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Abstract:

 Kung-Traub’s conjecture states that an optimal iterative method based on d function evaluations for finding a simple zero of a nonlinear function could achieve a maximum convergence order of [image: there is no content]. During the last years, many attempts have been made to prove this conjecture or develop optimal methods which satisfy the conjecture. We understand from the conjecture that the maximum order reached by a method with three function evaluations is four, even for quadratic functions. In this paper, we show that the conjecture fails for quadratic functions. In fact, we can find a 2-point method with three function evaluations reaching fifth order convergence. We also develop 2-point 3rd to 8th order methods with one function and two first derivative evaluations using weight functions. Furthermore, we show that with the same number of function evaluations we can develop higher order 2-point methods of order [image: there is no content], where r is a positive integer, [image: there is no content]. We also show that we can develop a higher order method with the same number of function evaluations if we know the asymptotic error constant of the previous method. We prove the local convergence of these methods which we term as Babajee’s Quadratic Iterative Methods and we extend these methods to systems involving quadratic equations. We test our methods with some numerical experiments including an application to Chandrasekhar’s integral equation arising in radiative heat transfer theory.
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1. Introduction


The problem of finding a simple zero of a nonlinear equation [image: there is no content] is an often discussed problem in many applications of science and technology. The most commonly used method is the Newton-Raphson method (simply called as Newton’s method). Many higher order variants of Newton’s method have been developed and rediscovered in the last 15 years. Recently, the order of convergence of many variants of Newton’s method has been improved using the same number of functional evaluations by means of weight functions (see [1,2,3,4,5,6] and the references therein). The aim of such research is to develop optimal methods which satisfy Kung-Traub’s conjecture. In this paper, we develop 2-point methods with 1 function and 2 first derivative evaluations for solving quadratic equations and study Kung-Traub’s conjecture for these methods. We extend these methods to systems of quadratic equations and conduct some numerical experiments to test the efficiencies of the methods.




2. Developments of the Methods


Let [image: there is no content] define an Iterative Function (I.F.).




Definition 1. 

[7] If the sequence [image: there is no content]tends to a limit [image: there is no content]in such a way that


limn→∞[image: there is no content]−[image: there is no content](x(k)−[image: there is no content])p=C








for [image: there is no content], then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error constant. If [image: there is no content], [image: there is no content]or [image: there is no content], the convergence is said to be linear, quadratic or cubic, respectively.



Let e(k)=x(k)−[image: there is no content], then the relation


e[image: there is no content]=C(e(k))p+O(e(k))p+1=O(e(k))p



(1)




is called the error equation. The value of p is called the order of convergence of the method.








Definition 2. 

[8] The Efficiency Index is given by


[image: there is no content]



(2)




where d is the total number of new function evaluations (the values of f and its derivatives) per iteration.







Let [image: there is no content] be determined by new information at [image: there is no content]



No old information is reused. Thus,


[image: there is no content]=ψ(x(k),ϕ1(x(k)),...,ϕi(x(k)))



(3)







Then ψ is called a multipoint I.F without memory. Kung-Traub’s Conjecture [9]



Let ψ be an I.F. without memory with d evaluations. Then


p(ψ)≤pOpt=[image: there is no content]



(4)




where [image: there is no content] is the maximum order.



The second order Newton I.F. (2ndNR) is given by


ψ2ndNR(x)=x−u(x),u(x)=f(x)f′(x)



(5)







The 2ndNR I.F. is a 1-point I.F. with 2 functions evaluations and it satisfies the Kung-Traub conjecture with [image: there is no content]. Thus, [image: there is no content]. The 2-point fourth order Jarratt I.F. (4thJM) [10] is given by


ψ4thJM(x)=x−u(x)3τ+16τ−2τ=f′x−23u(x)f′(x)



(6)







The 4thJM I.F. with 3 function evaluations satisfies the Kung-Traub conjecture with [image: there is no content].



According to Kung-Traub’s conjecture, it is not possible to obtain an I.F. with three function evaluations reaching an order greater than four. We show that this conjecture fails for quadratic functions.



We consider the quadratic function [image: there is no content], where κ2≠0,κ1,κ0 are constants. Consider the following I.F. for quadratic function:


ψ[image: there is no content]thBQIM(x)=x−u(x)H(τ,r)



(7)




where


H(τ,r)=1+∑i=1r[image: there is no content](τ−1)i








where [image: there is no content]’s are constants.



