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Abstract:

 Efficiency is generally the most important aspect to take into account when choosing an iterative method to approximate a solution of an equation, but is not the only aspect to consider in the iterative process. Another important aspect to consider is the accessibility of the iterative process, which shows the domain of starting points from which the iterative process converges to a solution of the equation. So, we consider a family of iterative processes with a higher efficiency index than Newton’s method. However, this family of proecsses presents problems of accessibility to the solution [image: there is no content]. From a local study of the convergence of this family, we perform an optimization study of the accessibility and obtain iterative processes with better accessibility than Newton’s method.
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1. Introduction

In general, the roots of a nonlinear equation



[image: there is no content]



(1)




cannot be expressed in a closed form and this problem is commonly carried out by applying iterative methods. So, starting from one or several initial approximations of a solution [image: there is no content] of Equation (1), a sequence [image: there is no content] of approximations is constructed so that it converges to [image: there is no content]. We can get the sequence [image: there is no content] in different ways, depending on the iterative method that is applied. The best-known iterative scheme is Newton’s method,


[image: there is no content]giveninΩ,xn+1=xn-[[image: there is no content](xn)]-1F(xn),n≥0



(2)




Observe that we need the operator F to be differentiable Fréchet in order to apply Newton’s method.

Efficiency is generally the most important aspect to take into account when choosing an iterative method to approximate a solution of Equation (1) (see [1,2,3,4]). The classic efficiency index, defined by Ostrowski in [5], provides a balance between the order of convergence ρ and the number of functional evaluations d: [image: there is no content]. However, it is interesting to note that if Equation (1) represents a system of n nonlinear equations, the computational cost of evaluating the operators F and [image: there is no content] is not similar, as it happens in the case of scalar equations. So, for one evaluation of F, n functional evaluations are required. Meanwhile, the evaluation of the associated jacobian matrix [image: there is no content] requires [image: there is no content] functional evaluations, so that the evaluations of F and [image: there is no content] cannot be considered in the same way. Therefore, this efficiency index must be modified to consider the number of functional evaluations in order for it to be a good efficiency measurement for an iterative process in the multivariate case.

Taking into account this extension of the efficiency index from the Chebyshev method with cubical convergence, Ezquerro and Hernández define in [6] a family of multipoint iterative processes with cubical convergence under the usual conditions required of the operator F. This family of iterative processes is given by



[image: there is no content]∈Ω,yn=xn-[image: there is no content]F(xn),[image: there is no content]=[[image: there is no content](xn)]-1zn=xn+p(yn-xn),p∈(0,1],xn+1=zn-1p2[image: there is no content](1-p2)(p-1)F(xn)+F(zn),n≥0



(3)




and has better index of efficiency than Newton’s method Equation (2). In this paper, we focus our attention on the analysis of the local convergence of sequence Equation (3) in Banach spaces under weak convergence conditions. In fact, we only consider conditions for the first derivative of the operator F, as in the case of the Newton method [7].
In any case, the efficiency index is not the only aspect to compare iterative processes. Another important aspect to take into account is the domain of accessibility associated to the iterative process, which is defined as the domain of starting points from which the iterative process converges to a solution of the equation. The location of starting approximations, from which the iterative methods converge to a solution of the equation, is a difficult problem to solve. This location is from the study of the convergence that is made of the iterative process. The analysis of the accessibility of an iterative process from the local study of the convergence is based on demanding conditions to the solution [image: there is no content], from certain conditions on the operator F, and provide the so-called ball of convergence of the iterative process, that shows the accessibility to [image: there is no content] from the initial approximation [image: there is no content] belonging to the ball. This study requires conditions on the operator F. As we indicate previously, family Equation (3) has higher efficiency index than the Newton method, but it presents problems of accessibility to the solution [image: there is no content] of Equation (1) if we consider a semilocal study of the convergence (see [6]).

The paper is organized as follows. In Section 2, a local convergence result is provided. In Section 3, from the previous local convergence result, we observe that the size of the ball of convergence of family Equation (3) depends on the parameter [image: there is no content] and, then, we do an optimization study. Moreover, we realize a comparative study from the point of view of the accessibility or, equivalently, from the ball of convergence with the Newton method. Finally, in the last section, a numerical test confirms the theoretical results obtained.



