
Algorithms 2015, 8, 999-1020; doi:10.3390/a8040999
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

An Integer Linear Programming Formulation for the Minimum
Cardinality Segmentation Problem
Daniele Catanzaro 1,* and Céline Engelbeen 2

1 Louvain School of Management, Center for Operations Research and Econometrics (CORE),
Université Catholique de Louvain, Chaussée de Binche 151, bte M1.01.01, 7000 Mons, Belgium

2 Institut Catholique des Hautes Etudes Commerciales (ICHEC), Boulevard Brand Whitlock 2,
1150 Brussels, Belgium; E-Mail: celine.engelbeen@gmail.com

* Author to whom correspondence should be addressed; E-Mail: daniele.catanzaro@uclouvain.be;
Tel.: +32-65-323-313.

Academic Editors: Giuseppe Lancia and Alberto Policriti

Received: 27 June 2015 / Accepted: 2 November 2015 / Published: 11 November 2015

Abstract: In this article, we investigate the Minimum Cardinality Segmentation Problem
(MCSP), an NP-hard combinatorial optimization problem arising in intensity-modulated
radiation therapy. The problem consists in decomposing a given nonnegative integer
matrix into a nonnegative integer linear combination of a minimum cardinality set of
binary matrices satisfying the consecutive ones property. We show how to transform the
MCSP into a combinatorial optimization problem on a weighted directed network and we
exploit this result to develop an integer linear programming formulation to exactly solve it.
Computational experiments show that the lower bounds obtained by the linear relaxation
of the considered formulation improve upon those currently described in the literature and
suggest, at the same time, new directions for the development of future exact solution
approaches to the problem.

Keywords: matrix decomposition; minimum cardinality segmentation problem; mixed
integer linear programming; intensity-modulated radiation therapy; multileaf collimator



Algorithms 2015, 8 1000

1. Introduction

Let S = {sij} be a m× n binary matrix. We say that S is a segment if for each row i = 1, . . . ,m, the
following consecutive ones property holds [1]:

if sij = sij′ = 1 for 1 ≤ j < j′ ≤ n then sik = 1 ∀ j < k < j′ (1)

Given an m × n nonnegative integer matrix A = {aij}, the Minimum Cardinality Segmentation
Problem (MCSP) consists in finding a decompositionA =

∑K
t=1 utSt such that ut ∈ Z+, St is a segment,

for all t ∈ 1, . . . , K, and K is minimum.
For example, consider the following nonnegative integer matrix:

A =


0 1 1 1 1 0

1 1 2 2 2 1

1 2 4 4 2 0

1 1 2 2 1 0

0 1 1 0 0 0

 (2)

then a possible decomposition of A into segments is [2]:

A = 2


0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 1 0

0 0 0 0 0 0

0 0 0 0 0 0

+ 1


0 1 1 1 0 0

0 0 1 1 1 0

0 1 1 1 0 0

0 0 1 1 0 0

0 0 0 0 0 0

+ 1


0 0 0 0 1 0

1 1 1 1 1 1

1 1 1 1 0 0

1 1 1 1 1 0

0 1 1 0 0 0

 (3)

The MCSP arises in intensity modulated radiation therapy, currently considered one of the most
powerful tools to treat solid tumors (see [3–7]). In this application, the matrix A usually encodes the
intensity of the particle beam that has to be emitted by a linear accelerator at each instant of a radiation
therapy session (see Figure 1). As the linear accelerator can only emit, instant per instant, a particle beam
having a fixed intensity value rather than those encoded in A, the intensity matrix has to be decomposed
into a set of segments, each encoding those elementary quantities of radiation, in order to deliver entry
per entry the requested amount of radiation (see [7] for further details).

The MCSP is known to beNP-hard even if the matrixA has only one row [1] or one column [8]. It is
worth noting that the two restrictions mainly differ from each other for the type of segments considered.
Specifically, in the one row case the segments are binary vector rows satisfying the consecutive ones
property; in the one column case segments are just binary column vectors.

The NP-hardness of the MCSP has justified the development of exact and approximate solution
approaches aiming at solving larger and larger instances of the problem. These approaches have been
recently reviewed in [7,9,10], and we refer the interested reader to these articles for further information.
Here, we just focus on the exact solution approaches for the MCSP.

The literature on the MCSP reports on a number of studies focused on a specific restriction
of the problem characterized by having the highest entry value of the matrix A, denoted as
‖A‖max = max{aij}, bounded by a positive constant H . This assumption is generally exploited e.g.,



Algorithms 2015, 8 1001

in [1,11–13] to develop pseudo-polynomial exact solution algorithms for the considered restriction. A
recent survey of these algorithms can be found in [7]. Surprisingly enough, however, in the last decade
only a limited number of exact solution approaches have been proposed in the literature for the general
problem. These approaches are restricted to the pseudo-polynomial solution algorithm described in [14],
the Constraint Programming (CP) approaches described in [9,15], and the Integer Linear Programming
(ILP) approaches described in [16–19]. Specifically, the algorithm proposed in [14] is based on an
iterative process that exploits the pseudo-polynomial solution algorithm of [13] to solve at each step an
instance of the MCSP characterized by having 1 ≤ ‖A‖max = max{aij} ≤ H . The author shows that the
algorithm is able to solve an instance of the general problem with an overal computational complexity
O((mn)2H+3). However, as shown in the computational experiments performed in [9], the algorithm
proves to be very slow in practice.

The CP approach described in [15] was not initially conceived to solve the MCSP. In fact, the
authors consider an objective function that minimizes at the same time a linear weighted combination
of the number of segments involved in the decomposition and the sum of the coefficients used in the
decomposition. As shown in [10], this approach can be adapted to solve the MCSP. However, the
performances (in terms of solution times) so obtained are poorer than those relative to the CP approach
described in [9]. Specifically, the authors of [9] first use an heuristic to find an initial feasible solution
to the problem. Then, they attempt to find either a solution that uses less segments or to prove that the
current solution is optimal. The certificate of optimality of the proposed algorithm is based on the use
of an exhaustive search on the space of segments and coefficients compatible with the decomposition.
As far as we are aware, this approach currently constitutes the fastest exact solution algorithm for
the MCSP.

1 2 3 4 5 6

1

2

3

4

5

1 2 3 4 5 6

1

2

3

4

5

0 1 1 1 1 0

1 1 2 2 2 1

1 2 4 4 2 0

1 1 2 2 1 0

0 1 1 0 0 0

Figure 1. An example of discretization of the particle beam emitted by a linear accelerator
(from [2]). The matrix on the right encodes the discretized intensity values of the radiation
field shown on the left.