The error equation of the I.F. defined by Equation (7) for [image: there is no content] is given by


ψ(x)−[image: there is no content]=43a1+1c2(e(k))2+−163a1−169a2−2c22(e(k))3+523a1+1129a2+6427a3+4c23(e(k))4+−1523a1−1763a2−64027a3−25681a4−8c24(e(k))5+396827a3+6883a2+4163a1+332881a4+16+1024243a5c25(e(k))6+−10883a1−800a2−1945627a3−16384243a5−2560081a4−32−4096729a6c26(e(k))7+64+27523a1+77443a2+8249627a3+15104081a4+5017681a5+77824729a6c27(e(k))8+....








where c2=f″([image: there is no content])f′([image: there is no content]),f′([image: there is no content])≠0.



Eliminating the terms in [image: there is no content], [image: there is no content] we obtain a system of 6 linear equations with 6 unknowns:


[image: there is no content]








where


[image: there is no content]=4300000−163−169000052311296427000−1523−1763−64027−25681004163688339682733288110242430−10883−800−1945627−2560081−16384243−4096729










X=a1a2a3a4a5a6,B=−12−48−1632








whose solutions are given by


X=a1a2a3a4a5a6=[image: there is no content]−1B=−3498−13564567128−5103512240571024











We note that [image: there is no content] is a lower triangular matrix and the solutions are easily obtained once the first solution is obtained from the first equation.



In this way, we obtain a family of higher order I.F.s which we term as higher order 2-point Babajee’s Quadratic Iterative Methods for solving quadratic equations ([image: there is no content]thBQIM).



The first six members of [image: there is no content]thBQIM’s family in Equation (7) with their error equation are

	
[image: there is no content]: 2-point 3rdBQIM I.F.


[image: there is no content]










ψ3thBQIM(x)−[image: there is no content]=2c22(e(k))3+O(e(k))4











	
[image: there is no content]: 2-point 4thBQIM I.F.


[image: there is no content]










ψ4thBQIM(x)−[image: there is no content]=5c23(e(k))4+O(e(k))5











	
[image: there is no content]: 2-point 5thBQIM I.F.


[image: there is no content]










ψ5thBQIM(x)−[image: there is no content]=14c24(e(k))5+O(e(k))6











	
[image: there is no content]: 2-point 6thBQIM I.F.


[image: there is no content]










ψ6thBQIM(x)−[image: there is no content]=42c25(e(k))6+O(e(k))7











	
[image: there is no content]: 2-point 7thBQIM I.F.


[image: there is no content]










ψ7thBQIM(x)−[image: there is no content]=132c26(e(k))7+O(e(k))8











	
[image: there is no content]: 2-point 8thBQIM I.F.


[image: there is no content]










ψ8thBQIM(x)−[image: there is no content]=429c27(e(k))8+O(e(k))9
















We note that the maximum order reached by optimal methods with four function evaluations is eight. We have obtained an eighth order 2-point method with only three function evaluations for solving quadratic equations. This implies that the Kung-Traub conjecture fails for quadratic equations.




3. Convergence Analysis



Theorem 3. 

Let a sufficiently smooth function [image: there is no content]has a simple root [image: there is no content]in the open interval D. Then the six members of 2-point[image: there is no content]thBQIM’s family in Equation (7) ([image: there is no content]) are of local 3rd to 8th order convergence, respectively.








Proof. 

We will prove the 3rd order convergence of the 2-point 3rdBQIM I.F. and 8th order convergence of the 2-point 8thBQIM I.F.







The proofs for the 2-point 4th to 7th order I.F.s follow on similar lines.



It is easy to see that for a quadratic function,


f(x)=f′([image: there is no content])e(k)+c2(e(k))2








and


f′(x)=f′([image: there is no content])1+2c2e(k)











By Taylor expansion and using computer algebra software as Maple


u(x)=e(k)−c2(e(k))2+2c22(e(k))3−4c23(e(k))4+8c24(e(k))5−16c25(e(k))6+32c26(e(k))7−64c27(e(k))8+128c28(e(k))9+...



(8)




so that


τ=1−43c2e(k)+4c22(e(k))2−323c23(e(k))3+803c24(e(k))4−64c25(e(k))5+4483c26(e(k))6−10243c27(e(k))7+768c28(e(k))8+...



(9)







Now,


H(τ,1)=1+c2e(k)−3c22(e(k))2+8c23(e(k))3+...



