparse MISO-FIR system contains a long impulse response, but only a few terms are
non-zeros. The sparse systems are widely discussed in many fields [7–11]. For such sparse systems, the
identification objective is to estimate the sparse parameter vector and to read the time delays and orders
from the structure of the estimated parameter vector.

In this paper, we consider the identification of the sparse MISO-FIR systems by using the
compressed sensing (CS) recovery theory [12–15]. CS has been widely applied in signal processing
and communication systems, which enables the recovery of an unknown vector from a set of
measurements under the assumption that the signal is sparse and certain conditions on the measurement
matrices [16–19]. The identification of a sparse system can be viewed as a CS recovery problem. The
sparse recovery problem can be solved by the l1-norm convex relaxation. However, the l1 regularization
schemes are always complex, requiring heavy computational burdens [20–22]. The greedy methods have
speed advantages and are easily implemented. In this literature, a block orthogonal matching pursuit
(BOMP) algorithm has been applied to identify the determined linear time invariant (LTI) and linear
time variant (LTV) auto-regressive with external (ARX) models without disturbances [9]. In this paper,
we will consider identifying the parameters, orders and time delays of the MISO-FIR systems from a
small number of noisy measured data.
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Briefly, the structure of this paper is as follows. Section 2 gives the model description of MISO-FIR
systems and describes the identification problem. Section 3 presents a threshold orthogonal matching
pursuit (TH-OMP) algorithm based on the compressed sensing theory. Section 4 provides a simulation
example to show the effectiveness of the proposed algorithm. Finally, some concluding remarks are
given in Section 5.

2. Problem Description

Consider an MISO-FIR system with time delays:

y(t) =
r∑
i=1

z−diBi(z)ui(t) + v(t) (1)

where ui(t) is the i-th input, y(t) the output, di the time delay of the i-th input channel and v(t) a white
noise with zero mean and variance σ2, Bi(z), i = 1, 2, · · · , r are the polynomials in the unit backward
shift operator z−1 (i.e., z−1y(t) = y(t− 1)) and:

Bi(z) := bi1z
−1 + bi2z

−2 + · · ·+ binbiz
−nbi

Assume that y(t) = 0, u(t) = 0 and v(t) = 0 for t 6 0 and the orders nbi, the time delays di, as well
as the parameters bij are unknown. Thus, the identification goal is to estimate the unknown parameters
bij , orders nbi and the time delays di from the observations.

Define the information vector:

ϕ(t) := [u1(t− 1), · · · , u1(t− d1), u1(t− d1 − 1), · · · , u1(t− d1 − nb1), · · · , u1(t− l), · · · ,
ur(t− 1), · · · , ur(t− dr), ur(t− dr − 1), · · · , ur(t− dr − nbr), · · · , ur(t− l)]T ∈ RN

where l is the input maximum regression length. l must be chosen to capture all of the time delays and
the degrees of the polynomials Bi(z). Thus, l > max(di + nbi). The dimension of ϕ(t) is N = lr. The
corresponding parameter vector θ is:

θ := [0, · · · , 0, b11, · · · , b1nb1
, 0, · · · , 0, bi1, · · · , binbi , 0, · · · , 0, br1, · · · , brnbr , 0, · · · , 0]T ∈ RN

Then, Equation (1) can be written as:

y(t) = ϕT(t)θ + v(t) (2)

Because of the unknown orders and time delays, the parameter vector θ contains many zeros, but only
a few non-zeros. According to the CS theory, the parameter vector θ can be viewed as a sparse signal,
and the number of non-zero entries K =

∑r
i=1 nbi is the sparsity level of θ [8]. Let ‖θ‖0 denote the

number of non-zero entries in θ. Then, the identification problem can be described as:

θ̂ = arg min ‖θ‖0, s.t. ‖y −ϕT(t)θ‖2 < ε, (3)

where θ̂ is the estimate of θ and ε > 0 is the error tolerance.
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For m observations, define the stacked matrix and vectors as:

Φm :=


ϕT(1)

ϕT(2)
...