The ILP formulations described in the literature are usually characterized by worse performances
than the constraint programming approach presented in [9]. The earliest ILP formulation was presented
in [16] and is characterized by a polynomial number of variables and constraints. Specifically, provided
an upper bound on the overall number of segments is used, the authors introduce a variable for each entry



Algorithms 2015, 8 1002

of each segment in the decomposition of the matrix A. This choice gives rise to multiple drawbacks: it
may lead to very large formulations, it does not cut out the numerous equivalent (symmetric) solutions
to the problem, and it is characterized by very poor performances in terms of solution times and size
of the instances of the MCSP that can be analyzed [9,10]. The mixed integer linear programming
formulation presented in [19] arises from an adaptation of the formulation used for a version Cutting
Stock Problem [10]. As for [16], the formulation contains a polynomial number of variables and
constraints and requires an upper bound on the overall number of segments used. As shown in [10],
the formulation is characterized by better performances than the one presented in [16]. However, it
proves unable to solve instances of the MCSP containing more than seven rows and seven columns.
The polynomial-sized formulation presented in [18] has a strength point the fact that does not explicitly
attempt at reconstructing the segments of the decomposition. This fact allows for both the reduction of
the number of involved variables and a break in the symmetry introduced by the search of equivalent
sets of segments. However, computational experiments carried out in [10] have shown that the linear
relaxation of this formulation is usually very poor. This fact in turn leads to very long solution times [10].
A similar idea was used in [17]. In particular, the proposed polynomial-sized formulation minimizes the
number of segments required in the decomposition of the matrix A, without explicitly computing them.
This last step is possible in a subsequent moment via a post-processing of the optimal solution. However,
also in this case, the formulation is characterized by poor computational performances when compared
to the constraint programming approach described in [9], mainly due to the poor lower bounds provided
by the linear relaxation.

Starting from the results described in C. Engelbeen’s Ph.D. thesis [20], in this article we investigate the
problem of providing tighter lower bounds to the MCSP. Specifically, by using some results related to the
one row restriction of the MCSP (see [2,20]), we transform the MCSP into a combinatorial optimization
problem on a particular class of directed weighted networks and we present an exponential-sized ILP
formulation to exactly solve it. Computational experiments show that the performances (in terms of
solution times) of the formulation are still far from the CP approach described in [9]. However, the
lower bounds obtained by the linear relaxation of the considered formulation generally improve upon
those currently described in the literature. Thus, the theoretical and computational results discussed
in this article may suggest new directions for the development of future exact solution approaches to
the problem.

The article is organized as follows. After introducing some notation and definitions, in Section 2
we investigate the one row restriction of the MCSP. In particular, we transform the restriction into a
combinatorial optimization problem on a weighted directed network and we investigate the optimality
conditions that correlate both problems. In Section 3, we show how to generalize this transformation
for generic intensity matrices and in Section 4 we present an ILP formulation for the MCSP based on
this transformation. Finally, in Section 5 we present the computational results of the formulation, by
providing some perspectives on future exact solution approaches to the problem.



Algorithms 2015, 8 1003

2. The One Row Restriction of the MCSP as a Network Optimization Problem

In this section, we consider a restriction of the MCSP to the case in which the matrix A is a row
vector. By following an approach similar to [15,20], we transform this restriction into a combinatorial
optimization problem consisting of finding a shortest path in a particular weighted directed network. The
insights provided by this transformation will prove useful both to extend the transformation to general
matrices and to develop an ILP formulation for the general case of the MCSP. Before proceeding, we
first introduce some notation and definitions similar to those already used in [2,9,20] and that will prove
useful throughout the article.

Let q be a positive integer. We define a partition of q as a possible way of writing it as a sum of
positive integers, i.e.,

q =
r∑
j=1

βj (4)

for some r, βj ∈ Z+ (see [21]). For example, if we consider q = 4 and we set r = 3 and β1 = β2 = 1

and β3 = 2 then a possible partition of 4 is 1 + 1 + 2. We call Equation (4) the extended form of this
particular partition of q. Interestingly, we also observe that an alternative way to partition q consists in
writing it as a nonnegative integer linear combination of nonnegative integers, i.e.,

q =
s∑
j=1

γjβj (5)

for some s, βj, γj ∈ Z+. For example, if we set s = 2, β1 = 1, β2 = 2, γ1 = 2, γ2 = 1, then an alternative
way to encode the considered partition is (2 · 1) + (1 · 2). We call Equation (5) the compact form of this
particular partition of q. The definition of a partition of a positive integer proves useful to investigate
the one row restriction of the MCSP. In particular, it is worth noting that any decomposition of a row
vector A into a sum of positive integers implicitly implies partitioning the entries of A. Then, a possible
approach to solve the considered restriction consists in finding from among all of the possible partitions
of each entry of A the ones that, appropriately combined, lead to the searched optimal decomposition.

To this end, we denote H = ||A||max = max{aij}, [K] as the set {1, . . . , K}, for some positive
integer K, and we associate to the row vector A a particular weighted directed network D = (V,A),
called partition network, built as follows. Given an entry aj of A and a generic partition of aj , let qw
be the number of terms equal to w in the extended form of the considered partition or, equivalently, the
coefficient associated to the term w in its compact form. Let V be the set of vertices including a source
vertex s, a sink vertex t and a vertex for each partition of each entry of A:

V := {s} ∪ {t} (6)

∪

{
(j; q1, . . . , qH) : ∀j ∈ [n], ∀(q1, . . . , qH) ∈ ZH+ s.t.

H∑
w=1

qw · w = aj

}
(7)



Algorithms 2015, 8 1004

Let A be the set of arcs of D defined as follows:

A := {(s, (1; q1, . . . , qH)) : (1; q1, . . . , qH) ∈ V } (8)

∪{((j; q1, . . . , qH), (j + 1; q′1, . . . , q
′
H)) : j ∈ [n− 1] (9)

(j; q1, . . . , qH), (j + 1; q′1, . . . , q
′
H) ∈ V } (10)

∪{((n; q1, . . . , qH), t) : (n; q1, . . . , qH) ∈ V } (11)

Note that the construction of the partition network D is such that a decomposition of A corresponds
to a path from the source to the sink in D. In particular, traversing a vertex (j, q1, . . . , qH) means that
in the decomposition there are exactly qw segments with a coefficient equal to w and a 1 in position j,
for all w ∈ [H]. Traversing an arc ((j; q1, . . . , qH), (j + 1; q′1, . . . , q

′
H)) in the network means that in the

corresponding decomposition of A there are exactly qw segments with a coefficient equal to w and a 1 in
position j and exactly q′w segments with a coefficient equal to w and a 1 in position j+1, for all w ∈ [H].
As an example, Figure 2 shows the network corresponding to the row vector

A =
(

2 3 2 3
)

(12)

Figure 2. The partition network corresponding to the row (2 ; 3 , 2 , 3) with some lengths on
arcs. The first two vertices on the right of s correspond to the two possible partitions of 2
(i.e., 2 = 1 + 1 and 2 = 2). The subsequent three vertices on the right correspond to the
three possible partitions of 3 (i.e., 3 = 1+ 1+ 1, 3 = 1+ 2, 3 = 3), and so on. Note that the
entries of two subsequent columns, say j and j + 1, in the row vector A induce a bipartite
subnetwork in D. The dotted arcs represent the shortest s− t path in D.