(10)







Using Equations (8) and (10), we have


u(x)H(τ,1)=e(k)−2c22(e(k))3+O(e(k))4








which leads to the error equation for the 2-point 3rdBQIM I.F.



Similarly,


H(τ,6)=1+c2e(k)−c22(e(k))2+c23(e(k))3−c24(e(k))4+c25(e(k))5−c26(e(k))6−428c27(e(k))7+...



(11)







Using Equations (8) and (11), we have


u(x)H(τ,6)=e(k)−429c27(e(k))8+O(e(k))9








which leads to the error equation for the 2-point 8thBQIM I.F.



☐



We next prove the local convergence of the 2-point [image: there is no content]thBQIM’s family for any r.




Theorem 4. 

Let a sufficiently smooth function [image: there is no content]has a simple root [image: there is no content]in the open interval D. Then the members of 2-point[image: there is no content]thBQIM’s family in Equation (7) are of local [image: there is no content]th order convergence.








Proof. 

We prove this result by induction.







The case [image: there is no content] corresponds to the 3rdBQIM I.F.



Assume the 2-point [image: there is no content]thBQIM family has order of convergence of [image: there is no content]. Then it satisfies the error equation


ψ[image: there is no content]thBQIM(x)−[image: there is no content]=[image: there is no content]c2r+1(e(k))[image: there is no content]+O(e(k))r+3



(12)




where [image: there is no content] is the asymptotic error constant.



Assume that Equation (12) holds for [image: there is no content].



Now from Equation (9), we have


τ−1=−43c2e(k)1−3c2e(k)+8c22(e(k))2+...








so that


(τ−1)m+1=−43m+1c2m+1(e(k))m+11−3c2e(k)+8c22(e(k))2+...m+1=−43m+1c2m+1(e(k))m+11+Oe(k)



(13)







For the case [image: there is no content],


ψ[image: there is no content]thBQIM(x)−[image: there is no content]=x−u(x)H(τ,m+1)−[image: there is no content]=x−u(x)H(τ,m)−[image: there is no content]−am+1u(x)(τ−1)m+1=ψ(m+2)thBQIM(x)−[image: there is no content]−am+1u(x)(τ−1)m+1=Cmc2m+1(e(k))m+2−am+1−43m+1c2m+1(e(k))m+2+O(e(k))m+3using Equations (8), (12) and (13)=Cm−am+1−43m+1c2m+1(e(k))m+2+O(e(k))m+3








which shows that the 2-point [image: there is no content]thBQIM family has [image: there is no content]th order of convergence if we choose


am+1=Cm−34m+1



(14)




☐



From Equation (14), we can obtain higher order I.F. if we know the asymptotic error constant of the previous I.F.



For example, for the 2-point 3rdBQIM I.F., [image: there is no content] and from Equation (14),


a2=C1−342=98








and we can obtain the 4thBQIM I.F.



Similarly, for the 2-point 8thBQIM I.F., [image: there is no content] and from Equation (14),


a7=C6−347=−93822316384








and we can obtain the 2-point 9thBQIM I.F. with


H(τ,7)=1−34(τ−1)+98(τ−1)2−13564(τ−1)3+567128(τ−1)4−5103512(τ−1)5+240571024(τ−1)6−93822316384(τ−1)7











From Theorem 4, we conclude that we can have a family of order [image: there is no content], [image: there is no content] with only 3 function evaluations.



The Efficiency Index of the 2-point [image: there is no content]thBQIM family is given by


EI=[image: there is no content]13,r≥1



(15)







In the following section, we extend our methods to systems of equations.




4. Extension to Systems of Equations


Consider the system of nonlinear equations [image: there is no content] where [image: there is no content], [image: there is no content], [image: there is no content] defined as


fi(x)=bi+∑l=1n∑m=1nbl,mxlxm,bi,bl,m,i,l,m=1,..n,areconstants.








and [image: there is no content] is a smooth map and [image: there is no content] is an open and convex set, where we assume that [image: there is no content] is a zero of the system and [image: there is no content] is an initial guess sufficiently close to [image: there is no content].



We define the 2-point [image: there is no content]thBQIM’s family for systems of quadratic equations as:


ψ[image: there is no content]thBQIM(x)=x−H(τ(x),r)u(x)



(16)




where


u(x)=[image: there is no content]′(x)−1[image: there is no content](x)y(x)=x−23u(x)τ(x)=[image: there is no content]′(x)−1[image: there is no content]′y(x)H(τ(x),r)=I+∑i=1r[image: there is no content](τ(x)−I)i,Iistheidentitymatrix.











