
Algorithms 2015, 8, 982-998; doi:10.3390/a8040982
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Some Matrix Iterations for Computing Generalized Inverses and
Balancing Chemical Equations
Farahnaz Soleimani 1,*, Predrag S. Stanimirović 2 and Fazlollah Soleymani 3

1 Department of Chemistry, Roudehen Branch, Islamic Azad University, 39731 Roudehen, Iran
2 Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia;

E-Mail: pecko@pmf.ni.ac.rs
3 Department of Applied Mathematics, Ferdowsi University of Mashhad, 91779 Mashhad, Iran;

E-Mail: fazlollah.soleymani@gmail.com

* Author to whom correspondence should be addressed; E-Mail: fz_soleimani@yahoo.com;
Tel.: +98-912-348-2263.

Academic Editors: Alicia Cordero, Juan R. Torregrosa and Francisco I. Chicharro

Received: 25 June 2015 / Accepted: 26 October 2015 / Published: 3 November 2015

Abstract: An application of iterative methods for computing the Moore–Penrose inverse in
balancing chemical equations is considered. With the aim to illustrate proposed algorithms,
an improved high order hyper-power matrix iterative method for computing generalized
inverses is introduced and applied. The improvements of the hyper-power iterative scheme
are based on its proper factorization, as well as on the possibility to accelerate the iterations in
the initial phase of the convergence. Although the effectiveness of our approach is confirmed
on the basis of the theoretical point of view, some numerical comparisons in balancing
chemical equations, as well as on randomly-generated matrices are furnished.

Keywords: generalized inverses; balancing chemical equations; hyper-power method; order
of convergence; matrix inverse

1. Introduction

A chemical equation is only a symbolic representation of a chemical reaction and represents an
expression of atoms, elements, compounds or ions. Such expressions are generated based on balancing
through reactant or product coefficients, as well as through reactant or product molar masses [1].

Algorithms 2015, 8 983

In fact, equilibrating the equations that represent the stoichiometry of a reacting system is a matter
of mathematics, since it can be reduced to the problem of solving homogeneous linear systems.

Balancing chemical equations is an important application of generalized inverses. To discuss
further, the reflexive g-inverse of a matrix has been successfully used in solving a general problem
of balancing chemical equations (see [2,3]). Continuing in the same direction, Krishnamurthy in [4]
gave a mathematical method for balancing chemical equations founded by virtue of a generalized
matrix inverse. The method used in [4] is based on the exact computation of reflexive generalized
inverses by means of elementary matrix transformations and the finite-field residue arithmetic, as it was
described in [5].

It is well known that the symbolic data processing, including both rational arithmetic and multiple
modulus residue arithmetic, are time consuming, both for the implementation and for execution.
On the other hand, the finite-field exact arithmetic is inapplicable to chemical reactions, which include
atoms with fractional and/or integer oxidation numbers. This hard class of chemical reactions is
investigated in [6].

Additionally, the balancing chemical equations problem can be readily resolved by computer algebra
software, as was discussed in [7]. The approach used in [7] is based on the usage of the Gaussian
elimination (also known as the Gauss–Jordan algorithm), while the approach that is exploited in [2] is
based on singular value decomposition (SVD). On the other hand, it is widely known that Gaussian
elimination, as well as SVD require a large amount of numerical operations [8]. Furthermore, small
pivots that could appear in Gaussian elimination can lead to large multipliers [9], which can sometimes
lead to the divergence of numerical algorithms. Two methods of balancing chemical equations,
introduced in [10], are based on integer linear programming and integer nonlinear programming models,
respectively. Notice that the linear Diophantine matrix method was proposed in [11]. The method is
applicable in cases when the reaction matrices lead to infinite stoichiometrically-independent solutions.

In the present paper, we consider the possibility of applying a new higher order iterative
method for computing the Moore–Penrose inverse in the problem of balancing chemical equations.
In general, our current research represents the first attempt to apply iterative methods in balancing
chemical reactions.

A rapid numerical algorithm for computing matrix-generalized inverses with a prescribed range and
null space is developed in order to implement this global idea. The method is based on an appropriate
modification of the hyper-power iterative method. Furthermore, some techniques for the acceleration of
the method in the initial phase of its convergence is discussed. We also try to show the applicability
of proposed iterative schemes in balancing chemical equations. Before a more detailed discussion,
we briefly review some of the important backgrounds incorporated in our work.