It is worth noting that, as we want to minimize the number of segments in the decomposition,
whenever we cross arc ((j; q1, . . . , qH), (j + 1; q′1, . . . , q

′
H)) we use max{0, qw − q′w} segments with

a coefficient equal to w, a 1 in position j and a zero in position j + 1; min{qw, q′w} segments with a
coefficient equal to w and a 1 in both positions j and j + 1 and finally max{0, q′w − qw} segments with
a coefficient equal to w, a zero in position j and a 1 in position j + 1. Hence, passing from the vertex



Algorithms 2015, 8 1005

(j; q1, . . . , qH) to the vertex (j + 1; q′1, . . . , q
′
H) implies to add max{0, q′w − qw} new segments with a

coefficient equal to w. In the light of these observations, consider a length function ` : A −→ Z+ defined
as follows:

`(α) =



H∑
w=1

qw if α = (s, (1; q1, . . . , qH)), (1; q1, . . . , qH) ∈ V

H∑
w=1

max{0, q′w − qw} if α = ((j; q1, . . . , qH), (j + 1; q′1, . . . , q
′
H))

((j; q1, . . . , qH), (j + 1; q′1, . . . , q
′
H)) ∈ A

0 if α = ((n; q1, . . . , qH), t)

(13)

Then, finding a decomposition of the row vector A into the minimum number of segments is
equivalent to compute the length of any shortest s− t path, denoted as pst, in the corresponding weighted
directed network D. Note that, due to the particular structure of the partition network D, such a problem
is fixed-parameter tractable in H [2,20,22]. Once computed pst, we can build the segments and the
corresponding coefficients involved in the decomposition by iteratively applying the following approach.
For all integers ` and r such that ` < r, let [`, r) = {`, `+ 1, . . . , r − 1}. Set

` := min{j : qw > 0 in (j; q1, . . . , qH) ∈ pst} (14)

r := min{j′ > ` : q′w = 0 in (j′; q′1, . . . , q
′
H) ∈ pst}. (15)

and build a segment S having the generic entry sj equal to 1 if j ∈ [`, r) and 0 otherwise. Associate to S
a coefficient equal to w. Remove one unit in component qw from each vertex of the path that corresponds
to an entry j ∈ [`, r) and iterate the procedure. As an example, the application of this procedure to the
row vector Equation (12) leads to the following optimal solution:

A := 2
(

1 1 1 0
)
+
(

0 1 0 0
)
+ 3

(
0 0 0 1

)
In the next section, we show how to generalize this transformation to generic intensity matrices. This

transformation will prove useful to develop an ILP formulation for the general version of the problem.

3. The MCSP as a Network Optimization Problem

Let A be a generic m × n nonnegative integer matrix. For each row i ∈ [m] we build a partition
network Di = (Vi,Ai) in a way similar to the procedure described in Section 2. Specifically, for each
row i ∈ [m], the set Vi includes a source vertex si and a vertex for each partition of each entry of the i-th
row of A:

Vi := {si} (16)

∪{(i, j; q1, . . . , qH) : j ∈ [n], (q1, . . . , qH) ∈ ZH+ :
H∑
w=1

qw · w = aij} (17)



Algorithms 2015, 8 1006

Similarly, the set Ai includes an arc for each pair of vertices corresponding to consecutive entries on
the same row:

Ai := {(si, (i, 1; q1, . . . , qH)) : (i, 1; q1, . . . , qH) ∈ Vi} (18)

∪{((i, j; q1, . . . , qH) , (i, j + 1; q′1, . . . , q
′
H)) : j ∈ [n− 1] (19)

(i, j; q1, . . . , qH) , (i, j + 1; q′1, . . . , q
′
H) ∈ Vi} (20)

Consider the combined partition network D = (V,A) having as vertexset

V = {s} ∪
⋃
i∈[m]

Vi ∪ {t} (21)

and as arcset

A = {(s, si) : i ∈ [m]} ∪
⋃
i∈[m]

Ai ∪ {(i, n; q1, . . . , qH) , t) : i ∈ [m]} (22)

D contains a vertex corresponding to each possible partition of each entry aij of A. Each of these
vertices is denoted by (i, j; q1, . . . , qH), where (i, j) denotes the position of aij in A, and qw denotes the
number of terms equal to w in the extended form of the corresponding partition of aij or, equivalently,
the coefficient of w in its compact form, meaning aij =

∑H
w=1 qw · w. As an example, Figure 3 shows

the combined partition network corresponding to the intensity matrix

A =

(
2 3

3 1

)
(23)

Figure 3. The combined partition network for matrix Equation (23). The dotted arcs
represent a flow in the network that encodes a possible decomposition of A.



Algorithms 2015, 8 1007

It is worth noting that, as for the one row restriction, a decomposition of the i-th row ofA corresponds
by construction to a path in the networkDi. In particular, traversing a vertex (i, j; q1, . . . , qH) means that
in the decomposition, there are exactly qw matrices with a coefficient equal to w and a 1 in position (i, j),
for all w ∈ [H].

Let ` : A −→ ZH+ be a function that associate a H-dimensional length vector to each arc

α = ((i, j; q1, . . . , qH) , (i, j + 1; q′1, . . . , q
′
H)) ∈ A (24)

according to the following law:

`(α) =


(q1, . . . , qH) if α = (si, (i, 1; q1, . . . , qH)), i ∈ [m]

(max {0, q′1 − q1} , . . . ,max {0, q′H − qH}) if α = ((i, j; q1, . . . , qH) , (i, j + 1; q′1, . . . , q
′
H))

i ∈ [m], j ∈ [n− 1]

(0, . . . , 0) otherwise.

In particular, we use the convention to associate the length vector (0, . . . , 0) to both the arcs leaving
the source vertex s and the arcs entering the sink vertex t. For all the remaining arcs, the w-th entry of the
length vector, denoted as `w(α), represents the coefficient of w in the compact form of the corresponding
partition of ai,j+1 =

∑H
w=1 q

′
w · w minus the coefficient of w in the compact form of the corresponding

partition of aij =
∑H

w=1 qw · w, i.e., `w(α) := max {0, q′w − qw}. As an example, Figure 4 provides
the length vector of (certain arcs of) the partition network corresponding to the first row of matrix
Equation (23), namely (2 3).

Figure 4. The arc ((1, 1; 0, 1, 0), (1, 2; 3, 0, 0)) represents a decomposition of the row vector
(2 3) in which entry 2 is decomposed by means of one segment having coefficient 2 and
entry 3 is decomposed by means of three segments having coefficients 1. In order to move
from partition 2 = 2 to partition 3 = 1+1+1, we need three new segments with a coefficient
1 and no segment with coefficient 2 or 3.