2. Local Convergence

As we indicated above, the local convergence results for iterative methods require conditions on the operator F and the solution [image: there is no content] of Equation (1). Note that a local result provides what we call ball of convergence and denote by B([image: there is no content],[image: there is no content]). From the value [image: there is no content], the ball of convergence gives information about the accessibility of the solution [image: there is no content].

An interesting local result for Newton’s method Equation (2) is given in [7] by Dennis and Schnabel, where the following conditions are required:


	[image: there is no content]

	Let [image: there is no content] be a solution of Equation (1) and exist [image: there is no content], so that B([image: there is no content],r)⊂Ω and the operator [[image: there is no content]([image: there is no content])]-1 exists with ∥[[image: there is no content]([image: there is no content])]-1∥≤β,



	[image: there is no content]

	∥[image: there is no content](x)-[image: there is no content](y)∥≤K∥x-y∥, [image: there is no content], for all [image: there is no content].





Now, our aim is to establish the local convergence study for family Equation (3), with cubical convergence (see [6]), from conditions [image: there is no content] and [image: there is no content]. So, we obtain a local convergence result in the same initial conditions that for the Newton method, which is a second order method.

Firstly, we provide two technical lemmas, where we obtain some results about the operator F and the sequences [image: there is no content], [image: there is no content] and [image: there is no content], which define family Equation (3).


Lemma 1. 
Let us suppose that conditions [image: there is no content]–[image: there is no content]are satisfied. Let us assume that exists S, a positive real number, with [image: there is no content]. If [image: there is no content], then, for all x∈B([image: there is no content],S), the operator [[image: there is no content](x)]-1exists and



∥[[image: there is no content](x)]-1∥≤β1-βKS











Proof. 
Taking into account the Banach lemma on invertible operators and conditions [image: there is no content]–[image: there is no content], the proof follows. □




Lemma 2. 
Fixed [image: there is no content], we assume that xn,zn∈B([image: there is no content],r)and there exists [image: there is no content]. Then, we obtain the following decompositions



[image: there is no content]yn-[image: there is no content]=[image: there is no content]∫01[image: there is no content](xn+τ([image: there is no content]-xn))-[image: there is no content](xn)dτ([image: there is no content]-xn),[image: there is no content]zn-[image: there is no content]=(p-1)([image: there is no content]-xn)+p[image: there is no content]∫01[image: there is no content](xn+τ([image: there is no content]-xn))-[image: there is no content](xn)dτ([image: there is no content]-xn),[image: there is no content]xn+1-[image: there is no content]=1p2[image: there is no content]∫01[image: there is no content](zn+τ([image: there is no content]-zn))-[image: there is no content](xn)dτ([image: there is no content]-zn)+p2-1p2[image: there is no content]∫01[image: there is no content](xn+τ([image: there is no content]-xn))-[image: there is no content](xn)dτ([image: there is no content]-xn)











Proof. 
From the Taylor series of F([image: there is no content]), [image: there is no content] and [image: there is no content] are easily obtained. Now, by considering iterative scheme Equation (3), it follows [image: there is no content]:



xn+1-[image: there is no content]=zn-1p2[image: there is no content](p-1)(1-p2)F(xn)+F(zn)-[image: there is no content]=[image: there is no content]-[image: there is no content](xn)([image: there is no content]-zn)-1p2F(zn)-(p-1)(1-p2)p2F(xn)=[image: there is no content]1p2(zn-[image: there is no content])+p2-1p2[image: there is no content](xn)(zn-[image: there is no content])+1p2F([image: there is no content])-1p2F(zn)-(p-1)(1-p2)p2F(xn)=[image: there is no content]1p2∫zn[image: there is no content][image: there is no content](ξ)-[image: there is no content](xn)dξ+p2-1p2[image: there is no content](xn)(xn-p[image: there is no content]F(xn)-[image: there is no content])-(p-1)(1-p2)p2F(xn)=[image: there is no content]1p2∫zn[image: there is no content][image: there is no content](ξ)-[image: there is no content](xn)dξ+p2-1p2F([image: there is no content])-p2-1p2F(xn)-(p2-1)p2[image: there is no content](xn)([image: there is no content]-xn)=[image: there is no content]1p2∫zn[image: there is no content][image: there is no content](ξ)-[image: there is no content](xn)dξ+p2-1p2∫xn[image: there is no content][image: there is no content](ξ)-[image: there is no content](xn)dξ








□


Now, we are able to obtain a result of local convergence to family Equation (3).