The outer inverse with prescribed range T and null space S of a matrix A ∈ Cm×n
r , denoted by A(2)

T,S ,
satisfies the second Penrose matrix equation XAX = X and two additional properties: R(X) = T

and N (X) = S. The significance of these inverses is reflected primarily in the fact that the most
important generalized inverses are particular cases of outer inverses with a prescribed range and null
space. For example, the Moore–Penrose inverse A†, the weighted Moore–Penrose inverse A†M,N , the

Algorithms 2015, 8 984

Drazin inverse AD and the group inverse A# can be derived by means of the appropriate choices of
subspaces T and S in what follows:

A† = A
(2)
R(A∗),N (A∗), A†M,N = A

(2)

R(A]),N (A])

AD = A
(2)

R(Ak),N (Ak)
, k ≥ ind(A), A# = A

(2)
R(A),N (A), ind(A) = 1

(1)

wherein A] = MAN−1 and ind(A) denotes the index of a square matrix A (see, e.g., [12]).
Although there are many approaches to calculate these inverses by means of direct methods,

an alternative and very important approach is to use iterative methods. Among many such
matrix iterative methods, the hyper-power iterative family has been introduced and investigated
(see, for example, [13–15]). The hyper-power iteration of the order p is defined by the following scheme
(see, for example, [13]):

Xk+1 = Xk(I +Rk + · · ·+Rp−1
k) = Xk

p−1∑
i=0

Ri
k, Rk = I − AXk (2)

The iteration Equation (2) requires p matrix-matrix multiplications (from now on denoted by mmm)
to achieve the p-th order of convergence. The adoption p = 2 yields to the Schulz matrix iteration,
originated in [16],

Xk+1 = Xk(2I − AXk) (3)

with the second rate of convergence. Further, choice p = 3 gives the cubically-convergent method of
Chebyshev [17], defined as follows:

Xk+1 = Xk(3I − AXk(3I − AXk)) (4)

For more details about the background of iterative methods for computing generalized inverses,
please refer to [18].

The main motivation of the paper [19] was the observation that the inverse of the reaction matrix
cannot always be obtained. For this purpose, the author used an approach based on row-reduced echelon
forms of both the reaction matrix and its transpose. Since the Moore–Penrose inverse always exists,
replacement of the ordinary inverse by the corresponding pseudoinverse resolves the drawback that the
inverse of the reaction matrix does not always exist. Furthermore, two successive transformations into
the corresponding row-reduced echelon forms are time-consuming and badly-conditioned numerical
processes, again based on Gaussian elimination. Our intention is to avoid the above-mentioned
drawbacks that appear in previously-used approaches.

Here, we decide to develop an application of the Schulz-type methods. The motivation is based on
the following advantages arising from the use of these methods. Firstly, they are totally applicable on
sparse matrices possessing sparse inverses. Secondly, the Schulz-type methods are useful for providing
approximate inverse preconditions. Thirdly, such schemes are parallelizable, while Gaussian elimination
with partial pivoting is not suitable for the parallelism.

It is worth mentioning that an application of iterative methods in finding exact solutions that involve
integers or rational entries requires an additional transformation of the solution and utilization of tools
for symbolic data processing. To this end, we used the programming package Mathematica.

Algorithms 2015, 8 985

The rest of this paper is organized as follows. A new formulation of a very high order method
is presented in Section 2. The method is fast and economical at the same time, which is confirmed
by the fact that it attains a very high rate of convergence by using a relatively small number of
mmm. Acceleration of the convergence via scaling the initial iterates is discussed, and some novel
approaches in this trend are given in the same section. An application of iterative methods in balancing
chemical equations is considered in Section 3. A comparison of numerical results obtained by applying
the introduced method is shown against the results defined by using several similar methods. Some
numerical experiments concerning the application of the new iterations in balancing chemical equations
are presented in Section 4. Finally, some concluding remarks are drawn in the last section.

2. An Efficient Method and Its Acceleration

A Schulz-type method of high order p = 31 with two improvements is derived and chosen as one of
the options for balancing chemical equations. The first improvement is based on a proper factorization,
which reduces the number of mmm required in each cycle. The second straightening is based on a proper
accelerating of initial iterations.

Toward this goal, we consider Equation (2) in the case p = 31 as follows:

Xk+1 = Xk

30∑
i=0

Ri
k, Rk = I − AXk (5)

In its original form, the hyper-power iteration Equation (5) is of the order 31 and requires 31
mmm. It is necessary to remark that a kind of effectiveness of a computational iterative (fixed
point-type) method can be estimated by the real number (called the computational efficiency index)
EI = p

1
θ , wherein θ and p stand for the whole computational cost and the rate of convergence per

cycle, respectively. Here, the most important burden and cost per cycle is the number of matrix-matrix
products.

Clearly, in Equation (5), this proportion between the order of convergence and the needed number of
mmm is not suitable, since its efficiency index:

EI = 31
1
31 ≈ 1.1171 (6)

is relatively small. This shows that Equation (5) is not a useful iterative method. To improve the
applicability of Equation (5) and, so, to derive a fast matrix iteration with a reduced number of mmm,
i.e., to obtain an efficient method, we keep going as in the following subsection.