It is easy to realize that any integral s − t flow of value m in the combined partition network D

associated to a given intensity matrix A, i.e., a s− t flow in D composed by a family of si− t flows, each



Algorithms 2015, 8 1008

lying in the subnetwork Di, corresponds to a decomposition of the intensity matrix A. Any such flow is
a combination of m paths p1, . . . , pm such that each pi is a s− t path in the network Di, for all i ∈ [m].
The length vector associated to this s− t flow is

max
i∈[m]

(∑
α∈pi

`(α)

)
:=

(
max
i∈[m]

{∑
α∈pi

`1(α)

}
, . . . ,max

i∈[m]

{∑
α∈pi

`H(α)

})
(25)

Note that the w-th component of vector Equation (25) provides the overall number of segments with
a coefficient w in the decomposition of A. Hence, solving the MCSP is equivalent to find a s− t flow of
value m (that is, paths p1, . . . , pm) such that the sum of all components of Equation (25) is minimized,
or equivalently

min
H∑
w=1

max
i∈[m]

(∑
α∈pi

`w(α)

)
(26)

over all s− t paths p1, . . . , pm in D1, . . . , Dm.
By referring to matrix Equation (23) and to the corresponding combined partition network shown in

Figure 3, the length vector of the top-most dotted path p1 equals (2, 0, 0) + (0, 1, 0) = (2, 1, 0) and the
length vector of the bottom-most dotted path p2 equals (1, 1, 0) + (0, 0, 0) = (1, 1, 0). The length vector of
the whole flow equals (2, 1, 0). Given paths p1 and p2, we can build the corresponding decomposition of
the matrix A in the following way. For each component w, consider a nonnegative integer m× n matrix
Aw having the generic entry (i, j) equal to the component qw in vertex (i, j; q1, · · · , qH) belonging to pi.
Then, the matrix A can be decomposed as

A =
H∑
w=1

w · Aw (27)

As an example, by referring to the matrix Equation (23) and to the corresponding combined partition
network shown in Figure 3, this procedure leads to the following decomposition of A:

A =

(
2 3

3 1

)
= 1

(
2 1

1 1

)
+ 2

(
0 1

1 0

)
(28)

It is worth noting that the matrices Aw in general are not segments. However, it is possible to prove
that each matrix Aw can be in turn decomposed into a sum of segments, in such a way that the resulting
decomposition is optimal for the MCSP. To this end, we introduce the following auxiliary problem:

The Beam-On Time Problem (BOTP). Given a nonnegative integer matrix A, find a decomposition
A =

∑K
t=1 utSt such that ut ∈ Z+, St is a segment, for all t ∈ [K], and

∑K
t=1 ut is minimum.

The BOTP is polynomially solvable via the algorithms described in [1,20] and differs from the MCSP
for the fact that it searches from among all the possible decompositions of the matrixA the one for which
the sum of the coefficients is minimal.



Algorithms 2015, 8 1009

Given a decomposition of A as in Equation (27), let us decompose Aw, for each w ∈ [H], into a
nonnegative integer linear combination of segments minimizing the BOTP. Then, Equation (27) can be
rewritten as

A =
H∑
w=1

w · Aw =
H∑
w=1

w ·

( ∑
t:ut=w

St

)
=

K∑
t=1

utSt (29)

where K =
∑H

w=1 |{t : ut = w}|. The minimality of K in this new decomposition (i.e., the optimality
of Equation (29) for the MCSP) is then proved by the following proposition:

Proposition 1. Let K be the optimal value to the MCSP. Then, the following equality holds:

K =
H∑
w=1

BOT (Aw)

where BOT (Aw) denotes the minimum sum of
∑K

t=1 ut in the decomposition of Aw.

Proof. Let βw denote |{t : ut = w}|, i.e., the sum of the coefficients in the decomposition of
Aw =

∑
t:ut=w

St, for all w ∈ [H]. Then, it holds that βw ≥ BOT (Aw), for all w ∈ [H]. Hence,
we have that

K =
H∑
w=1

βw ≥
H∑
w=1

BOT (Aw) (30)

To prove that in Equation (30) the strict equality holds, assume by contradiction that for some
ŵ ∈ [H], βŵ > BOT (Aŵ). Then, it is possible to obtain a smaller value of βŵ by replacing

∑
t:ut=ŵ

St

with the decomposition provided by the optimal solution of the BOTP with input Aŵ. However, βŵ is
defined as the optimal solution to the BOTP with input Aŵ, hence this would contradict its optimality.
Thus, the statement follows.

As an example, by using the decomposition algorithm for the BOTP described in [1,20] on the
matrices Aw in Equation (28), we obtain the following decomposition for Equation (23)

A =

(
2 3

3 1

)
= 1

(
2 1

1 1

)
+ 2

(
0 1

1 0

)
=

(
1 0

1 1

)
+

(
1 1

0 0

)
+ 2

(
0 1

1 0

)
(31)

which is optimal due to Proposition 1.
The transformation of the MCSP into a network optimization problem and the result provided by

Proposition 1 constitute the fundation for the ILP formulation that will be presented in the next section.

4. An Integer Linear Programming Formulation for the MCSP

In this section, we develop an exponential-sized integer linear programming formulation for the
MCSP. Unless not stated otherwise, throughout this section we will assume that A is a generic m × n
nonnegative integer matrix.



Algorithms 2015, 8 1010

Let D = (V,A) be the combined partition network associated to A and let Pi be the set of all of the
s− t paths whose internal vertices belong to the subnetwork Di = (Vi,Ai), for all i ∈ [m]. We associate
to each path p ∈ Pi, i ∈ [m], a length vector `(p) of dimension H = ||A||max = max{aij} obtained by
summing over the lengths of the arcs belonging to p:

`(p) :=
∑
α∈p

`(α) (32)

where {`(α)} are the length vectors defined in Section 3. Let λip be a decision variable equal to 1 if path
p ∈ Pi, i ∈ [m], is considered in the optimal solution to the problem and 0 otherwise. Finally, let dw be
an integer variable equal to the number of segments with a coefficient w needed to decompose the matrix
A. Then, a possible integer linear programming formulation for the MCSP is:

Formulation 1. – Integer Master Problem (IMP)

min

H∑
w=1

dw (33a)

s.t. dw ≥
∑
p∈Pi

`w(p) λ
i
p ∀i ∈ [m] ,∀w ∈ [H] (33b)

∑
p∈Pi

λip = 1 ∀i ∈ [m] (33c)

λip ∈ {0, 1} ∀i ∈ [m], ∀p ∈ Pi (33d)

dw ∈ Z+ ∀w ∈ [H] (33e)

The objective function Equation (33a) accounts for the number of segments involved in the
decomposition of the matrix A. Constraints Equation (33b) impose that for each row i ∈ [m], the
number of segments with coefficient w has to be greater than or equal to maxi∈[m]{

∑
α∈pi `w(α)}, which

corresponds to the w-th component of the length vector associated to the s − t flow in D. Constraints
Equation (33c) impose to choose exactly one path in each partition network Di. Finally, constraints
Equations (33d) and (33e) impose the integrality constraint on the considered variables. The validity of
Formulation 1 is guaranteed by the transformation described in Section 3. It is worth noting that we need
not to impose the integrality constraint on variables dw. In fact, it is easy to see that in an optimal solution
to IMP, the integrality of variables λip together with Equation (33b) suffice to guarantee the integrality
of variables dw. Formulation 1 includes an exponential number of (path) variables and a number of
constraints that grows pseudo-polynomially in function of H . A possible approach to solve it consists of
using column generation and branch-and-price techniques [23].