Let us define


c2=12[[image: there is no content]′([image: there is no content])]−1[image: there is no content](2)([image: there is no content]),e(k)=[image: there is no content]−[image: there is no content]











Using the notations in [11], it is noted that [image: there is no content].



The error at the [image: there is no content]th iteration is e[image: there is no content]=[image: there is no content][image: there is no content]+O(e(k))p+1, where [image: there is no content] is a p-linear function [image: there is no content]∈L(Rn×⋯×Rn,Rn), is called the error equation and p is the order of convergence.



Observe that [image: there is no content] is [image: there is no content].



The first six members of [image: there is no content]thBQIM’s family in Equation (16) with their error equation are

	
[image: there is no content]: 2-point 3rdBQIM I.F.


[image: there is no content]










ψ3thBQIM(x)−[image: there is no content]=2c22(e(k))3+O(e(k))4











	
[image: there is no content]: 2-point 4thBQIM I.F.


[image: there is no content]










ψ4thBQIM(x)−[image: there is no content]=5c23(e(k))4+O(e(k))5











	
[image: there is no content]: 2-point 5thBQIM I.F.


[image: there is no content]










ψ5thBQIM(x)−[image: there is no content]=14c24(e(k))5+O(e(k))6











	
[image: there is no content]: 2-point 6thBQIM I.F.


[image: there is no content]










ψ6thBQIM(x)−[image: there is no content]=42c25(e(k))6+O(e(k))7











	
[image: there is no content]: 2-point 7thBQIM I.F.


[image: there is no content]










ψ7thBQIM(x)−[image: there is no content]=132c26(e(k))7+O(e(k))8











	
[image: there is no content]: 2-point 8thBQIM I.F.


H(τ(x),6)=I−34(τ(x)−I)+98(τ(x)−I)2−13564(τ(x)−I)3+567128(τ(x)−I)4−5103512(τ(x)−I)5+240571024(τ(x)−I)6










ψ8thBQIM(x)−[image: there is no content]=429c27(e(k))8+O(e(k))9
















4.1. Convergence Analysis



Theorem 5. 

Let [image: there is no content]:[image: there is no content]⊆Rn⟶Rnbe twice Frechet differentiable at each point of an open convex neighborhood [image: there is no content]of [image: there is no content]∈Rn, that is a solution of the quadratic system [image: there is no content]. Let us suppose that [image: there is no content]is continuous and nonsingular in [image: there is no content], and [image: there is no content]is close enough to [image: there is no content]. Then the sequence [image: there is no content]obtained using the iterative expressions Equation (16), [image: there is no content]converge to [image: there is no content]with order 3 to 8, respectively.








Proof. 

We will prove for the case [image: there is no content]. The other cases follow along similar lines. Since [image: there is no content] is a quadratic function of several variables, we have


[image: there is no content]([image: there is no content])=[image: there is no content]′([image: there is no content])e(k)+c2(e(k))2



(17)




and


[image: there is no content]′([image: there is no content])=[image: there is no content]′([image: there is no content])I+2c2e(k)



(18)






[image: there is no content]′([image: there is no content])−1=[I−2c2e(k)+4c22(e(k))2−8c23(e(k))3+16c24(e(k))4−32c25(e(k))5+64c26(e(k))6−128c27(e(k))7+256c28(e(k))8...][[image: there is no content]′([image: there is no content])]−1



(19)











Using Equations (17) and (19), we have


u([image: there is no content])=e(k)−c2(e(k))2+2c22(e(k))3−4c23(e(k))4+8c24(e(k))5−16c25(e(k))6+32c26(e(k))7−64c27(e(k))8+...



(20)




and the expression for [image: there is no content] is given by


[image: there is no content]=[image: there is no content]+13e(k)+23c2(e(k))2−43c22(e(k))3+83c23(e(k))4−163c24(e(k))5+323c25(e(k))6−643c26(e(k))7+1283c27(e(k))8+....