2.1. An Efficient Method

We rewrite Equation (5) as:

Xk+1 = Xk(I +Rk(I +Rk)(I −Rk +R2
k)(I +Rk +R2

k)(I −Rk +R2
k −R3

k +R4
k)

× (I +Rk +R2
k +R3

k +R4
k)(I −Rk +R3

k −R4
k +R5

k −R7
k +R8

k)

× (I +Rk −R3
k −R4

k −R5
k +R7

k +R8
k))

(7)

Algorithms 2015, 8 986

Subsequently, Equation (7) results in the following formulation of Equation (5):

Xk+1 = Xk

(
I + (Rk +R2

k +R3
k +R4

k +R5
k +R6

k)
(
I +R6

k +R12
k +R18

k +R24
k

))
(8)

Now, we could deduce our final fast matrix iteration by simplifying Equation (8) more:

Xk+1 = Xk

(
I + (Rk +R2

k)(I +R2
k +R4

k)
(
I + (R2

k +R8
k)(R

4
k +R16

k)
))

(9)

where only nine mmm are required. Therefore, the efficiency index of the proposed fast iterative
method becomes:

EI = 31
1
9 ≈ 1.4645 (10)

The efficiency index 1.4645 of Equation (9) is higher than the efficiency index 1.4142 of Equation (3),
higher than the efficiency index 1.4422 of Equation (4) and finally higher than the efficiency index 1.4592
of the 30th order method proposed recently by Sharifi et al. [20].

At this point, it would be useful to provide the following theorem regarding the convergence behavior
of Equation (9).

Theorem 1. Let A ∈ Cm×n
r be a given matrix of rank r and G ∈ Cn×m

s be a given matrix of
rank 0 < s ≤ r, which satisfy rank(GA) = rank(G). Then, the sequence {Xk}k=∞k=0 generated by
the iterative method Equation (9) converges to A(2)

R(G),N(G) with 31st-order if the initial approximation
X0 = αG satisfies:

‖F0‖ = ‖AA(2)
T,S − AX0‖ < 1 (11)

Proof. The proof of this theorem would be similar to the ones in [21]. Hence, we skip it over and just
include the following error bound:

‖Ek+1‖ ≤ ‖A(2)
R(G),N(G)‖ ‖A‖

31 ‖Ek‖31 (12)

wherein Ek = A
(2)
R(G),N(G) −Xk.

The derived iterative method is very fast and effective, in contrast to the existing iterative Schulz-type
methods of the same type. However, as was pointed out by Soleimani et al. [22], such iterative methods
are slow at the beginning of the iterative process, and the real convergence rate cannot be observed. An
idea to remedy this disadvantage is to apply a multiple root-finding algorithm on the matrix equation
F (X) = X−1−A = 0 and to try to accelerate the hyper-power method in its initial iterations. Such a
discussion about a scaled version of the hyper-power method is the main aim of the next subsection.

2.2. Accelerating the Initial Phase

Another useful motivation of the present paper is processed here. The iterative scheme:

Xk+1 = Xk ((β + 1)I − βAXk) , 1 ≤ β ≤ 2 (13)

was applied in [22] to achieve the convergence phase in the main (modified Householder) method much
more rapidly and to accelerate the beginning of the process. In the second iteration phase, it is sufficient

Algorithms 2015, 8 987

to apply the introduced fast and efficient modified Householder method, which then reaches its own full
speed of convergence [22].

In the same vein, the iterative expression Equation (13) can be rewritten in the following equivalent,
but more practical form:

Xk+1 = Xk

(
(1− β)I + β

1∑
i=0

Ri
k

)
, Rk = I − AXk, 1 ≤ β ≤ 2 (14)

One can now observe that Equation (14) is the particular case (p = 2) of the following new scheme:

Xk+1 = Xk

(
I + β

(
(p− 1)I +

p−1∑
i=1

(−1)i
(

p

i+ 1

)
(AXk)

i

))

= Xk

(
(1− β)I + β

(
p−1∑
i=0

(−1)i
(

p

i+ 1

)
(AXk)

i

))

= Xk

(
(1− β)I + β

p−1∑
i=0

Ri
k

)
, Rk = I − AXk, 1 ≤ β ≤ 2

(15)

Therefore, Equation (15) can be considered as an important acceleration of the Schulz-type method
Equation (2) in the initial phase, before the convergence rate is practically achievable. We note that such
accelerations are useful for large matrices, whereas the iterative methods require too much iterations to
converge. Particularly, by following Equation (15), one can immediately notice that the accelerating in
the initial phase of iteration Equation (9) is of the form:

Xk+1 = Xk

(
(1− β)I + β

(
I + (Rk +R2

k)(I +R2
k +R4

k)
(
I + (R2

k +R8
k)(R

4
k +R16

k)
)))

(16)

Remark 1. The particular choice β = 1 in Equation (15) reduces these iterations to the usual
hyper-power family of the iterative methods possessing the order p ≥ 2:

Xk+1 = Xk

(
pI −

(
p

2

)
AXk + · · ·+ (−1)p−1

(
p

p

)
(AXk)

p−1
)

= Xk

p−1∑
i=0

Ri
k, Rk = I − AXk

(17)

The choice p = 2 in Equation (15) leads to the scaled Schulz matrix iteration considered recently
in [23], and the choice p = 2, β = 1 produces the original Schulz matrix iteration, originated in [12].

Finally, a hybrid algorithm may be written now by incorporating Equations (9) and (16) as follows.

Algorithm 1 The new hybrid method for computing generalized inverses.