In order to study the pricing oracle, consider the following formulation:



Algorithms 2015, 8 1011

Formulation 2. – Restricted Linear Program Master (RLPM)

min
H∑
w=1

dw (34a)

s.t. dw ≥
∑
p∈P̃i

`w(p) λ
i
p ∀i ∈ [m] ,∀w ∈ [H] (34b)

∑
p∈P̃i

λip = 1 ∀i ∈ [m] (34c)

λip ≥ 0 ∀i ∈ [m], ∀p ∈ P̃i (34d)

dw ≥ 0 ∀w ∈ [H] (34e)

where P̃i is a strict subset ofPi, i ∈ [m], and let πi,w and µi be the dual variables associated to constraints
Equations (33b) and (33c), respectively. Then, the dual problem associated to the IMP is:

Formulation 3. – Dual Problem (DP)

max
m∑
i=1

µi (35a)

s.t. µi −
H∑
w=1

πi,w`w(p) ≤ 0 ∀i ∈ [m] , ∀p ∈ Pi (35b)

m∑
i=1

πi,w = 1 ∀w ∈ [H] (35c)

πi,w ≥ 0 ∀i ∈ [m], ∀w ∈ [H] (35d)

µi unrestricted ∀i ∈ [m] (35e)

A variable with negative reduced cost in the RLPM corresponds to a dual constraint violated by the
current dual solution. As variables dw are always present in the RLPM, constraints Equation (35c) will
never be violated. To check the existence of violated constraints, Equation (35b) means searching for
the existence of a row î ∈ [m] and a path p̂ ∈ Pî such that

µî −
H∑
w=1

πî,w`w(p̂) > 0. (36)

Let π∗i,w and µ∗i be the values of variables πi,w and µi in the current dual solution. Consider a new
length function `∗ : Aî −→ R+ defined as

`∗(α) :=
H∑
w=1

π∗i,w`w(α) (37)

and let D∗
î

be the partition network Dî with lengths provided by Equation (37). By definition, the length
`(p) of a s− t path p ∈ Pi in D is equal to

`∗(p) :=
∑
α∈p

H∑
w=1

π∗i,w`w(α) =
H∑
w=1

π∗i,w`w(p). (38)



Algorithms 2015, 8 1012

Then, determining the existence of a path violating Equation (35b) implies to check whether the
shortest s− t path in D∗

î
has an overall length shorter than µ∗i , i.e., to check if it holds that

H∑
w=1

π∗
î,w
`w(p̂) < µ∗

î
. (39)

Since all length values are nonnegative, this task can be performed by using a standard implementation
of Dijkstra’s algorithm [22].

5. Computational Experiments

In this section, we analyze the performance of Formulation 1 in solving instances of the MCSP.
Our experiments were motivated by a twofold goal: to compare the lower bounds provided by the
linear relaxation of Formulation 1 vs. the lower bounds provided by the linear relaxations of the ILP
formulations described in [17–19]; and to measure the runtime performances of Formulation 1. We
emphasize that our experiments neither attempt to investigate the use of Formulation 1 in IMRT nor to
compare Formulation 1 to other algorithms that use an objective function that is different from the one
used in the MCSP. The reader interested in a systematic discussion about such issues is referred to [7,10].

In order to measure the quality of the lower bounds provided by the linear relaxation of Formulation 1,
we considered the instances of the MCSP provided in Chapter 2 of L. R. Mason’s Ph.D. thesis [10]. One
of the advantage of considering Mason’s instances derives from the fact that the author first compared
the linear relaxations of the ILP formulations described in [17–19], by creating benchmarks that can
be used for further comparisons. The author considered a dataset constituted by 25 squared matrices
having an order ranging in {6, . . . , 10}. Fixed an order, the dataset provides five random instances of the
MCSP having H = ||A||max ≤ 15 if the order is smaller than or equal to eight, and H = ||A||max = 10

otherwise. We refer the interested reader to Chapter 2 of [10] for further information concerning the
performances of the considered ILP formulations and to the appendix of the same work to download the
instances used in this work.

5.1. Implementing Formulation 1

One of the main difficulties in designing a solution approach for Formulation 1 consists of devising
effective branching rules when the binary variables are priced out at run time. In particular, a typical
problem is that there may be no easy way to forbid that a variable that was fixed at 0 by branching
could still be a feasible solution for the pricing problem. However, if the value of H is relatively small,
it is possible to overcome this issue by branching on “arc variables” rather than on “path variables”.
Specifically, let us add in Formulation 1 a new decision (arc) variable xα equal to 1 if arc α ∈ A is used
and 0 otherwise. Then, an alternative formulation for the MCSP is:



Algorithms 2015, 8 1013

Formulation 4. – Path-Arc Integer Master Problem (PA-IMP)

min
H∑
w=1

dw (40a)

s.t. dw ≥
∑
p∈Pi

`w(p) λ
i
p ∀i ∈ [m] , ∀w ∈ [H] (40b)

∑
p∈Pi

λip = 1 ∀i ∈ [m] (40c)

∑
p∈Pi:
α∈p

λip ≤ xα ∀α ∈ [Ai], ∀i ∈ [m] (40d)

∑
α∈Ai

xα = n− 1 ∀i ∈ [m] (40e)

λip ∈ {0, 1} ∀i ∈ [m], ∀p ∈ Pi (40f)

xα ∈ {0, 1} ∀α ∈ A (40g)

dw ∈ Z+ ∀w ∈ [H]. (40h)

In particular, Formulation 4 has the same constraints that Formulation 1 plus constraints
Equation (40d) that impose that only selected arcs can be used in a path p ∈ Pi, i ∈ [m] and constraints
Equation (40e) that impose that in each path in Di is made up of exactly n− 1 arcs.

Proposition 2. In any feasible solution to Formulation 4, the integrality of variables xα together with
constraints Equations (40c) and (40d) suffice to guarantee the integrality of variables λip.

Proof. Assume by contradiction that there exists a feasible solution to the PA-IMP in which there are
both a row ĩ ∈ [m] and a path pĩ such that 0 < λĩpĩ < 1. Then, due to constraint Equation (40c), there
also exists at least another nonzero fractional path variable encoding an alternative path for row ĩ. These
two paths must differ for at least one arc. We denote α1 as the arc used by path λĩpĩ and α2 as the arc
used by the other fractional variable. Because of constraint Equations (40d) and (40g), this fact implies
that both variables xα1 and xα2 are equal to one, which implies that constraint Equation (40e) must be
violated for ĩ. This, in turn, contradicts the feasibility of the solution.

An immediate consequence of the above proposition is that

Proposition 3. The integrality constraint on variables λip in Formulation 4 can be relaxed.

It is worth noting that the number of arcs in the combined partition network associated with the matrix
A grows exponentially in function of H . Hence, we stress that the introduction of the arc variables is
practical only for small values of H .

As for Formulation 1, the linear programming relaxation of Formulation 4, denoted as PA-RLMP, can
be solved via column generation techniques [23]. To this end, we define the following dual variables
associated to constraints Equations (40b)–(40e), namely πi,w, for all i ∈ [m] and w ∈ [H]; µi, for all



Algorithms 2015, 8 1014

i ∈ [m]; ηiα, for all α ∈ [Ai], i ∈ [m]; and ωi, for all i ∈ [m]. The dual of the PA-RLMP has the
following constraints:

µi −
H∑
w=1

(∑
α∈p

`w(α)

)
πiw −

∑
α∈p

ηiα ≤ 0 ∀i ∈ [m] ,∀p ∈ Pi (41)

m∑
i=1

πi,w = 1 ∀w ∈ [H] (42)

ηiα + ωi ≤ 0 ∀i ∈ [m]; ∀α ∈ [Ai] (43)

As variables dw are always present in the RLPM, constraints Equation (42) will never be violated
in the current dual solution. Assuming that |A| arc variables are always present in the PA-RLMP,
constraints Equation (43) will never be violated. To check the existence of violated constraints
Equation (41) means searching for the existence of a row î ∈ [m] and a path p̂ ∈ Pî such that

µî −
H∑
w=1

(∑
α∈p̂

`w(α)

)
πîw −

∑
α∈p̂

ηîα > 0 (44)

It is easy to see that, by denoting π∗i,w, µ∗i and η∗iα as the values of variables πi,w, µi and ηiα in the
current dual solution and by using argumentations similar to those used in Section 3, determining the
existence of violated constraints Equation (41) is equivalent to check whether the shortest s − t path in
D∗
î

has an overall length shorter than µ∗i −
∑

α∈p̂ η
∗
îα

, i.e., to check if it holds that

H∑
w=1

π∗
î,w
`w(p̂) < µ∗

î
−
∑
α∈p̂

η∗
îα

(45)

Once again, this task can be performed by using a standard implementation of Dijkstra’s
algorithm [22].