ϕT(m)

 ∈ Rm×N , ym :=


y(1)

y(2)
...

y(m)

 ∈ Rm, vm :=


v(1)

v(2)
...

v(m)

 ∈ Rm

Then, we have:
ym = Φmθ + vm (4)

If there are enough measurements, i.e., m � N , according to the least squares principle, we can get
the least squares estimate of θ,

θ̂LS = (ΦT
mΦm)−1ΦT

mym

However, from Equation (2), it is obvious thatN is a large number, especially for systems with a large
number of inputs. Therefore, it will take a lot of time and effort to get enough measurements. In order to
improve the identification efficiency, in this paper, we aim to identify the parameter vector θ using less
observations (K < m < N ) based on the CS recovery theory.

3. Identification Algorithm

The CS theory, which was introduced by Candès, Romberg and Tao [12,13] and Donoho [14], has
been widely used in signal processing. It indicates that an unknown signal vector can be recovered from
a small set of measurements under the assumptions that the signal vector is sparse and some conditions
on the measurement matrix. The identification problem can be viewed as a CS recovery problem in that
the parameter vector θ is sparse.

From Equation (4), we can see that the output vector ym can be written as a linear combination of the
columns of Φm plus the noise vector vm, i.e.,

ym = φ1θ1 + φ2θ2 + · · ·+ φiθi + · · ·+ φNθN + vm (5)

where θi is the i-th element of θ and φi is the i-th column of Φm. Because there are only K non-zero
parameters in θ, the main idea is to find the K non-zero items at the right-hand side of Equation (5).

In this paper, we propose a TH-OMP algorithm to do the identification. First, we give some notations.
Let k = 1, 2, · · · be the iterative number and λk be the solution support of the k-th iterative number;
Λk is a set composed of λi, i = 1, 2, · · · , k; rk denotes the residual of the k-th iterative number; ΦΛk

is the sub-information matrix composed by the k columns of Φm indexed by Λk. θ̂k is the parameter
estimation of the k-th iterative number. The TH-OMP algorithm is initialized as r0 = ym, Λ0 = ∅ and
θ̂Λ0 = 0. At the k-th iteration, minimizing the criteria function:

ε(i) = min‖rk−1 − φiθi‖2, i = 1, 2, · · · , N

with respect to θi yields:

θi =
φT
irk−1

‖θi‖2
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Plugging it back into ε(i), we have:

ε(i) = min
θi
‖φiθi − rk−1‖2

=

∥∥∥∥φT
irk−1

‖φi‖2
φi − rk−1

∥∥∥∥2

= ‖rk−1‖2 − 2
(φT

irk−1)2

‖φi‖2
+

(φT
irk−1)2

‖φi‖2

= ‖rk−1‖2 − (φT
irk−1)2

‖φi‖2

= ‖rk−1‖2 − (
1

‖φi‖
φT
irk−1)2 (6)

From the above equation, we can see that the quest for the smallest error is equivalent to the quest for
the largest inner product between the residual rk−1 and the normalized column vectors of Φm. Thus, the
k-th solution support can be obtained by:

λk = arg max
i=1,2,··· ,N

|〈rk−1,
φi
‖φi‖

〉| (7)

Update the support set Λk and the sub-information matrix ΦΛk by:

Λk := Λk−1 ∪ λk, ΦΛk := ΦΛk−1
∪ φλk (8)

The next step is to find the k-th provisional parameter estimate from the sub-information matrix ΦΛk

and measurement vector ym. Minimizing the cost function:

J(θΛk) = ‖ym −ΦΛkθΛk‖2 (9)

leads to the k-th parameter estimate:

θ̂Λk = (ΦT
Λk

ΦΛk)
−1ΦT

Λk
ym (10)

Then, the k-th residual can be computed by:

rk = ym −ΦΛk θ̂Λk (11)