The Taylor expansion of Jacobian matrix [image: there is no content]′(y([image: there is no content])) is then given by


[image: there is no content]′(y([image: there is no content]))=[image: there is no content]′([image: there is no content])I+2c2(y([image: there is no content])−[image: there is no content])=[image: there is no content]′([image: there is no content])[I+23c2(e(k))+43c22(e(k))2−83c23(e(k))3+163c24(e(k))4−323c25(e(k))5+643c26(e(k))6−1283c27(e(k))7+2563c28(e(k))8+....]











Therefore, using Equation (19), we obtain


τ([image: there is no content])=[[image: there is no content]′([image: there is no content])]−1[image: there is no content]′(y([image: there is no content]))=I−43c2(e(k))+4c22(e(k))2−323c23(e(k))3+803c24(e(k))4−64c25(e(k))5+4483c26(e(k))6−10243c27(e(k))7+768c28(e(k))8+....








so that


H(τ(x),6)=I+c2(e(k))−c22(e(k))2+c23(e(k))3−c24(e(k))4+c25(e(k))5−c26(e(k))6−428c27(e(k))7+.....



(21)







Using Equations (20) and (21), we have, after simplifications,


H(τ(x),6)u([image: there is no content])=e(k)−429c27(e(k))8+...








and, thus,


x−H(τ(x),6)u([image: there is no content])=[image: there is no content]+e(k)−(e(k)−429c27(e(k))8+...)=[image: there is no content]+429c27(e(k))8+...








☐




Theorem 6. 

Let [image: there is no content]:[image: there is no content]⊆Rn⟶Rnbe twice Frechet differentiable at each point of an open convex neighborhood [image: there is no content]of [image: there is no content]∈Rn, that is a solution of the quadratic system [image: there is no content]. Let us suppose that [image: there is no content]is continuous and nonsingular in [image: there is no content], and [image: there is no content]is close enough to [image: there is no content]. Then the sequence [image: there is no content]obtained using the iterative expressions Equation (16), [image: there is no content]converges to [image: there is no content]with order [image: there is no content]with the error equation


ψ[image: there is no content]thBQIM(x)−[image: there is no content]=[image: there is no content]c2r+1(e(k))[image: there is no content]+...



(22)











The proof is by induction and follows along similar lines.



Similarly as in the case of scalar equations, we can obtain higher order I.F. for systems if we know the asymptotic error constant of the previous I.F. using


ar+1=[image: there is no content]−34r+1,r=1,2,...













5. Numerical Experiments


5.1. Scalar Equation


We consider the Test problem 1 (TP1) of finding the positive zero of the quadratic function [image: there is no content] to compare the efficiency of the proposed methods. Numerical computations have been carried out in the MATLAB software rounding to 1000 significant digits. Depending on the precision of the computer, we use the stopping criteria for the iterative process |[image: there is no content]−x(k)|<ϵ where [image: there is no content]. Let N be the number of iterations required for convergence. For simplicity, we denote [image: there is no content].



The computational order of convergence is given by


[image: there is no content]











We choose [image: there is no content]. The results in Table 1 show that, as the order of the [image: there is no content]thBQIM I.F. (r = 1,2,3,4,5,6), the methods converge in less iterations. The computational order of convergence agree with the theoretical order of convergence confirming that Kung-Traub’s conjecture fails for quadratic functions.


Table 1. Results of the quadratic function [image: there is no content] for the 3rdBQIM, 4thBQIM, 5thBQIM, 6thBQIM, 7thBQIM and 8thBQIM I.F.s.


	Error
	3[image: there is no content][image: there is no content]
	4[image: there is no content][image: there is no content]
	5[image: there is no content][image: there is no content]
	6[image: there is no content][image: there is no content]
	7[image: there is no content][image: there is no content]
	8[image: there is no content][image: there is no content]





	[image: there is no content]
	5.6e−1
	5.8e−1
	5.8e−1
	5.8e−1
	5.9e−1
	5.9e−1



	[image: there is no content]
	2.3e−2
	7.7e−3
	2.8e−3
	1.1e−3
	4.3e-4
	1.8e−4



	[image: there is no content]
	3.0e−6
	7.5e−10
	3.6e−14
	3.5e−19
	6.9e−25
	2.9e−31



	[image: there is no content]
	7.0e−18
	6.9e−38
	1.3e−68
	4.0e−112
	1.8e−170
	1.3e−245



