
Article

Efficient Metaheuristics for the Mixed Team
Orienteering Problem with Time Windows

Damianos Gavalas 1,2, Charalampos Konstantopoulos 2,3,*, Konstantinos Mastakas 2,4,
Grammati Pantziou 2,5 and Nikolaos Vathis 2,6

Received: 16 April 2015; Accepted: 25 December 2015; Published: 5 January 2016
Academic Editor: Marco Chiarandini

1 Department of Cultural Technology and Communication, University of the Aegean, University Hill,
GR 81 100 Mytilini, Lesvos, Greece; dgavalas@aegean.gr

2 Computer Technology Institute & Press Diophantus, “D. Maritsas” Building, Nikou Kazantzaki St.,
University Campus of Patras 265 04 Rion, P.O. Box 1382, Greece; kmast@math.ntua.gr (K.M.);
pantziou@teiath.gr (G.P.); nvathis@softlab.ntua.gr (N.V.)

3 Department of Informatics, University of Piraeus, 80, M. Karaoli & A. Dimitriou St., 18534 Piraeus, Greece
4 School of Applied Mathematical and Physical Sciences, National Technical University of Athens,

Zografou Campus, Heroon Polytechniou 9, 15780 Zografou, Greece
5 Department of Informatics, Technological Educational Institution of Athens, Ag. Spiridona St.,

Aigaleo 122 10, Greece
6 School of Electrical and Computer Engineering, National Technical University of Athens,

Zografou Campus, Heroon Polytechniou 9, 15780 Zografou, Greece
* Correspondence: konstant@unipi.gr; Tel.: +30-210-4142124; Fax: +30-210-4142264

Abstract: Given a graph whose nodes and edges are associated with a profit, a visiting (or
traversing) time and an admittance time window, the Mixed Team Orienteering Problem with Time
Windows (MTOPTW) seeks for a specific number of walks spanning a subset of nodes and edges
of the graph so as to maximize the overall collected profit. The visit of the included nodes and
edges should take place within their respective time window and the overall duration of each
walk should be below a certain threshold. In this paper we introduce the MTOPTW, which can
be used for modeling a realistic variant of the Tourist Trip Design Problem where the objective is the
derivation of near-optimal multiple-day itineraries for tourists visiting a destination which features
several points of interest (POIs) and scenic routes. Since the MTOPTW is a NP-hard problem,
we propose the first metaheuristic approaches to tackle it. The effectiveness of our algorithms is
validated through a number of experiments on POI and scenic route sets compiled from the city of
Athens (Greece).

Keywords: Iterated Local Search; Simulated Annealing; Team Orienteering Problem; Arc
Orienteering Problem

1. Introduction

The Tourist Trip Design Problem (TTDP) [1] refers to a route-planning problem for tourists
interested in visiting multiple points of interests (POIs) in a destination. TTDP solutions involve
daily sightseeing itineraries, i.e., ordered visits to POIs according to tourists’ constraints and
POIs’ attributes. Specifically, the main objective of the TTDP is to select POIs that match tourist
preferences, thereby maximizing tourist satisfaction (“profit”), while taking into account a multitude
of parameters and constraints (e.g., distances among POIs, visiting time required for each POI,
POIs visiting days/hours, entrance fees, weather conditions) and without exceeding the time
available for sightseeing on a daily basis.

Algorithms 2016, 9, 6; doi:10.3390/a9010006 www.mdpi.com/journal/algorithms



Algorithms 2016, 9, 6 2 of 21

The Orienteering Problem (OP), an NP-hard problem introduced in [2], has been used in the
literature as the baseline optimization problem for modeling the TTDP. The OP seeks for a route which
starts and ends at fixed locations and maximizes the total collected profit while maintaining the travel
cost under a given value. This definition also includes the case of a cyclic route by simply selecting as
a start and destination the same location. Clearly, the OP may be used to model the simplest version
of the TTDP wherein the POIs are associated with a profit (i.e., a degree of user satisfaction) and the
goal is to find a single tourist itinerary that starts and ends at fixed locations and maximizes the profit
collected within a given time budget (time allowed for sightseeing in a single day). Extensions of the
OP have been successfully applied to model more complex versions of the single itinerary TTDP [1,3].
The OP with Time Windows (OPTW) considers visits at locations within a predefined time window;
this allows modeling opening days/hours of POIs. The Time-Dependent OP (TDOP) considers time
dependency in the estimation of time required to move from one location to another and therefore,
it is suitable for modeling multi-modal transports among POIs. The Team Orienteering Problem
(TOP) is the extension of the OP to multiple routes. The TOP with Time Windows (TOPTW) and the
Time-Dependent TOPTW (TDTOPTW) have been used to model different versions of the multiple
itinerary TTDP.