If the system is noise free, then the residual will be zero after K iterations, and the non-zero
parameters, as well as their positions can be exactly determined. This is the so-called orthogonal
matching pursuit (OMP) algorithm. However, for systems disturbed by noises, the OMP algorithm
cannot give the sparsest solution, because the residual rK is non-zero after K iterations, and the iteration
continues. In order to solve this problem, an appropriate small threshold ε can be set to filter the
parameter estimate θ̂Λk . If |θ̂Λε| < ε, let θ̂Λε = 0, where θ̂Λε is the i-th element of θ̂Λk . The choice
of ε will be discussed in the simulation part. Denote θ̂Λkε as the parameter estimate after the filtering.
Then, the residual can be computed by:

rk = ym −ΦΛk θ̂Λkε (12)
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if ‖rk‖ < ε, then stop the iteration; otherwise, go to apply another iteration. If the iteration stops at k,
we can recover the parameter estimate θ̂ ∈ RN from θ̂Λkε ∈ Rk based on the support set Λk.

It is worth noting that taking the derivative of J(θΛk) with respect to θ̂Λk gives:

∂J(θ̂Λk)

∂θ̂Λk

=−ΦT
Λk

(ym −ΦΛk θ̂Λk)

= ΦT
Λk
rk = 0 (13)

The above equation shows that the residual rk is orthogonal to the sub-information matrix ΦΛk .
Therefore, it does not require computing the inner products of rk and the columns in ΦΛk during the
(k + 1)-th iteration. Modify Equation (7) as:

λk = arg max
i∈Ω\Λk−1

|〈rk−1,
φi
‖φi‖

〉|, Ω = {1, 2, · · · , N} (14)

Then, the computational burden can be reduced.
From the recovered parameter estimation θ̂, the orders and time delays of each input channel can

be estimated. The orders nbi can be determined by the number of elements of each non-zero block.
Then, the time delay estimates can be computed from the orders nbi and the input maximum regression
length l. It can be seen from Equation (2) that θ contains (r + 1) zero blocks. Denote the number of
zeros of each zero-block as ni, i = 1, 2, · · · , r + 1. Then, the time delay estimates can be computed by:

d̂1 = n1,

d̂i = ni − (l − d̂i−1 − nbi), i = 2, 3, · · · , r
(15)

The proposed TH-OMP algorithm can be implemented as the following steps.

1. Set the initial values: let k = 0, r0 = ym, Λ0 = ∅ and θ̂Λ0 = 0. Give the error tolerant ε.
2. Increment k by one; compute the solution support λk using Equation (14).
3. Update the support set Λk and the sub-information matrix ΦΛk using Equation (8).
4. Compute the parameter estimate θ̂Λk by using Equation (10).
5. Using the threshold ε to filter θ̂Λk to get θ̂Λkε .
6. Compute the residual using Equation (12). If ‖rk‖ < ε, stop the iteration; otherwise, go back to

Step 2 to apply another iteration.
7. Recover the parameter estimate θ̂ ∈ RN from θ̂Λkε ∈ Rk based on the support set Λk.
8. Read the orders nbi from θ̂ ∈ RN and estimate the time delays using Equation (15).

4. Simulation Example

Consider the steam water heat exchanger system in Figure 1, where the steam flow u1 and the water
flow u2 are two manipulated variables to control the water temperature y. The discrete input-output
representation of the process is expressed as the following equation.
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Figure 1. The steam water heat exchanger.

y(t) = z−d1B1(z)u1(t) + z−d2B2(z)u2(t) + v(t)

B1(z) = 0.95z−1 + 0.72z−2 + 0.40z−3,

B2(z) =−0.63z−1 − 0.47z−2 − 0.25z−3,

d1 = 42, d2 = 20

Let l = 50; then the parameter vector to be identified is:

θ= [042, 0.95, 0.72, 0.40,025,−0.63,−0.47,−0.25,027]T ∈ RN

It can be seen from the above equation that the dimension of the parameter vector θ is N = 100, but
only six of the parameters are non-zeros.

In the identification, the inputs {ui(t)}, i = 1, 2 are taken as independent persistent excitation
signal sequences with zero mean and unit variances and {v(t)} as white noise sequences with zero
mean and variance σ2 = 0.102. Let ε = 0.05, applying the proposed TH-OMP algorithm and the
least squares (LS) algorithm to estimate the system with m measurements. The parameter estimation
errors δ := (‖θ− θ̂‖)/‖θ‖ versus m are shown in Figure 2.