	[image: there is no content]
	8.7e−53
	4.9e−150
	-
	-
	-
	-



	[image: there is no content]
	-
	-
	-
	-
	-
	-



	ρ
	3
	4
	5
	6
	7
	8












5.2. Dynamic Behaviour in the Complex Plane


Consider our Test problem 2 (TP2) based on the quadratic function [image: there is no content] where z is a complex number. We let [image: there is no content] and [image: there is no content] which are the roots of unity for [image: there is no content]. We study the dynamic behaviour of higher order [image: there is no content]thBQIM I.F.s ([image: there is no content]). We take a square [image: there is no content] of [image: there is no content] points and we apply our iterative methods starting in every [image: there is no content] in the square. If the sequence generated by the iterative method attempts a zero [image: there is no content] of the polynomial with a tolerance [image: there is no content] and a maximum of 100 iterations, we decide that [image: there is no content] is in the basin of attraction of this zero.



If the iterative method starting in [image: there is no content] reaches a zero in N iterations ([image: there is no content]), then we mark this point [image: there is no content] with a blue color if [image: there is no content] or green color if [image: there is no content]. If [image: there is no content] we conclude that the starting point has diverged and we assign a dark blue color. Let [image: there is no content] be number of diverging points and we count the number of starting points which converge in 1, 2, 3, 4, 5 or above 5 iterations.



Table 2 shows that all 6 methods are globally convergent and as the order of the method increases, the number of starting points converging to a root in 1 or 2 iterations increases. This is the advantage of higher order methods.


Table 2. Results of the quadratic function [image: there is no content] for the 3rdBQIM, 4thBQIM, 5thBQIM, 6thBQIM, 7thBQIM and 8thBQIM I.F.s.


	I.F.
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	3rdBQIM
	56
	6536
	28,736
	16,240
	5428
	8540
	0



	4thBQIM
	232
	16,908
	27,532
	7780
	3700
	9564
	0



	5thBQIM
	528
	23,348
	23,196
	5928
	3340
	9196
	0



	6thBQIM
	928
	27,880
	19,680
	5272
	3072
	8704
	0



	7thBQIM
	1392
	31,304
	16,736
	4856
	2864
	8394
	0



	8thBQIM
	1892
	33,924
	14,220
	4564
	2788
	8184
	0













Bahman Kalantari coined the term “polynomiography” to be the art and science of visualization in the approximation of roots of polynomial using I.F. [12]. Figure 1 and Figure 2 show the polynomiography of the six methods. It can be observed as the order of the method increases, the methods behave more chaotically (the size of the “petals” become larger).


Figure 1. Polynomiographs of 3rdBQIM, 4thBQIM and 5thBQIM I.F.s. for [image: there is no content]. (a) 3rdBQIM; (b) 4thBQIM; (c) 5thBQIM.



[image: Algorithms 09 00001 g001 1024]





Figure 2. Polynomiographs of 6thBQIM, 7thBQIM and 8thBQIM I.F.s. for [image: there is no content]. (a) 6thBQIM; (b) 7thBQIM; (c) 8thBQIM.



[image: Algorithms 09 00001 g002 1024]









5.3. Systems of Quadratic Equations


For our numerical experiments in this section, the approximate solutions are calculated correct to 1000 digits by using variable precision arithmetic in MATLAB. We use the following stopping criterion for the numerical scheme:


∥x[image: there is no content]−[image: there is no content]∥2<1e−50



(23)







For a system of equations, we used the approximated computational order of convergence [image: there is no content] given by (see [13])


[image: there is no content]≈log(∥x[image: there is no content]−[image: there is no content]∥2/∥[image: there is no content]−x(k−1)∥2)log(∥[image: there is no content]−x(k−1)∥2/∥x(k−1)−x(k−2)∥2)



(24)







We consider the Test Problem 3 (TP3) which is a system of 2 equations:


[image: there is no content]



(25)







Using the substitution method, Equation (25) reduces to the quadratic equation [image: there is no content] whose positive root is given by [image: there is no content] Therefore [image: there is no content]



We use [image: there is no content]=(1,2)T as starting vector and apply our Equation (16), [image: there is no content] to calculate the approximate solutions of Equation (25).





Table 3 shows that as the order of the methods increase the methods converge in less iterations (4 iterations) and with a smaller error. Similarly, as in the case for scalar equations, the computational order of convergence for this system of 2 equations agree with the theoretical one.


Table 3. Results of the TP3 for the 3rdBQIM, 4thBQIM, 5thBQIM, 6thBQIM, 7thBQIM and 8thBQIM I.F.s.