The Arc Orienteering Problem (AOP), introduced by Souffriau et al. in [4], is the arc routing
version of the OP and is applicable to TTDP variants whose modeling involves profits associated
with the arcs (rather than the nodes) of the network as some links may be more attractive than others.
As an example, consider the problem of deriving personalized bicycle trips. Based on the biker’s
personal interests, starting and ending point and the available time budget, a personalized trip can
be composed using arcs that better match the cyclist’s profile (for instance, arc values could indicate
the scenic value or the gradient of a route segment). The extension of the AOP to multiple routes,
introduced by Archetti et al. in [5] and named as Team Orienteering Arc Routing Problem (TOARP),
may also find applications to the TTDP.

The combination of the OP and the AOP is proposed in [3] under the name Mixed Orienteering
Problem (MOP). In the MOP, profits are associated with the nodes as well as with the arcs of the
graph. The problem can be used to formulate TTDP variants wherein, further to typical attractions,
certain routes may be of tourist interest. In this paper, we introduce the Mixed Team Orienteering
Problem with Time Windows (MTOPTW) which is an extension of the MOP in that multiple tourist
itineraries are obtained. These itineraries are walks which can start and finish at different end-points.
As mentioned above, the case of cyclic itineraries can easily follow, by using the same location as the
start and destination of itineraries. MTOPTW can be used to formulate realistic TTDP variants whose
modeling requires multiple tourist itineraries. The profits are associated with both POIs (network
nodes) and routes (network edges) as certain routes may be more interesting for traversal than
others. Furthermore, both POIs and routes are associated with visiting/traversing time windows.
To the best of our knowledge, the MTOPTW has not been studied so far in the literature. Due to its
apparent hardness and real-time requirements, we focus on metaheuristic approaches. Specifically,
we introduce an Iterated Local Search and a Simulated Annealing metaheuristic algorithm for solving
the problem. The proposed algorithms are evaluated and compared using test instances with data
related to POIs and scenic routes in the city of Athens, Greece.

The rest of this paper is organized as follows. Section 2 discusses the related work. Section 3
provides the definition of MTOPTW. Section 4 describes the common preprocessing phase of the
two metaheuristics. Sections 5 and 6 present the Iterated Local Search and the Simulated Annealing
metaheuristic method, respectively. Section 7 discusses the experimental results and Section 8
concludes the paper.

2. Related Work

Although numerous research works concern the OP as well as many extensions and variants of
the OP, only a very limited body of literature concerns the AOP, the MOP and their extensions.



Algorithms 2016, 9, 6 3 of 21

Souffriau et al. in [4] use the AOP to model and solve the problem of planning cycle trips in
the province of East Flanders. Their solution approach is based on a Greedy Randomized Adaptive
Search Procedure (GRASP), while experimental results are based on instances generated from the East
Flanders network. In [6] the cycle trip planning proble (CTPP) is introduced and studied. The CTPP
is a variant of AOP considering no fixed starting point for the tour.

Archetti et al. propose a formulation for the Team Orienteering Arc Routing Problem
(TOARP) [5], a variant of the extension of AOP to multiple tours where two types of arcs are
considered: the arcs that have to be served (compulsory arcs), and the arcs that are associated with
profit and may be served if beneficial (profitable arcs). Given a specific number of tours k, the goal is
to design k tours including the required arcs and a set of the profitable arcs which maximizes the total
profit without exceeding the allowed duration of each tour. Archetti et al. study a relaxation of the
polyhedron modelling of the problem and then develop a branch-and-cut algorithm. Archetti et al.
in [7] propose a matheuristic approach for the TOARP. Experimental results show that the algorithm
gives an average percentage error with respect to the optimal solution which is lower than 1%. The
Undirected Capacitated Arc Routing Problem with Profits (UCARPP), the arc routing counterpart
of the capacitated TOP, is considered in [8]. In this problem a profit and a nonnegative demand is
associated with each arc and the objective is to determine a tour for each available vehicle in order to
maximize the total collected profit, without violating the capacity and time limit constraints of each
vehicle. A potential application of the UCARPP is the creation of personalized bicycle trips. An exact
approach for solving the problem along with several heuristics has been proposed in [8]. The problem
has also been studied by Zachariadis and Kiranoudis in [9] who investigated a local search procedure.