1: The input is given X0 ∈ Cn×m.

2: Use Equation (16) until ‖Xl+1 −Xl‖ < δ (for an inner loop counter l or ε < δ).
3: set X0 = Xl

4: for k = 0, 1, . . . until convergence (‖Xk+1−Xk‖ < ε), use Equation (9) to converge with high order.
5: end for

Algorithms 2015, 8 988

Instead of the hybrid Algorithm 1, based on the usage of Equation (16) in the initial phase and
Equation (9) in the final stage, our third result here is to define a unique iterative method, which can
be derived by applying variable acceleration parameter β = 1 + βk, 0 ≤ βk ≤ 1. This approach yields
scaled hyper-power iterations of the general form:

X0 = αG

Xk+1 = Xk

(
−βkI + (1 + βk)

p−1∑
i=0

Ri
k

)
, 0 ≤ βk ≤ 1, k ≥ 0

= Xk

(
I + (1 + βk)

p−1∑
i=1

Ri
k

) (18)

where the initial approximation X0 = αG is chosen according to Equation (11).
Furthermore, it is possible to propose various modifications of βk in a manner that guarantees

1 + βk → 1. For example:

β0 = 1, βk+1 =
βk
2
, k ≥ 0 (19)

3. Balancing Chemical Equations Using Iterations

In accordance with the intention that was motivated in the first section, in this section, we investigate
the applicability of some iterations from the hyper-power family in balancing chemical equations. It is
shown that the iterative methods can be applied successfully without any limitations.

It is assumed that a chemical system is modeled by a single reaction of the general form
(see, for example, [2]):

r∑
j=1

xj

m∏
i=1

Ψi
aij
→

r+s∑
j=r+1

xj

m∏
i=1

Ωi
bij

(20)

In Equation (20), xj, j = 1, . . . , r (resp. xj, j = r+ 1, . . . , r+ s) are unknown rational coefficients of
the reactants (resp. the products), Ψi,Ωi, i = 1, . . . ,m are chemical elements in reactants and products,
respectively, and aij, i = 1, . . . ,m, j = 1, . . . , r and bij, i = 1, . . . ,m, j = r + 1, . . . , r + s are the
numbers of atoms Ψi and Ωi, respectively, in the j-th molecule.

3.1. Balancing Chemical Equations Using Iterative Methods

The coefficients xi are integers, rational or real numbers, which should be determined on the basis
of three basic principles: (1) the law of conservation of mass; (2) the law of conservation of atoms;
(3) the time-independence of Equation (20), an assumption usually valid for stable/non-sensitive
reactions. Let there be m distinct atoms involved in the chemical reaction Equation (20) and n = r + s

distinct reactants and products. It is necessary to form an m × n matrix A, called the reaction matrix,
whose columns represent the reactants and products and the rows represent the distinct atoms in the
chemical reaction. More precisely, the (i, j)-th element of A, denoted by ai,j , represents the number of
atoms of type i in each compound/element (reactant or product). An arbitrary element ai,j is positive or

Algorithms 2015, 8 989

negative according to whether it corresponds to a reactant or a product. Hence, the balancing chemical
equation problem can be formulated as the homogeneous matrix equation:

Ax = 0 (21)

with respect to the unknown vector x ∈ Rn, where A ∈ Rm×n denotes the reaction matrix and 0 denotes
the null column vector of the order m. In this way, an arbitrary chemical reaction can be formulated as a
matrix equation.

We would like to use the symbolic and numerical possibilities of the Mathematica computer algebra
system in conjunction with the above-defined iterative method(s) for computing generalized inverses to
automatize the chemical reactions balancing process.

The general solution of the balancing problem in the matrix form Equation (21) is given by:

s =
(
I − A†A

)
c (22)

where c is the arbitrarily-selected n-dimensional vector. Let us assume that the approximation of A†

generated by an arbitrary iterative method is given by X := Xk+1.
If the iterative method for computingX is performed in the floating point arithmetic, it is necessary to

perform a transition from the solution whose coordinates are real numbers into an exact (integer and/or
rational) solution. Thus, the iterative approach in balancing chemical equations assumes three general
algorithmic steps, as is described in Algorithm 2.

Algorithm 2 General algorithm for balancing chemical equations by an iterative solver.

1: Apply (for example) Algorithm 1 and compute the approximation X := Xk+1 of A†.
2: Compute the vector s using Equation (22).
3: Transform real numbers included in s into an exact solution.

A clear observation about Algorithms 2 is the following:

- Steps 1 and 2 require usage of real arithmetic (with very high precision);
- Step 3 requires usage of symbolic processing and exact arithmetic capabilities to deal with

rational numbers.

As a result, in order to apply iterative methods to the problem of balancing chemical equations, it
is necessary to use a software that meets two diametrically-opposite criteria: the ability to carry out
numerical calculations (with very high precision) and the ability to apply the exact arithmetic and
symbolic calculations. The programming language Mathematica possesses both of these properties.
More details about this programming language can be found in [24].