	Error
	3[image: there is no content][image: there is no content]
	4[image: there is no content][image: there is no content]
	5[image: there is no content][image: there is no content]
	6[image: there is no content][image: there is no content]
	7[image: there is no content][image: there is no content]
	8[image: there is no content][image: there is no content]





	∥x(1)−[image: there is no content]∥2
	4.2e−1
	4.3e−1
	4.3e−1
	4.3e−1
	4.3e−1
	4.3e−1



	[image: there is no content]
	9.2e−3
	2.5e−3
	7.6e−4
	2.5e−4
	8.6e−5
	3.1e−5



	[image: there is no content]
	6.0e−8
	1.4e−12
	5.1e−18
	2.9e−24
	2.7e−31
	4.0e−39



	[image: there is no content]
	1.6e−23
	1.5e−49
	7.5e−89
	7.4e−144
	7.0e−217
	3.0e−310



	[image: there is no content]
	3.4e−70
	1.9e−197
	-
	-
	-
	-



	[image: there is no content]
	3
	4
	5
	6
	7
	8









We next consider the Test Problem 4 (TP4) [14]


[image: there is no content]



(26)







Using the elimination method, Equation (26) reduces to the simple quadratic equation [image: there is no content] whose positive root is given by [image: there is no content] and therefore [image: there is no content].



Using [image: there is no content]=(2,3)T as starting vector far from the root, we apply our methods (16), [image: there is no content] to find the numerical solutions of Equation (26).





In Table 4, with the starting vector distant from the root, we observe that the methods take more iterations to converge. As from the third iteration, the iterate of the methods are close to the root and they converge to the root at their respective rate of convergence.


Table 4. Results of TP4 for the 3rdBQIM, 4thBQIM, 5thBQIM, 6thBQIM, 7thBQIM and 8thBQIM I.F.s.


	Error
	3[image: there is no content][image: there is no content]
	4[image: there is no content][image: there is no content]
	5[image: there is no content][image: there is no content]
	6[image: there is no content][image: there is no content]
	7[image: there is no content][image: there is no content]
	8[image: there is no content][image: there is no content]





	∥x(1)−[image: there is no content]∥2
	2.0e0
	2.2e0
	2.3e0
	2.4e0
	2.4e0
	2.5e0



	[image: there is no content]
	5.3e−1
	3.8e−1
	2.8e−1
	2.2e−1
	1.7e−1
	1.4e−1



	[image: there is no content]
	3.5e−2
	5.0e−3
	6.3e−4
	6.8e−5
	6.2e−6
	4.5e−7



	[image: there is no content]
	3.1e−5
	1.5e−9
	9.2e−16
	3.5e−24
	4.1e−35
	6.9e−49



	[image: there is no content]
	5.2e−14
	2.3e−35
	9.0e−75
	8.3e−140
	2.5e−239
	0



	[image: there is no content]
	2.7e−40
	1.3e−138
	-
	-
	-
	-



	[image: there is no content]
	4.2e−119
	-
	-
	-
	-
	-



	[image: there is no content]
	3.00
	4.00
	4.98
	6.00
	7.00
	7.63









We next consider the Test Problem 5 (TP5) which is a system of 4 equations [15].


[image: there is no content]



(27)







Using the substitution method, Equation (27) reduces to the simple quadratic equation [image: there is no content] whose positive root is given by [image: there is no content] Therefore [image: there is no content] and [image: there is no content]



Using [image: there is no content]=(0.5,0.5,0.5,−0.25)T as starting vector, we apply our Equation (16), [image: there is no content] to find the numerical solutions of Equation (27).



In Table 5, we deduce that similar observations on computational order of convergence can be made for this system of four equations.


Table 5. Results of TP5 for the 3rdBQIM, 4thBQIM, 5thBQIM, 6thBQIM, 7thBQIM and 8thBQIM I.F.s.