To the best of our knowledge, the research works mostly relevant to the MOP are the one-period
Bus Touring Problem (BTP) introduced by Deitch and Ladany [10], the Outdoor Activity Tour
Suggestion Problem (OATSP) introduced by Maervoet et al. [11], and the Most Attractive Cycle
Tourist Path Problem (MACTPP) introduced by Cerna et al. [12]. In the BTP, given a constraint on
the total touring time, the objective is to select a subset of profitable nodes and arcs which maximize
the total profit of the tour. In this problem, the profit of nodes and arcs which are visited multiple
times is counted only once. In [10], a heuristic approach is employed to solve the BTP. In [11], an
efficient heuristic solution to the OATSP is presented. This problem finds attractive closed paths in
a transportation network, tailored to a specific outdoor activity such as hiking and mountain biking.
The total path attractiveness is estimated as the sum of the average arc attractiveness and the profits
of the nodes along the path. The objective is to find a closed path of maximal attractiveness given a
target path’s length and tolerance. Notice that the OATSP requires a target path’s length instead of a
maximal travel time required by the BTP; hence, this gives rise to a path length window constraint. In
MACTPP [12], the objective is to construct a new bicycle route between two locations with maximum
attractiveness, subject to budget and duration constraints. The problem models a real situation in
Trebon, Czech Republic where local administrators face the problem of optimally investing scarce
resources to set up a network of cycle tracks, exploiting existing trails or by reconstruction works.
In this problem, arcs and nodes can be visited more than once, obtaining a decreasing profit after
each visit. The authors formulate the problem as a Integer Linear Programming (ILP) problem and
then use a commercial ILP solver.

In [13], the first approximation algorithms for both the directed and the undirected versions
of the AOP and MOP have been presented. Furthermore, the authors proved that the MOP can
be reduced to the AOP and any approximation algorithm for the AOP yields an approximation
algorithm for the MOP with the same approximation ratio for both the cases of undirected and
directed graphs. As concerns the reduction of the MOP to the OP, although in [10] a transformation
of an instance of BTP into an instance of OP is given, this transformation—as admitted by the
authors—does not always guarantee a successful re-transformation from a given OP solution to the
corresponding BTP solution. It is easy to notice that such a re-transformation is successful for the case
of directed graphs. Therefore, the MOP can be reduced to OP for the case of directed graphs while,



Algorithms 2016, 9, 6 4 of 21

to the best of our knowledge, there is no reduction in the literature of the MOP to OP for the case of
undirected graphs.

In this work, we study the Mixed Team Orienteering Problem with Time Windows (MTOPTW)
for the case of windy graphs and we present the first algorithmic approaches for the problem.
In windy graphs, like in undirected graphs, each edge e = {i, j} can be traversed either from i
to j or from j to i. Windy graphs differ from their undirected counterparts in that the cost of
the two traversals may differ [14–16]. For example, when the costs represent travelling times,
such asymmetry in the costs may occur when one direction is downhill and the other is uphill.
Windy graphs have been extensively used for modeling arc-orienteering problems. Although, the
different edge costs in opposite directions could be modeled with two opposite arcs between the edge
end-points, windy graphs can be handy for modeling the above sort of problems, for instance, when
trying to impose the constraint that each edge should appear only once in a solution irrespectively
of the traversal direction. The windy graphs provide the same convenience also in the modelling
of problems where profits are associated with edges and when there is the assumption that the
profit of an edge is obtained only once independently of the number of the traversals of this edge
in the solution. This is exactly the case we handle in MTOPTW. Finally, since OP (a special case
of MTOPTW) is NP-hard [1], MTOPTW is at least that hard. Therefore, we focus on metaheuristic
approaches for solving the problem.

3. Problem Definition

The MTOPTW formulates realistic TTDP variants where multiple tourist itineraries should be
determined. Also, profits are associated to POIs (nodes of the network) as well as to routes (edges of
the network) as certain routes may be more interesting for traversal than others. In addition, the POIs
are associated with visiting times and visiting time windows. Similarly, the routes are associated with
traversing times and traversing time windows. To formally define the problem we need to employ
windy graphs.