The following (sample) Mathematica code can be used to determine the exact solution using real
values contained in the vector s (defined in Equation (22)).

Id = IdentityMatrix[n]; s = (Id - X.A).ConstantArray[1, n];

s = Rationalize[s, 10^(-300)]; c = s*LCM @@ Denominator /@ s;

(* Multiply s by the Least Common Multiple of denominators in s *)

s = c/Min @@ Numerator /@ c

(* Divide c by the Minimum of numerators in c *)

Algorithms 2015, 8 990

The standard Mathematica function Rationalize[x,dx] yields the rational number with the
smallest denominator within a given tolerance dx of x. Sometimes, to avoid the influence of round-off
errors and possible errors caused by the usage of the function Rationalize, it is necessary to perform
iterative steps with a very high precision.

An improvement of the vector s can be attained as follows. It is possible
to propose an amplification of the vector s =

(
I − A†A

)
c, where c is an

n-dimensional column vector. The improvement can be obtained using
s =

(
I − A†A

) ((
I − A†A

)
c
)
. In the practical implementation, it is necessary to replace the

expression s = (Id - X.A).ConstantArray[1, n] by s = (Id - X.A).((Id -

X.A).ConstantArray[1, n]).

This replacement can be explained by the fact that A(I − A†A)s is closer to the zero vector zero
than As.

3.2. Balancing Chemical Equations in Symbolic Form

As was explained in [6], balancing ℵ chemical reactions that possess atoms with fractional oxidation
numbers and non-unique coefficients is an extremely hard problem in chemistry. The case when the
system Equation (21) is not uniquely determined can be resolved using the Mathematica function
Reduce. If a ℵ chemical reaction includes n reaction molecules and m reaction elements, then the
reaction matrix A is of the orderm×n. In the case n > m, the reaction has

(
n
m

)
general solutions. All of

them can be found applying the following expression:

Reduce[A.{{x1}, {x2}, ..., {xn}} == {0, 0,...,0},{xk1, xk2,...,xkm}]

where the zero vector in the right-hand side is of the length m and {xk1, xk2, ..., xkm} is the list of dependent

variables.

4. Experimental Results

Let us denote the iterations Equation (3) by NM (Newton’s Method), the iterations Equation (4)
by CM (Chebyshev’s Method) and Equation (9) by PM (Proposed Method). Here, we apply different
methods in the Mathematica 10 environment to compute some generalized inverses and to show the
superiority of our scheme(s). We also denote the hybrid algorithm given in [22] by HAL (Householder
Algorithm) and our Algorithm 1 is denoted by APM (Accelerated Proposed Method). Throughout the
paper the computer characteristics are Microsoft Windows XP Intel(R), Pentium(R) 4 CPU, 3.20 GHz
with 4 GB of RAM, unless stated otherwise (as in the end of Example 1).

4.1. Numerical Experiments on Randomly-Generated Matrices

Example 1. [22] In this numerical experiment, we compute the Moore–Penrose inverse of a dense,
randomly-generated m× n = 800× 810 matrix, which is defined as follows:

m = 800; n = 810; SeedRandom[12345]; A = RandomReal[{-10, 10}, {m, n}];

Algorithms 2015, 8 991

The numerical results corresponding to the number of iterations and the CPU time are illustrated in
Table 1, wherein IT denotes the number of iterative steps. It shows that APM with m = 2 and five
inner loops, while p = 2, is superior to the other existing methods. We employed HAL with m = 2 and
eight inner loops. Note that the initial matrix is chosen as X0 = 2

‖A‖2F
A∗, while the stopping criterion is

defined by ||Xk+1−Xk||∞
||Xk+1||∞

< 10−300. Here, ‖ · ‖F stands for the Frobenius norm (Hilbert–Schmidt norm),
which is for an m× n matrix A defined as:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 =
√

trace(A∗A) =

√√√√min{m,n}∑
i=1

σ2
i (23)

where A∗ denotes the conjugate transpose of A, σi are the singular values of A and the trace function
is used.

Table 1. The results corresponding to the Moore–Penrose inverse of a
randomly-generated matrix. IT, number of iterative steps.

Methods NM CM HAL APM

IT 28 18 14 9
Time 15.7656250 15.0000000 14.0156250 13.4687500

It is important to emphasize that the computational time is directly initiated by computer and software
specifications. To clarify this, we execute our implemented algorithms/methods from Example 1 on a
more recently-featured computer, whose characteristics are Windows 7 Ultimate, Intel(R) Core(TM)
i5-4400 CPU 3.10 GHz with 8 GB of RAM and 64 Operating System. The results corresponding to this
hardware/software configuration are given in Table 2 in terms of the elapsed CPU time. Furthermore,
we re-ran Example 1 for an m× n = 1010× 1000 matrix, which was randomly generated by the code:

m = 1010; n = 1000; SeedRandom[12345]; A = RandomReal[{-10, 10}, {m, n}];

to show that our schemes can also simply be applied on matrices satisfyingm ≥ n. The results generated
by these values are arranged in Table 3, where m = 3 inner loops are considered for APM.