Theorem 1. 
Let [image: there is no content]be a nonlinear continuously differentiable operator on a non-empty open convex domain Ω of a Banach space X with values in a Banach space Y. Suppose that conditions [image: there is no content]and [image: there is no content]are satisfied. Then, fixed [image: there is no content], there exists [image: there is no content]>0, such that the sequence [image: there is no content], given by the iterative process of family Equation (3), corresponding to the value of p prefixed, is well-defined and converges to a solution [image: there is no content]of the equation [image: there is no content], from every point [image: there is no content]∈B([image: there is no content],[image: there is no content]).




Proof. 
Firstly, fixed [image: there is no content], we define two auxiliary scalar functions:



f(t)=1-p+pt2andg(t)=t2p2f(t)2+2f(t)+1-p2








with [image: there is no content] and [image: there is no content], which are strictly increasing in [image: there is no content].


Secondly, let [image: there is no content]<min{r,R}, where [image: there is no content] and [image: there is no content] is the positive real root of the equation [image: there is no content]. As [image: there is no content]∈B([image: there is no content],[image: there is no content]), with [image: there is no content]<r and βK[image: there is no content]<βKR<1, then by Lemma 1 the operator Γ0=[[image: there is no content]([image: there is no content])]-1 exists and is such that



∥Γ0∥<β1-βK[image: there is no content]








So, [image: there is no content] is well-defined and, from Lemma 2 [image: there is no content], we obtain



∥[image: there is no content]-[image: there is no content]∥<δ2∥[image: there is no content]-[image: there is no content]∥








where δ=βK[image: there is no content]1-βK[image: there is no content].
As [image: there is no content]<R, then δ<βKR1-βKR=[image: there is no content]. On the other hand, taking into account that [image: there is no content] and g([image: there is no content])=1, it follows that [image: there is no content] and then ∥[image: there is no content]-[image: there is no content]∥<δ2∥[image: there is no content]-[image: there is no content]∥<∥[image: there is no content]-[image: there is no content]∥. Therefore [image: there is no content]∈B([image: there is no content][image: there is no content]).

Moreover, [image: there is no content] is well-defined and [image: there is no content]∈B([image: there is no content],[image: there is no content]), since, from item [image: there is no content] of Lemma 2, it follows



∥[image: there is no content]-[image: there is no content]∥<1-p+pδ2∥[image: there is no content]-[image: there is no content]∥<∥[image: there is no content]-[image: there is no content]∥








as a consequence of [image: there is no content].
Furthermore, [image: there is no content] is well-defined and, from item [image: there is no content] of Lemma 2, we obtain that [image: there is no content]∈B([image: there is no content],[image: there is no content]), since



∥[image: there is no content]-[image: there is no content]∥⩽1p2∥Γ0∥∫01∥[image: there is no content]([image: there is no content]+τ([image: there is no content]-[image: there is no content]))-[image: there is no content]([image: there is no content])∥dτ∥[image: there is no content]-[image: there is no content]∥+(1-p2)∫01∥[image: there is no content]([image: there is no content]+τ([image: there is no content]-[image: there is no content]))-[image: there is no content]([image: there is no content])∥dτ∥[image: there is no content]-[image: there is no content]∥<1p2δ2f(δ)2+δf(δ)+(1-p2)δ2∥[image: there is no content]-[image: there is no content]∥=g(δ)∥[image: there is no content]-[image: there is no content]∥








Now, as g([image: there is no content])=1 and δ<[image: there is no content], it follows that [image: there is no content] and then ∥[image: there is no content]-[image: there is no content]∥<g(δ)∥[image: there is no content]-[image: there is no content]∥<∥[image: there is no content]-[image: there is no content]∥. Therefore [image: there is no content]∈B([image: there is no content][image: there is no content]).

Following now an inductive procedure on [image: there is no content], we have:



∥yn-[image: there is no content]∥<δ2∥xn-[image: there is no content]∥,∥zn-[image: there is no content]∥<f(δ)∥xn-[image: there is no content]∥,∥xn+1-[image: there is no content]∥<g(δ)∥xn-[image: there is no content]∥








Therefore, ∥xn-[image: there is no content]∥<g(δ)n∥[image: there is no content]-[image: there is no content]∥, for all [image: there is no content], and consequently limn→+∞xn=[image: there is no content]. □

As we have just seen in the previous result, the equation [image: there is no content] determines the value of [image: there is no content] which allows us to obtain the radius of the ball of convergence.