We define the MTOPTW on windy multigraphs (A multigraph is a graph where for each pair of
nodes there could be more than one edges connecting these nodes.) as follows: Let G = (V, E) be a
windy multigraph where V = {u1, u2, . . . , uN} denotes the node set and E the edge set. Each edge
e can be traversed in two directions and let e+ and e− be the corresponding directions. The head and
the tail of each direction ed (d ∈ {+,−}) will be denoted by h(ed) and t(ed), respectively. The edge set
E is partitioned into two sets, E′ and E′′ (E = E′ ∪ E′′), defined as follows:

• The set E′ contains an edge for any pair of nodes in V representing the shortest path connection
between these nodes. Specifically, for each pair of nodes ui and uj in V, the set E′ contains an
edge e which connects the two nodes and represents the shortest path route connecting these
two nodes in the city road network. The time required for traversing the edge e in the direction
from ui to uj may be different from the travelling time in the opposite direction; thus, we use the
notations T(e+) and T(e−) for the different travelling times in the two directions (This clearly
implies that the shortest path routes may be different between two nodes in the two opposite
directions.). Clearly, all these time costs obey the triangle inequality, for instance, it holds
that T(ed) ≤ T(ed

1) + T(ed
2) where t(ed) = t(ed

1), h(ed) = h(ed
2), h(ed

1) = t(ed
2) for d ∈ {+,−}.

Essentially, each edge e in E′ is used solely for moving between interesting sites in the city (either
POI or scenic route) and thus traversing such an edge does not yield any profit. Therefore, each
edge e in E′ is associated with profit equal to zero (Pe = 0) .

• The set E′′ contains all the edges modelling the scenic routes. Specifically, if there is a scenic
route between nodes ui and uj then there is an edge e ∈ E′′ connecting these nodes. Each edge
in E′′ can be traversed in both directions and T(ed) is again the traversal time in direction d for
d ∈ {+,−}. Note that the scenic route is not necessarily the shortest one between ui and uj and
thus the travelling time T(ed) may not obey the triangle inequality property. Each edge e in E′′

is associated with a profit, Pe, which is a measure of the attractiveness of the scenic route.



Algorithms 2016, 9, 6 5 of 21

Overall, between any two nodes in G, there will be at most two edges connecting them, one being
the shortest path route and the other being the scenic route (if exists). In case that the scenic
route is also the shortest one between two nodes, the two edges are maintained although they
actually represent the same route in the road network. This redundancy greatly facilitates the integer
programming formulation of the problem which follows. It is also worth mentioning that G(V, E′) is
a complete graph while G(V, E′′) may be not.

For each node u ∈ V, there are two possibilities. First, the node can be visited in a walk with
Tu being the visit duration and Pu being a non-negative number denoting the profit gained from that
visit. The other possibility is that the walk passes by the node on the way to the next scenic route or
POI. In this case, there is no profit from this node and the delay Tu is not incurred.

Also, an integer K is given denoting the number of the walks that will be constructed. Now,
each node or edge x is associated with K time windows [Oi

x, Ci
x] (i = 1, . . . , K) where Oi

x is the opening
time and Ci

x is the closing time of the ith time window of node or edge x. The visit at a node (or the
traversal of an edge) can only take place within one its time windows. However, for just passing by a
node, this condition does not apply. Also, for each walk Wi (i = 0, . . . , K− 1) a starting node sli and an
ending node eli are given (sli, eli ∈ V), as well as a starting time sti and an ending time eti. An implicit
assumption here is that for each node or edge x, only one its time windows may be “active” during
a walk, namely, for each walk Wi, [O

j
x, Cj

x] ∩ [sti, eti] = ∅ where i, j = 1, . . . , K with i 6= j. This is a
reasonable assumption considering the common scenario where each walk Wi takes place on different
day and [Oi

x, Ci
x] is the interval in that day during which the route or POI is open.

A feasible solution of the MTOPTW consists of K walks W0, W1, . . . , WK−1 with
Wi = (wi

0, wi
1, . . . , wi

li−1) such that wi
0 = sli, wi

li−1 = eli, the arrival time at sli equals to sti

and the arrival time at eli is at most eti. For each edge of the walk {wi
m, wi

m+1}, its traversal should
take place within its time window. The same holds for all nodes wi

m which are actually visited and
not just passed by. The profit of the solution is equal to the sum of the profits of the visited nodes
and the traversed edges. The goal of the MTOPTW is to construct the feasible solution of the highest
profit. As has been mentioned above, if an edge appears (i.e., is traversed) more than once in a
solution, its profit is counted only once (independently of the direction of the traversal) while the
travel cost is charged as many times as it is traversed. The facts that (i) there is no profit gain when
revisiting an edge and (ii) there exists a shortest path edge between any two nodes in the graph
which obeys the triangle inequality, imply that each edge needs to be traversed at most once in the
optimal solution. Likewise, we assume that the no additional profit is gained after the first visit of a
node. Thus, it can be easily seen that there is an optimal solution which visits each node at most once
due to the aforementioned fact that no additional profit is gained from multiple visits. However,
a node may appear more than once in a solution, i.e., as an endpoint of its incident edges which are
traversed in the solution. In all these occurrences, the node is only passed by and not visited.