Table 2. The results corresponding to the Moore–Penrose inverse of randomly-generated
matrices with a better equipped computer.

Methods NM CM HAL APM

Time 1.620093 1.570090 1.363078 1.279073

Table 3. The results corresponding to the Moore–Penrose inverse of the randomly-generated
matrix A1010×1000.

Methods NM CM HAL APM

IT 28 18 14 8
Time 2.714405 2.605205 2.371204 2.293204

Algorithms 2015, 8 992

The numerical example illustrates the theoretical results presented in Section 2. It can be observed
from the results included in Tables 1–3 that, firstly, like the existing methods, the presented method
shows a stable behavior along with a fast convergence. Additionally, according to results contained
in Tables 1–3, it is clear that the number of iterations required in the APM method during numerical
approximations of the Moore–Penrose inverse is smaller than the number of approximations generated
by the classical methods. This observation is in accordance with the fact that the efficiency index is
clearly the largest in the case of the APM method. In general, APM is superior among all of the existing
famous hyper-power iterative schemes. This superiority is in accordance with the theory of efficiency
analysis discussed before.

In fact, it can be observed that increasing the efficiency index by a proper factorization of the
hyper-power method is a kind of nice strategy that gives promising results in terms of both the number
of iterations and the computational time on different computers.

Here, it is also worth noting that Schulz-type solvers are the best choice for sparse matrices possessing
sparse inverses. Since, in such cases, the usual SVD technique in the software, such as Mathematica or
MATLAB, ruins the sparsity pattern and requires much more time, hence such iterative methods and the
SVD-type (direct) schemes are both competitive, but have their own fields of applications.

4.2. Numerical Experiments in Balancing Chemical Equations

In this subsection, we present some clear examples indicating the applicability of our approach in the
balancing chemical equations. We also apply the following initial matrix X0 = 1

σ2
1
A∗.

Example 2. Consider a specific skeletal chemical equation from [10]:

x1KNO3 + x2C→ x3K2CO3 + x4CO + x5N2 (24)

where the left-hand side of the arrow consists of compounds/elements called reactants, while the
right-hand side comprises compounds/elements called the products. Hence, Equation (24) is formulated
as the homogeneous equation Ax = 0, wherein 0 denotes the null column vector and:

A =

1 0 −2 0 0

1 0 0 0 −2

3 0 −3 −1 0

0 1 −1 −1 0

 (25)

The results generated after the comparison of numerical results derived in Example 2 are given in
Table 4, using 300 precision digits, being large enough to minimize round-off errors, as well as to
clearly observe the computed asymptotic error constants in the convergence phase. Although in all
practical problems, the machine precision (double precision) is enough (just like Example (1)), here, our
focus is to find very accurate coefficients for the chemical equation, since a very accurate tolerance, such
as ‖Xk − A†‖∞ ≤ 10−150, must be incorporated.

The final exact coefficients are defined as (x1, x2, x3, x4, x5)
T = (2, 4, 1, 3, 1)T. Thus,

2KNO3 + 4C→ K2CO3 + 3CO + N2 (26)

Algorithms 2015, 8 993

Experimental results clearly show that PM is the most efficient method for this purpose. In addition,
we remark that since we use iterative methods in floating point arithmetic to obtain the coefficient,
we must use the command Round[] in the last lines of our written Mathematica code, so as to attain the
coefficients in exact arithmetic.

Table 4. The results corresponding to balancing Equation (24).

Methods NM CM PM

IT 14 9 3
‖Xk+1 −A†‖ 2.59961× 10−161 1.1697× 10−193 9.09312× 10−293

In order to support the improvement described in Section 3, it is worth mentioning that (using
Mathematica notations):

A.(Id− X.A).ConstantArray[1, n] = {−3.9 ∗ 10−293,−5.0 ∗ 10−294, 2.0 ∗ 10−293,−0.0 ∗ 10−295}

and A.(Id− X.A)((Id− X.A).ConstantArray[1, n]) = {0. ∗ 10−295, 0. ∗ 10−295, 0. ∗ 10−295, 0. ∗ 10−295}.

Example 3. Now, we solve the following skeletal chemical equation from [10]:

x1H3PO4 + x2MgSiO3 + x3CF2Cl2 + x4NaAlF4 + x5KI + x6PbCrO4 + x7FeSO4

+x8BrCl + x9Ca(CN)2 + x10SO2 + x11H2,

→ x12PI3 + x13MgCO3 + x14Na2SiO3 + x15PbBr2

+x16CrCl3 + x17KAl(OH)4 + x18Fe(SCN)3 + x19CaF2 + x20H2O

(27)

Equation (27) is formulated as a homogeneous system of linear equations with the following
coefficient matrix:

A19×20 =

3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 −4 0 0 0 −2
1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

4 3 0 0 0 4 4 0 0 2 0 0 −3 −3 0 0 −4 0 0 −1
0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 2 0 0 0 −1 0 0 0 0 −3 0 0

0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0

0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 −3 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 −3 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 −3 0 0

The results of this experiment generated by using the ordinary double precision arithmetic
and the stopping termination ‖Xk − A†‖∞ ≤ 10−10 are illustrated in Figure 1. Note
that the final coefficients obtained in exact arithmetic are equal to (x1, . . . , x20)

T =

Algorithms 2015, 8 994

(2, 3, 3, 6, 6, 6, 10, 12, 15, 20, 88, 2, 3, 3, 6, 6, 6, 10, 15, 79)T. The results once again show that PM is the
best iterative process.