	Error
	3[image: there is no content][image: there is no content]
	4[image: there is no content][image: there is no content]
	5[image: there is no content][image: there is no content]
	6[image: there is no content][image: there is no content]
	7[image: there is no content][image: there is no content]
	8[image: there is no content][image: there is no content]





	∥x(1)−[image: there is no content]∥2
	1.4e−1
	1.4e−1
	1.4e−1
	1.4e−1
	1.4e−1
	1.4e−1



	[image: there is no content]
	1.7e−3
	3.5e−4
	8.1e−5
	2.0e−5
	5.2e−6
	1.4e−6



	[image: there is no content]
	2.4e−9
	8.6e−15
	2.6e−21
	7.1e−29
	1.7e−37
	3.9e−47



	[image: there is no content]
	6.5e−27
	3.1e−57
	9.7e−104
	1.4e−169
	7.9e−258
	0



	[image: there is no content]
	1.3e−79
	-
	-
	-
	-
	-



	[image: there is no content]
	3
	4
	5
	6
	7
	8.1












5.4. Application


As an application, we consider the quadratic integral equation of the type:


x(s)=g(s)+λx(s)∫01K(s,t)x(t)dt



(28)







Equation (28) appears in [16] and is known as Chandrasekhar’s integral equation. It arises from the study of the radiative transfer theory, the transport of neutrons and the kinetic theory of the gases. It is studied in [17] and, under certain conditions for the kernel, in [18,19].



We define the kernel [image: there is no content] as a continuous function in [image: there is no content] such that [image: there is no content] and [image: there is no content]. Moreover, we assume that [image: there is no content] is a given function and λ is a real constant. The solution of Equation (28) is equivalent to solving the equation [image: there is no content], where [image: there is no content] and


F(x)(s)=x(s)−g(s)−λx(s)∫01K(s,t)x(t)dt,x∈C[0,1],s∈[0,1]











We choose [image: there is no content] and [image: there is no content] so that we are required to solve the following equation:


F(x)(s)=x(s)−1−λx(s)∫01ss+tx(t)dt,x∈C[0,1],s∈[0,1]



(29)







If we discretize the integral given in Equation (29) using the Mid-point Integration Rule with n grid points


∫01ss+tx(t)dt=1n∑j=1ntjti+tjxj,xj=x(tj),tj=(j−0.5)h,h=1n,1≤j≤n








we obtain the resulting system of non-linear equations:


fi(x)=xi−λxin∑j=1ntjti+tjxj,1≤i≤n



(30)







The λ are equally spaced with [image: there is no content] in the interval [image: there is no content]. We choose [image: there is no content] and [image: there is no content] as the starting vector. In this case, for each λ, we let [image: there is no content] be the minimum number of iterations for which the infinity norm between the successive approximations ∥x[image: there is no content]−[image: there is no content]∥∞<1e−13, where the approximation [image: there is no content] is calculated correct to 16 digits (double precision in MATLAB). Let [image: there is no content]¯ be the mean of iteration number for the 49 λ’s.



All methods converge for all 49 values of λ. The results are given in Table 6 which shows that all methods converge in less than five iterations. It is the 8thBQIM I.F. which has the greatest number of λ converging in two or three iterations and the smallest mean iteration number. We also observe that there is a small difference in the mean iteration number between the 7thBQIM and 8thBQIM I.F.s. Developing 9th or higher order I.F.s would not be necessary for this application.


Table 6. Results of the Chandrasekhar’s integral equation for the 3rdBQIM, 4thBQIM, 5thBQIM, 6thBQIM, 7thBQIM and 8thBQIM I.F.s.


	Method
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]¯





	3rdBQIM
	0
	21
	23
	5
	0
	3.67



	4thBQIM
	1
	34
	13
	1
	0
	3.29



	5thBQIM
	3
	38
	8
	0
	0
	3.10



	6thBQIM
	3
	40
	6
	0
	0
	3.06



	7thBQIM
	3
	41
	5
	0
	0
	3.04



	8thBQIM
	3
	42
	4
	0
	0
	3.02













6. Conclusions and Future Work


In this work, we have shown that Kung-Traub’s conjecture fails for quadratic functions, that is, we can obtain iterative methods for solving quadratic equations with three functions evaluations reaching order of convergence greater than four. Furthermore, using weight functions, we showed that it is possible to develop methods with three function evaluations of any order. These methods are extended to systems involving quadratic equations. We have developed 3rd to 8th order methods and applied them in some numerical experiments including an application to Chandrasekhar’s integral equation. The dynamic behaviour of the methods were also studied. This research will open the door to new avenues. For example, for solving quadratic equations numerically, we can improve the order of fourth order method with two function and one first derivative evaluations (Ostrowski’s method [8]) or fourth order derivative-free method with three function evaluations (higher order Steffensen’s method (see [20])). The question we now pose: Is it possible to develop fifth order methods with three function evaluations for solving cubic or higher order polynomials? This is for future considerations.
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