The MTOPTW can be formulated as a mixed integer programming problem. We use the
following variables:

• yk(ed): a binary variable whose value is 1 if the edge e is traversed in the direction d (∈ {+,−} )
in the walk Wk, and 0, otherwise, for k = 0, . . . , K− 1.

• zk
u: a binary variable which takes value 1 if the node u is visited in the walk Wk, k = 0, · · · , K− 1,

and 0 otherwise.
• pk(ed): a binary variable which is equal to 1 if, the traversal of the edge e along Wk is done in

the direction d ∈ {+,−} immediately before the visit at the node h(ed). Otherwise, pk(ed) = 0.
For instance, pk(ed) = 0 in the case that the edge e is traversed in direction d (yk(ed) = 1) but the
head of the edge h(ed) is only passed by.

• qk(ed): a binary variable set equal to 1 if, in the walk Wk, the node t(ed) is visited just before the
traversal of the edge e in the direction d ∈ {+,−}. In all other cases, qk(ed) = 0.

• rk(ed1
1 , ed2

2 ): a binary variable which is defined only for edges e1, e2 with h(ed1
1 ) = t(ed2

2 ). Its
value is 1 only if i) the edge e1 is traversed in the direction d1 along the walk Wk, just before the



Algorithms 2016, 9, 6 6 of 21

traversal of the edge e2 in the direction d2 and ii) the node h(ed1
1 ) is not visited at that moment,

that is, it is only passed by while traversing e1 and e2. In all other cases rk(ed1
1 , ed2

2 ) = 0. From
the definition of these variables, it is clear that for any two edges e1, e2 and directions d1 and d2,
the variable rk(ed1

1 , ed2
2 ) cannot be equal to 1 when at least one of the variables, pk(ed1

1 ) or q(ed2
2 ),

is equal to 1.
• startu: a real variable denoting the starting time of the single visit at the node u.
• starte: a real variable denoting the starting time of the single traversal of the edge e.
• M: a large number (larger enough from the parameters of the problem).
• [K]: the set {0, 1, . . . , K− 1}

For avoiding many special cases in the formulation of MTOPTW, we assume that all the
endpoints of the walks are different nodes and also none of these nodes are POIs. In case that some
of the nodes are the same or POIs, copies of the original nodes are created which are considered as
different nodes with no profit. Then, these nodes are used as endpoints of the walks. For instance,
if the K walks all start and end at the same node which happens to be a POI, 2K copies of this node are
created and each of these copies has zero profit and visit time and time window as long as the interval
between the starting and ending time of the corresponding walk. Also, all the copies of the node and
the node itself are connected with each other through zero-length shortest path edges belonging to
E′. Regarding the remaining nodes of the graph, these copies “inherit” the edge connectivity along
with the associated edge costs of the original node. Now, MTOPTW can be formulated as follows:

max P =
K−1

∑
k=0

∑
u∈V

Puzk
u +

K−1

∑
k=0

∑
e∈E ∧ d∈{+,−}

Peyk(ed) (1)

subject to

∑
e∈E ∧ d∈{+,−} ∧ h(ed)=slk

yk(ed) + 1 = ∑
e∈E ∧ d∈{+,−} ∧ t(ed)=slk

yk(ed), ∀k ∈ [K] (2)

∑
e∈E ∧ d∈{+,−} ∧ t(ed)=elk

yk(ed) + 1 = ∑
e∈E ∧ d∈{+,−} ∧ h(ed)=elk

yk(ed), ∀k ∈ [K] (3)

∑
e∈E ∧ d∈{+,−} ∧ h(ed)=u

yk(ed) = ∑
e∈E ∧ d∈{+,−} ∧ t(ed)=u

yk(ed), ∀u ∈ V − {slk, elk}, k ∈ [K] (4)

∑
d∈{+,−} ∧ k∈[K]

yk(ed) ≤ 1, ∀e ∈ E (5)