Figure 1. Convergence history for different methods used in Example 3.

Example 4. Consider the following example from [19]:

x1MnO−4 + x2H
+ + x3Fe2+ → x4Mn2+ + x5H2O + x6Fe3+

The reaction matrix A can be derived by taking into account both the law of conservation of atoms
and the law of electrical neutrality, and it is equal to (see [19]):

A =

1 0 0 −1 0 0

4 0 0 0 −1 0

0 1 0 0 −2 0

0 0 1 0 0 −1

−1 1 2 −2 0 −3

As in the previous examples, let us denote by X the result derived by the iterative method Equation (9).

The rational approximation of s = A.(Id− XA)((Id− X.A).ConstantArray[1, n]) is equal to{
2
11
, 16
11
, 10
11
, 2
11
, 8
11
, 10
11

}
, and the exact solution coincides with the result given in [19]: {1, 8, 5, 1, 4, 5}.

Example 5. In this example, it is shown that our iterative method is capable of producing the solution
in the case when the real coefficients are used and the reaction is not unique within relative proportions.
Let us consider Reaction 1 with one arbitrary element from [6]:

x1X + x2O2 → x3X0.987O + x4X2O3 + x5X3O4 (28)

The reaction matrix of the homogeneous system Equation (21) is given by
A = {{1, 0,−0.987,−2,−3}, {0, 2,−1,−3,−4}}. The iterative method Equation (9)
converges quickly, since the list of consecutive errors ‖Xk − A†‖∞ is given by

Algorithms 2015, 8 995

{0.163381, 2.220446049250313 × 10−16, 2.7755575615628914 × 10−16}. The approximate solution
s = A.(Id− X.A)((Id− X.A).ConstantArray[1, n]) is equal to:

s = {1.40225926604, 0.890820221049, 0.657559993896, 0.35925113635, 0.0115817597876}

and its fractional approximation is:

c =

{
44517366795613798

367684821979411
,
103259812167103006

1342504707428259
,
67799434016501962

1194167476431641
,
56436772606792756

1819443496152855
, 1

}
.

Example 6. All possible solutions of the problem considered in Example 5 with respect to x1 and x2

can be generated using the Mathematica function Reduce:

Reduce[A.{{x1}, {x2}, {x3}, {x4}, {x5}} == {0, 0}, {x1, x2}]

All solutions in the symbolic form are given as follows (using Mathematica notations):

x1 = 0.987x3 + 2.0x4 + 3.0x5 + 0.0 ∧ x2 = 0.5x3 + 1.5x4 + 2.0x5 + 0

wherein x3, x4, x5 are arbitrary real quantities. All possible solutions with respect to x1 and x3 can be
generated using:

Reduce[A.{{x1}, {x2}, {x3}, {x4}, {x5}} == {0, 0}, {x1, x3}]

All possible
(
5
2

)
= 10 cases can be solved in the same way.

Example 7. As the last experiment and to show that the proposed iteration could preserve the
sparsity pattern of the inverses if the inverses are sparse in nature, the following 4000 × 4000 matrix
A = ExampleData[“Matrix”, “Bai/tols4000”] has been taken from Matrix Market database with the
stopping termination ‖Xk+1−Xk‖∞

‖Xk+1‖∞
≤ 10−10. The new scheme Equation (9) converges in twelve iterations.

The matrix plots of the approximate inverse for this case are brought forward in Figure 2.

Figure 2. Cont.

Algorithms 2015, 8 996

Figure 2. The sparsity pattern for the approximate inverses: X1 (top left); X2 (top right);
X11 (bottom left); and X12 (bottom right).

5. Conclusions

In this paper, we have developed a matrix iterative method for computing generalized inverses.
The derived scheme has been constructed based on the hyper-power iteration. We have shown that
this scheme achieves the order of convergence equal to 31 by using only nine mmm, which hits a very
high computational efficiency index.

We also provided further schemes by extending some of the known results so as to accelerate the initial
phase of convergence. Furthermore, we applied our iterative schemes to balancing chemical equations
as an important application-oriented area. The derived numerical results clearly upheld our theoretical
findings to a great extent.

Further discussions and generalizations can be considered for future works to provide much more
robust, reliable and fast hybrid algorithms for computing generalized inverses with potential applications,
for example as in [25].

Acknowledgments

The research of the first author (Farahnaz Soleimani) is financially supported by Roudehen Branch,
Islamic Azad University, Roudehen, Iran. Furthermore, the second author (Predrag S. Stanimirović)
gratefully acknowledges support from the Research Project 174013 of the Serbian Ministry of
Science. Interested readers may contact the corresponding author to obtain the Mathematica programs
used in the paper.