5.2. Implementation Details

We implemented Formulation 4 in FICO Xpress Mosel, version 3.8.0, Optimizer libraries v27.01.02
(64-bit, Hyper capacity). We run the algorithm on an IMac Core i7, 3.50 GHz, equipped with 16 GByte
RAM and operating system Mac Os X, Darwin version 10.10.3, gcc version 4.2.1 (LLVM version
6.1.0, clang-602.0.53). We used the default settings for Fico Xpress Optimizer and we set 1 h as
maximum runtime for each instance of the problem as in [9,10]. The source code of the algorithm
can be downloaded from [24].

5.2.1. Primal Bound

We constructed the primal bound of the problem by solving the one row restriction of the MCSP
for each row of the matrix A. This task can be performed in polynomial time by using the algorithm
described in Section 2. We computed the length of the corresponding s− t flow by using Equation (25)
and set the value of this solution equal to the sum of the corresponding components.



Algorithms 2015, 8 1015

5.2.2. Setting Initial Columns

We set the initial columns of the RLPM by choosing at random a path in Di, for each i ∈ [m]. We
solved the linear programming relaxation at each node of the search tree by implementing the pricing
problem described in the previous section. In particular, we used a strategy similar to the one described
in [25], i.e., we added to P̃i, i ∈ [m], all of the paths violating Equation (41).

5.2.3. Branching Rules

We explored the search tree by branching on the arc variables xα. In particular, we first constructed a
s− t flow in D. Subsequently, we used a depth-first approach in which we backtracked first on the arcs
belonging to the partition network Dm; if the backtracking returns to sm then we backtracked on the arcs
belonging to the partition network Dm−1 and subsequently we returned to those belonging to Dm. We
recursively iterated this approach for all of the partition networks in D.

5.3. Performance Analysis

Table 1 shows the comparison between the linear relaxation of Formulation 4 and the linear
relaxations of the formulations described in [17–19] when considering Mason’s instances. Some of
the values presented in the table refer to the computational tests performed in Mason’s Ph.D. thesis
(namely those reported in Tables 2.7 ad 2.8 of [10]). Specifically, the first column provides the name
of the instances analyzed. The second column provides the corresponding optimal values. The third
column provides the linear programming relaxations of the formulations described in [17–19], denoted
as MC , MW , and MM , respectively. The fourth column provides the values of the gap of formulations
MC , MW , and MM expressed in percentage, i.e., the difference between the optimal value to a given
instance of the MCSP and the objective function value of the linear programming relaxation at the root
node of the respective search tree, divided by the optimal value. The fifth column provides the linear
programming relaxations of the formulations MC and MM when considering the constraints (2.16) and
(2.45) in Mason’s Ph.D. thesis (denoted as M+

C and M+
M , respectively) and the sixth column provides the

corresponding gaps. The seventh and the eighth columns provide the lower bounds and the gaps of the
shortest path formulation [15] as modified in [10], hereafter denoted as “SR”. This formulation consider
a relaxation of the MCSP obtained when partitioning the MCSP into a set of independent sub-problems,
one for each row of the matrix A. Finally, the ninth column provides the linear programming relaxations
of Formulation 4, the tenth column provides the corresponding gaps, and the eleventh column provides
the gaps when ceiling the values of the corresponding linear relaxation of Formulation 4.



Algorithms 2015, 8 1016

Table 1. Comparison of the linear relaxation of Formulation 4 vs. the linear relaxations of
the formulations described in [15,17–19] when considering the instances of the minimum
cardinality segmentation problem (MCSP) described in [10].

Instance Optimum LB Gap (%) LB Gap (%) LB Gap (%) LB Gap (%) Gap (%)
MC ,MW ,MM M

+
C ,M

+
M SR F4 dLBF4e

p6-6-15-0 7 1.80 74.29 4.84 30.85 6.00 14.29 6.19 11.57 0.00
p6-6-15-1 7 1.87 73.33 4.78 31.78 6.00 14.29 6.34 9.43 0.00
p6-6-15-2 7 1.60 77.14 4.38 37.49 6.00 14.29 6.01 14.14 0.00
p6-6-15-3 7 1.67 76.19 4.37 37.55 6.00 14.29 6.13 12.43 0.00
p6-6-15-4 8 2.53 68.33 5.53 30.82 6.00 25.00 6.84 14.50 12.50

p7-7-15-0 8 2.27 71.67 5.41 32.32 7.00 12.50 7.70 3.75 0.00
p7-7-15-1 8 2.60 67.50 5.51 31.09 7.00 12.50 7.11 11.13 0.00
p7-7-15-2 8 1.87 76.67 5.03 37.08 7.00 12.50 7.00 12.50 12.50
p7-7-15-3 9 2.40 73.33 5.94 34.01 7.00 22.22 7.70 14.44 11.11
p7-7-15-4 8 1.67 79.17 4.42 44.70 6.00 25.00 6.89 13.88 12.50

p8-8-15-0 9 2.53 71.85 6.13 31.90 7.00 22.22 8.13 9.67 0.00
p8-8-15-1 8 2.33 70.83 5.51 31.07 7.00 12.50 7.52 6.00 0.00
p8-8-15-2 9 2.13 76.30 5.81 35.50 8.00 11.11 8.06 10.44 0.00
p8-8-15-3 9 2.13 76.30 5.61 37.66 8.00 11.11 8.07 10.33 0.00
p8-8-15-4 9 2.40 73.33 6.04 32.90 8.00 11.11 8.00 11.11 11.11

p9-9-10-0 9 2.60 71.11 6.45 28.32 8.00 11.11 8.50 5.56 0.00
p9-9-10-1 8 2.50 68.75 5.65 29.34 8.00 0.00 8.00 0.00 0.00
p9-9-10-2 8 2.20 72.50 5.40 32.48 7.00 12.50 7.68 4.00 0.00
p9-9-10-3 9 2.30 74.44 5.80 35.53 8.00 11.11 8.14 9.56 0.00
p9-9-10-4 9 2.80 68.89 5.96 33.83 8.00 11.11 8.58 4.67 0.00

p10-10-10-0 10 2.90 71.00 6.55 34.50 9.00 10.00 9.00 10.00 10.00
p10-10-10-1 10 3.10 69.00 7.22 27.84 9.00 10.00 9.00 10.00 10.00
p10-10-10-2 10 3.70 63.00 7.28 27.25 9.00 10.00 9.50 5.00 0.00
p10-10-10-3 10 3.60 64.00 8.15 18.52 9.00 10.00 9.35 6.50 0.00
p10-10-10-4 10 3.40 66.00 7.29 27.13 9.00 10.00 9.18 8.20 0.00