Concerning the uniqueness of the solution [image: there is no content], we have the following result.


Theorem 2. 
Under the conditions [image: there is no content], the limit point [image: there is no content]is the only solution of Equation (1) in B([image: there is no content],2βK)∩Ω.




Proof. 
Let y*∈B([image: there is no content],2βK)∩Ω be such that [image: there is no content]. If J=∫01[image: there is no content](y*+t([image: there is no content]-y*))dt is invertible, it follows that [image: there is no content]=y*, since J(y*-[image: there is no content])=F(y*)-F([image: there is no content]). By the Banach lemma, we have that J is invertible, since



∥I-[[image: there is no content]([image: there is no content])]-1J∥≤∥[[image: there is no content]([image: there is no content])]-1∥∥[image: there is no content]([image: there is no content])-J∥≤βK2∥[image: there is no content]-y*∥<1










The proof is complete. □



3. On the Accessibility

A procedure to determine the accessibility of an iterative process to [image: there is no content] is to estimate the ball of convergence of the method from a local convergence result. In this way, from the local convergence result obtained in the previous section, we study the accessibility of family Equation (3). To start the comparative study of accessibility of the different iterative processes of family Equation (3), we can see in Figure 1 that the function [image: there is no content] is strictly increasing on [image: there is no content], tends to infinite and [image: there is no content]. Therefore, for each fixed p, there is a positive real root [image: there is no content] of the equation [image: there is no content]. In addition, as we can see in Table 1, the value of this root can be increased by increasing the value of p. So, we can conclude that the accessibility of the iterative processes of family Equation (3) increase by increasing the value of p.

Figure 1. Graph of the function g(t)-1 for different values of p.



[image: Algorithms 08 01121 g001 1024]





Table 1. Positive real roots of the equation [image: there is no content] and the values of R for different values of p in Equation (3).


	p
	[image: there is no content]
	R





	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]



	[image: there is no content]
	[image: there is no content].00916…
	[image: there is no content]



	[image: there is no content]
	[image: there is no content].23607…
	[image: there is no content]










On the other hand, we want to compare the accessibility of the iterative processes of family Equation (3) with that of the Newton method. For this, we consider the result of convergence obtained by Dennis and Schnabel in [7]. They prove that under conditions [image: there is no content] and [image: there is no content], for any starting point belonging to B([image: there is no content],RN˜), where [image: there is no content] and [image: there is no content], the Newton method is convergent. As the radii of the balls of convergence of family Equation (3) and the Newton method are given under conditions [image: there is no content] and [image: there is no content], it is clear that the radius of the ball of convergence of the Newton method is larger than that of family Equation (3), for [image: there is no content], while for [image: there is no content], the iterative processes of family Equation (3) have improved accessibility to the Newton method, coinciding both for [image: there is no content] (see Table 1). Therefore, we have obtained, for [image: there is no content], iterative processes with better accessibility and efficiency than the Newton method.





4. Application

Next, we illustrate the previous result with the following example given in [7]. We choose the max-norm.

Let [image: there is no content] be defined as [image: there is no content]. It is obvious that [image: there is no content]=(0,0,0) is a solution of the system.

From F, we have



[image: there is no content](x,y,z)=10002y+1000ez








and [image: there is no content]([image: there is no content]) is the identity matrix [image: there is no content]. So, ∥[image: there is no content]([image: there is no content])-1∥=1 and [image: there is no content]. On the other hand, there exists [image: there is no content], such that B(0,r)={w∈R3:∥w∥<1}⊂R3, and it is easy to prove that


∥[image: there is no content](x,y,z)-[image: there is no content](u,v,w)∥=max{2|y-v|,|ez-ew|}≤3∥(x,y,z)-(u,v,w)∥








in [image: there is no content]. Therefore, [image: there is no content] and Newton’s method is convergent from any starting point belonging to B([image: there is no content],0.166667…). However, from Theorem 1 and once fixed [image: there is no content] in family Equation (3), this iterative process is convergent from any starting point belonging to B([image: there is no content],0.184262…).
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