Algorithms 2015, 8 997

Author Contributions

The contributions of all of the authors have been similar. All of them have worked together to develop
the present manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Phillips, J.C. Algebraic constructs for the graphical and computational solution to balancing
chemical equations. Comput. Chem. 1998, 22, 295–308.

2. Risteski, I.B. A new generalized matrix inverse method for balancing chemical equations and their
stability. Bol. Soc. Qum. Mex. 2008, 2, 104–115.

3. Risteski, I.B. A new pseudoinverse matrix method for balancing chemical equations and their
stability. J. Korean Chem. Soc. 2008, 52, 223–238.

4. Krishnamurthy, E.V. Generalized matrix inverse approach for automatic balancing of chemical
equations. Int. J. Math. Educ. Sci. Technol. 1978, 9, 323–328.

5. Mahadeva, R.T.; Subramanian, K.; Krishnamurthy, E.V. Residue arithmetic algorithms for exact
computation of g-inverses of matrices. SIAM J. Numer. Anal. 1976, 13, 155–171.

6. Risteski, I.B. A new generalized algebra for the balancing of ℵ chemical reactions. Mater. Technol.
2014, 48, 215–219.

7. Smith, W.R.; Missen, R.W. Using Mathematica and Maple to obtain chemical equations. J. Chem.
Educ. 1997, 74, 1369–1371.

8. Xia, Y. A novel iterative method for computing generalized inverse. Neural Comput. 2014, 26,
449–465.

9. Higham, N.J. Gaussian elimination. WIREs Comp. Stat. 2011, 332–334, 230–238.
10. Sen, S.K.; Agarwal, H.; Sen, S. Chemical equation balancing: An integer programming approach.

Math. Comput. Model. 2006, 44, 678–691.
11. Balasubramanian, K. Linear variational Diophantine techniques in mass balance of chemical

reactions. J. Math. Chem. 2001, 30, 219–225.
12. Ben-Israel, A. An iterative method for computing the generalized inverse of an arbitrary matrix.

Math. Comput. 1965, 19, 452–455.
13. Climent, J.-J.; Thome, N.; Wei, Y. A geometrical approach on generalized inverses by

Neumann-type series. Linear Algebra Appl. 2001, 332–334, 533–540.
14. Liu, X.; Jin, H.; Yu, Y. Higher-order convergent iterative method for computing the generalized

inverse and its application to Toeplitz matrices. Linear Algebra Appl. 2013, 439, 1635–1650.
15. Soleymani, F.; Stanimirovic, P.S.; Haghani, F.K. On hyper-power family of iterations for computing

outer inverses possessing high efficiencies. Linear Algebra Appl. 2015, 484, 477–495.
16. Schulz, G. Iterative Berechnung der Reziproken matrix. Z. Angew. Math. Mech. 1933, 13, 57–59.
17. Soleymani, F.; Salmani, H.; Rasouli, M. Finding the Moore–Penrose inverse by a new matrix

iteration. J. Appl. Math. Comput. 2015, 47, 33–48.

Algorithms 2015, 8 998

18. Soleymani, F. An efficient and stable Newton-type iterative method for computing generalized
inverse A(2)

T,S . Numer. Algorithms 2015, 69, 569–578.
19. Ramasami, P. A concise description of an old problem: Application of matrices to obtain the

balancing coefficients of chemical equations. J. Math. Chem. 2003, 34, 123–129.
20. Sharifi, M.; Arab, M.; Khaksar Haghani, F. Finding generalized inverses by a fast and efficient

numerical method. J. Comput. Appl. Math. 2015, 279, 187–191.
21. Stanimirović, P.S.; Soleymani, F. A class of numerical algorithms for computing outer inverses.

J. Comput. Appl. Math. 2014, 263, 236–245.
22. Soleimani, F.; Soleymani, F.; Cordero, A.; Torregrosa, J.R. On the extension of Householder’s

method for weighted Moore–Penrose inverse. Appl. Math. Comput. 2014, 231, 407–413.
23. Petković, M.D.; Stanimirović, P.S. Two improvements of the iterative method for computing

Moore–Penrose inverse based on Penrose equations. J. Comput. Appl. Math. 2014, 267, 61–71.
24. Wolfram, S. The Mathematica Book, 5th ed.; Wolfram Media: Champaign, IL, USA, 2003.
25. Soleymani, F.; Sharifi, M.; Karimi Vanani, S.; Khaksar Haghani, F. An inversion-free method for

finding positive definite solution of a rational matrix equation. Sci. World J. 2014, 2014, 560931.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	An Efficient Method and Its Acceleration
	An Efficient Method
	Accelerating the Initial Phase

	Balancing Chemical Equations Using Iterations
	Balancing Chemical Equations Using Iterative Methods
	Balancing Chemical Equations in Symbolic Form

	Experimental Results
	Numerical Experiments on Randomly-Generated Matrices
	Numerical Experiments in Balancing Chemical Equations

	Conclusions