From Figure 2, we can see that under a limited dataset (m < 100), the parameter estimation error
of the TH-OMP algorithm approaches zero, and the estimation accuracy is much higher than that of the
LS algorithm.

Let m = 80; using the TH-OMP algorithm to estimate θ, the parameter estimation errors δ

versus iteration k are shown in Figure 3; the non-zero parameter estimates versus iteration k are
shown in Table 1 and Figure 4, where the dash dot lines are true parameters and the solid lines are
parameter estimates.



Algorithms 2015, 8 750

10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

       m

 
 
 
 
 
δ

LS

TH-OMP

Figure 2. The estimation error δ versus m measurements.
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Figure 3. The estimation error δ versus iteration k (m = 80, σ2 = 0.102).
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Table 1. The estimation error δ versus iteration k (m=80, σ2 = 0.102).

k b11 b12 b13 b21 b22 b23 δ(%)

1 1.0567 0.0000 0.0000 0.0000 0.0000 0.0000 77.8404
2 1.0056 0.7357 0.0000 0.0000 0.0000 0.0000 61.0813
3 1.0274 0.7349 0.0000 −0.6982 0.0000 0.0000 44.8210
4 0.9422 0.7635 0.0000 −0.7006 −0.4604 0.0000 31.8601
5 0.9748 0.7429 0.3734 −0.6551 −0.4605 0.0000 16.9639
6 0.9436 0.7041 0.3936 −0.6397 −0.4727 −0.2522 1.3977
7 0.9495 0.7071 0.3973 −0.6408 −0.4715 −0.2537 1.1650
8 0.9466 0.7127 0.3986 −0.6422 −0.4707 −0.2509 0.9755
9 0.9487 0.7120 0.4022 −0.6386 −0.4722 −0.2490 0.8137
10 0.9458 0.7129 0.3988 −0.6380 −0.4766 −0.2498 0.8841

True values 0.9500 0.7200 0.4000 −0.6300 −0.4700 −0.2500

After 10 iterations, the estimation error is δ = 0.8841%, and the estimated parameter vector is:

θ̂ε=0.05 = [042, 0.9472, 0.7105, 0.3921,025, 0.6246, 0.4751, 0.2524,027]T ∈ RN (16)

If we choose ε = 0.01, then we can get the estimated parameter vector as:

θ̂ε=0.01 = [04, 0.0217,025, 0.0303,011, 0.9458, 0.7129, 0.3988,025

0.6220, 0.4634, 0.2502,013,−0.0244,013]T ∈ RN

It is obvious that the parameter vector θ has only three zero blocks in this example. However, we
can see from the above equation that there exist three undesirable parameter estimates θ̂5, θ̂31 and θ̂87.
Moreover, the three parameter estimates are much smaller than other parameters. Therefore, according
to the structure of θ, the parameters θ̂5, θ̂31 and θ̂87 can be set to zeros. Then, the estimation result is the
same as the case when ε = 0.05. This implies that even if a too small ε is chosen, we can still obtain the
effective parameter estimates based on the model structures.

From Equations (15) and (16), we can obtain the orders nb1 = nb2 = 3 and get the time delay
estimates as:

d̂1 = 42, d̂2 = n2 − (l − d1 − nb1) = 25− (50− 42− 3) = 20 (17)

From Figures 2–4, Table 1 and Equations (16) and (17), we can conclude that the TH-OMP algorithm
converges faster than the LS algorithm, can achieve a high estimation accuracy by K iterations with
finite measurements (m < N ) and can effectively estimate the time delay of each channel.

5. Conclusions

This paper presents a TH-OMP algorithm for MISO-FIR systems with unknown orders and time
delays. The parameter estimates, orders and time delays can be simultaneously estimated from a small
number of observation data. The proposed method can be simply implemented and can reduce the
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measuring cost, as well as improve the identification efficiency. The simulation results are given to
demonstrate the performance of the proposed method.
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