Table 1 shows that the formulations described in [17–19] are characterized by equal linear relaxations.
These values prove to be very poor, by giving rise to gaps that range from 63% for the instance
“p10-10-10-2” to more than 79% for the instance “p7-7-15-4”. Stronger lower bounds can be obtained
when adding to MC and MM the constraints (2.16) and (2.45) described in Mason’s Ph.D. thesis [10].
In this situation, the gaps range from 18.52% for the instance “p10-10-10-3” to 44.70% for the instance
“p7-7-15-4”. The lower bounds provided by SR prove to be even tighter, by giving rise to gaps ranging
from 0% for the instance “p9-9-10-1” to 25% for the instances “p6-6-15-4” and “p7-7-15-4”. The linear
relaxations of Formulation 4 prove to be the tightest on the considered instances, by giving rise to
gaps that are not worse than to those provided by SR. In particular, Table 1 shows that the gaps of
Formulation 4 range from 0% for the instance “p9-9-10-1” to 14.50% for the instance “p6-6-15-4”.
A part from specific cases, the percentual gain in terms of gap provided by the linear relaxations of
Formulation 4 with respect to SR ranges from a minimum 0.15% for the instance “p6-6-15-2” to
12.55% for the instance “p8-8-15-0”. Only for the instances “p7-7-15-2”, “p8-8-15-4”, “p9-9-10-1”,
“p10-10-10-0” and “p10-10-10-1” the linear relaxation of Formulation 4 provides lower bounds equal to
those provided by SR. It is worth noting that, as the value of the optimal solution to the MCSP has to be
integral, the linear relaxation of Formulation 4 can be ceiled. If this operation is performed, we obtain
the values reported in column eleventh of Table 1 which show that the gaps of Formulation 4 approach



Algorithms 2015, 8 1017

0% in 72% of the instances analyzed. In accordance with [9], provided a tight primal bound for the
problem, this fact can be used to speed up or to even avoid the use of the exhaustive search.

Table 2. Computational performances of the branch-and-price approach for Formulation 4
on supplementary instances of the MCSP.

Datasets Average Max Average Max Average Max Solved
Gap (%) Gap (%) Time (s) Time (s) Nodes Nodes

4 × 5 0.00 17.78 0.09 96.59 5 9684 10
4 × 6 0.00 12.50 0.54 86.91 21.5 5962 10
4 × 7 0.00 13.89 3.37 30.85 151 1813 10
4 × 8 0.00 12.50 29.62 217.74 1061 8454 10
4 × 9 0.00 12.50 16.39* 3600.01 700 121,002 9
4 × 10 0.00 9.52 48.39 455.22 1020 13,923 10

5 × 5 3.33 20.00 4.01 56.84 188.5 3111 10
5 × 6 0.00 2.78 2.09 47.07 74.5 1617 10
5 × 7 0.00 14.29 11.78* 3600.05 257 269,731 8
5 × 8 0.00 12.50 17.44 1313.91 478.5 73,148 10
5 × 9 6.70 31.11 184.03* 3600.18 29,734 314,729 6
5 × 10 0.00 28.33 504.14* 3600.22 31,967.5 89,970 7

6 × 5 0.00 12.00 21.77 505.61 767 40,195 10
6 × 6 0.00 28.57 26.40* 3600.01 672 316,636 8
6 × 7 0.00 30.00 11.28* 3600.01 232.5 2.06308E+07 8
6 × 8 0.00 36.67 96.93* 3600.12 1888 182,791 8
6 × 9 0.00 30.00 396.84* 3600.16 5580 117,373 8
6 × 10 11.11 30.00 103.85* 3600.10 23,812.5 192,123 5

7 × 5 0.00 15.00 8.71 2956.42 195 144,100 10
7 × 6 0.00 14.29 65.46 2063.05 1185.5 60,633 10
7× 7 0.00 19.05 36.29* 3600.04 740 77,676 9
7 × 8 11.96 37.50 39.36* 3600.26 67,276 216,647 4
7 × 9 0.00 36.36 84.34* 3600.10 1818 238,226 7
7 × 10 6.25 43.59 253.10* 3600.20 27,126 141,727 5

8 × 5 0.00 17.14 13.53 2843.55 319.5 199,940 10
8 × 6 8.33 35.00 142.15* 3600.08 2180.5 165,709 8
8 × 7 14.29 40.00 267.10* 3600.05 115,512 146,837 4
8 × 8 21.25 40.00 397.82* 3600.10 43,228.5 104,899 4
8 × 9 0.00 36.36 257.95* 3600.39 3797.5 282,273 7
8 × 10 5.56 36.36 201.39* 3600.39 14,744.5 62,221 5

9 × 5 6.94 13.33 200.71 763.74 1087 37,446 10
9 × 6 4.17 37.04 106.16* 3600.02 663 330,096 7
9 × 7 0.00 33.33 175.31* 3600.09 1250.5 78,960 8
9 × 8 25.00 33.33 11.25* 3600.54 36,470.5 120,778 4
9 × 9 22.22 41.67 32.25* 3600.19 47,752 81,075 3
9 ×10 31.82 41.67 75.75* 3600.51 31,208 92,674 3

* indicates that the corresponding value refers just to the instances in a dataset that have been solved
within 1h computing time.

A drawback of current implementation of Formulation 4 is represented by the solution times which
usually are longer than those described in [9,10]. In particular, computational experiments have
shown that the branch-and-price approach for Formulation 4 is unable to solve any of the considered
instances within the time limit. This fact appears to be due to a number of technical details related
to the implementation of Formulation 4, included the choice of the primal bound, the branching
rules, the poor current ability to handle the combined partition network and the use of an interpreted



Algorithms 2015, 8 1018

language such as Mosel. In order to obtain better insights about the computational limits of current
implementation, we considered 36 supplementary datasets of the MCSP, each containing 10 random
instances numbered from 0 to 9 and characterized by having a fixed number of rows and columns for
the matrix A. Specifically, we considered a number of rows m ranging in {4, . . . , 9} and a number
of columns n ranging in {5, . . . , 10}. Fixed the values of m and n, a generic instance in a dataset
is generated by creating a m × n nonnegative integer matrix A whose generic entries are random
integers in the discrete interval {1, . . . , H}, where H is randomly generated in the set {3, . . . , 7}. A
generic dataset is identified by the dimension of the intensity matrices encoded in its instances. For
example, dataset 4 × 5 includes instances of the MCSP encoding intensity matrices having dimension
4 × 5. We used the Mersenne Twister libraries [26,27] as pseudorandom integer generator and we
obtained, at the end of the generation process, 360 instances of the MCSP downloadable from [24].
Table 2 shows the computational performances obtained on the datasets so generated. As a
general trend, we have observed that the performances of the branch-and-price approach for
Formulation 4 decrease in function of both the size of the input matrix and the value of H , by
reaching a maximum of 10 solved instances within 1h computing time for matrices having dimension
4 × 5 and a minimum of 3 solved instances for matrices having dimension 9 × 10. In current
implementation, high values for H directly influences the size of each partition network as the
number of edges in A partitions grow pseudo-polynomially in function of H . Investigating possible
approaches to overcome current limitations and improve the overall performances warrants additional
research effort.

6. Conclusions

In this article, we investigated the Minimum Cardinality Segmentation Problem (MCSP), aNP-hard
combinatorial optimization problem arising in intensity-modulated radiation therapy. The problem
consists in decomposing a given nonnegative integer matrix into a nonnegative integer linear combination
of a minimum cardinality set of binary matrices satisfying the consecutive ones property. We showed
how to transform the MCSP into a combinatorial optimization problem on a weighted directed network,
and we exploited this result to develop an exponential-sized integer linear programming formulation
to exactly solve it. Computational experiments showed that the lower bounds obtained by the linear
relaxation of the considered formulation improve upon those currently described in the literature.
However, current solution times are still far from competing with the current state-of-the-art approach
to solution of the MCSP. Investigating strategies to overcome current limitations warrant additional
research effort.

Acknowledgments

The first author acknowledges support from the “Fonds spéciaux de recherche (FSR)” of the
Université Catholique de Louvain.



Algorithms 2015, 8 1019

Author Contributions

Daniele Catanzaro and Céline Engelbeen conceived the algorithms and designed the experiments;
Céline Engelbeen implemented algorithms; Daniele Catanzaro performed the experiments;
Daniele Catanzaro and Céline Engelbeen analyzed the data and wrote the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Baatar, D.; Hamacher, H.W.; Ehrgott, M.; Woeginger, G.J. Decomposition of integer matrices and
multileaf collimator sequencing. Discrete Appl. Math. 2005, 152, 6–34.

2. Biedl, T.; Durocher, S.; Fiorini, S.; Engelbeen, C.; Young, M. Optimal algorithms for segment
minimization with small maximal value. Discrete Appl. Math. 2013, 161, 317–329.

3. Takahashi, S. Conformation radiotherapy: Rotation techniques as applied to radiography and
radiotherapy of cancer. Acta Radiol. Suppl. 1965, 242, 1.

4. Brewster, L.; Mohan, R.; Mageras, G.; Burman, C.; Leibel, S.; Fuks, Z. Three dimensional
conformal treatment planning with multileaf collimators. Int. J. Radiat. Oncol. Biol. Phys.
1995, 33, 1081–1089.

5. Helyer, S.J.; Heisig, S. Multileaf collimation versus conventional shielding blocks: A time and
motion study of beam shaping in radiotherapy. Radiat. Oncol. 1995, 37, 61–64.

6. Bucci, M.K.; Bevan, A.; Roach, M. Advances in radiation therapy: Conventional to 3D, to IMRT,
to 4D, and beyond. CA A Cancer J. Clin. 2005, 55, 117–134.

7. Ehrgott, M.; Güler, C.; Hamacher, H.W.; Shao, L. Mathematical optimization in intensity
modulated radiation therapy. 4 OR 2008, 6, 199–262.

8. Collins, M.J.; Kempe, D.; Saia, J.; Young, M. Nonnegative integral subset representations of integer
sets. Inf. Process. Lett. 2007, 101, 129–133.

9. Ernst, A.T.; Mak, V.H.; Mason, L.R. An exact method for the minimum cardinality problem in the
treatment planning of intensity-modulated radiotherapy. Inf. J. Comput. 2009, 21, 562–574.

10. Mason, L. On the Minimum Cardinality Problem in Intensity Modulated Radiotherapy. PhD
Thesis, Deakin University, Melbourne, Australia, May 2012.

11. Baatar, D.; Boland, N.; Brand, S.; Stuckey, P.J. Minimum Cardinality Matrix Decomposition
into Consecutive-Ones Matrices: CP and IP Approaches. In Proceedings of the 4th International
Conference Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, Brussels, Belgium, 23–26 May 2007; pp. 1–15.

12. Engel, K. A new algorithm for optimal multileaf collimator field segmentation. Discrete Appl.
Math. 2005, 152, 35–51.

13. Kalinowski, T. Algorithmic Complexity of the Minimization of the Number of Segments in Multileaf
Collimator Field Segmentation; Technical Report PRE04-01-2004; Department of Mathematics,
University of Rostock: Rostock, Germany, 2004; pp. 1–31.



Algorithms 2015, 8 1020

14. Nußbaum, M. Min Cardinality C1-Decomposition of Integer Matrices. Master’s Thesis,
Department of Mathematics, Technical University of Kaiserslautern, Kaiserslautern, Germany, July
2006.

15. Cambazard, H.; O’Mahony, E.; O’Sullivan, B. A shortest path-based approach to the multileaf
collimator sequencing problem. Discrete Appl. Math. 2012, 160, 81–99.

16. Langer, M.; Thai, V.; Papiez, L. Improved leaf sequencing reduces segments of monitor units
needed to deliver IMRT using multileaf collimators. Med. Phys. 2001, 28, 1450–1458.

17. Baatar, D.; Boland, N.; Stuckey, P.J. CP and IP approaches to cancer radiotherapy delivery
optimization. Constraints 2011, 16, 173–194.

18. Mak, V. Iterative variable aggregation and disaggregation in IP: An application. Oper. Res. Lett.
2007, 35, 36–44.

19. Wake, G.M.H.; Boland, N.; Jennings, L.S. Mixed integer programming approaches to exact
minimization of total treatment time in cancer radiotherapy using multileaf collimators. Comput.
OR 2009, 36, 795–810.

20. Engelbeen, C. The Segmentation Problem in Radiation Therapy. PhD Thesis, Department of
Mathematics, Université Libre de Bruxelles, Brussels, Belgium, June 2010.

21. Andrews, G.E. The theory of partitions; Cambridge University Press: Cambridge, UK, 1976.
22. Ahuja, R.K.; Magnanti, T.L.; Orlin, J.B. Network Flows: Theory, Algorithms, and Applications;

Prentice Hall: Upper Saddle River, NJ, USA, 1993.
23. Martin, R.K. Large Scale Linear and Integer Optimization: A Unified Approach; Kluwer Academic

Publisher: Boston, MA, USA, 1999.
24. MCSP. Available online: perso.uclouvain.be/ daniele.catanzaro/SupportingMaterial/MCSP.zip

(accessed on 9 November 2015).
25. Fischetti, M.; Lancia, G.; Serafini, P. Exact Algorithms for Minimum Routing Cost Trees.

Networks 2002, 39, 161–173.
26. Matsumoto, M.; Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform

pseudo-random number generator. ACM Trans. Modeling Comput. Simul. 1998, 8, 3–30.
27. Matsumoto, M.; Kurita, Y. Twisted GFSR generators. ACM Trans. Modeling Comput. Simul.

1992, 2, 179–194.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	The One Row Restriction of the MCSP as a Network Optimization Problem
	The MCSP as a Network Optimization Problem
	An Integer Linear Programming Formulation for the MCSP
	Computational Experiments
	Implementing Formulation ??
	Implementation Details
	Primal Bound
	Setting Initial Columns
	Branching Rules

	Performance Analysis

	Conclusions