K−1

∑
k=0

zk
u ≤ 1, ∀u ∈ V (6)

zk
slk

= zk
elk

= 1, ∀k ∈ [K] (7)

pk(ed) = 0, ∀k ∈ [K], d ∈ {+,−}, e ∈ E with h(ed) = slk (8)

qk(ed) = 0, ∀k ∈ [K], d ∈ {+,−}, e ∈ E with t(ed) = elk (9)

pk(ed) ≤ yk(ed), ∀e ∈ E, d ∈ {+,−}, k ∈ [K] (10)

qk(ed) ≤ yk(ed), ∀e ∈ E, d ∈ {+,−}, k ∈ [K] (11)

zk
u = ∑

e∈E ∧ d∈{+,−} ∧ h(ed)=u

pk(ed), ∀u ∈ V − {slk}, k ∈ [K] (12)

zk
u = ∑

e∈E ∧ d∈{+,−} ∧ t(ed)=u

qk(ed), ∀u ∈ V − {elk}, k ∈ [K] (13)

yk(ed) = ∑
e′∈E ∧ d′∈{+,−} ∧ h(e′d′ )=t(ed)

rk(e′d
′
, ed) + qk(ed), ∀e ∈ E, d ∈ {+,−}, k ∈ [K] (14)

yk(ed) = ∑
e′∈E ∧ d′∈{+,−} ∧ h(ed)=t(e′d′ )

rk(ed, e′d
′
) + pk(ed), ∀e ∈ E, d ∈ {+,−}, k ∈ [K] (15)

starte + T(ed)− starth(ed) ≤ M(1− pk(ed)), ∀e ∈ E, d ∈ {+,−}, k ∈ [K] (16)



Algorithms 2016, 9, 6 7 of 21

startt(ed) + Tt(ed) − starte ≤ M(1− qk(ed)), ∀e ∈ E, d ∈ {+,−}, k ∈ [K] (17)

starte + T(ed)− starte′ ≤ M(1− rk(ed, e′d
′
)), ∀e, e′ ∈ E, d, d′ ∈ {+,−} with h(ed) = t(e′d

′
),

k ∈ [K] (18)

Ok
u −M(1− zk

u) ≤ startu, ∀u ∈ V, k ∈ [K] (19)

startu + Tu ≤ Ck
u + M(1− zk

u), ∀u ∈ V, k ∈ [K] (20)

Ok
e −M(1− yk(ed)) ≤ starte, ∀e ∈ E, d ∈ {+,−}, k ∈ [K] (21)

starte + T(ed) ≤ Ck
e + M(1− yk(ed)), ∀e ∈ E, d ∈ {+,−}, k ∈ [K] (22)

startslk = stk, ∀k ∈ [K] (23)

startelk ≤ etk, ∀k ∈ [K] (24)

yk(ed), pk(ed), qk(ed) ∈ {0, 1}, ∀e ∈ E, d ∈ {+,−}, k ∈ [K]

zk
u ∈ {0, 1}, ∀u ∈ V, k ∈ [K]

rk(ed, e′d
′
) ∈ {0, 1}, ∀e, e′ ∈ E, d, d′ ∈ {+,−}, k ∈ [K]

starte ∈ R, ∀e ∈ E

startu ∈ R, ∀u ∈ V

The objective Function (1) is to maximize the total profit of the visited nodes and the traversed
edges. Constraints (2) and (3) ensure that the walk Wk starts at node slk and ends at node elk for
k = 0, · · ·K − 1. We also take into account that there may be multiple traversals through slk and elk
along the same walk. Constraints (4) are flow conservation constraints while Constraints (5) ensure
that each edge is traversed at most once in total for both traversal directions. As has been mentioned
before, the optimal solution needs to traverse each edge only once and hence these constraints are
surely satisfied by such a solution. If those constraints were omitted, then an optimal solution could
have been derived with even higher profit. However, this better solution may traverse an edge
two times, once in each direction, getting the edge profit twice. Thus, the obtained solution would
not be a valid solution in our problem setting.

Regarding Constraints (6), these constraints guarantee that each node is visited at most once,
in total. Constraints (7) necessitate the visit at the endpoints slk and elk. The visit of slk takes place
at the moment of departure from slk (Constraints (23)). Similarly, the visit of elk is at the end of
the walk Wk and before time etk (Constraints (24)). Constraints (8)–(15) ensure that the values of
variables pk(ed), qk(ed), rk(ed, e′d

′
) are consistent with those of variables yk(ed) and zk

u. Specifically,
Constraints (8) combined with the Constraint (7) reflect the fact that the walk Wk starts with the
visit of slk. Thus, there cannot be preceding edges in Wk leading to that particular node. A symmetric
condition is described in the Constraints (9). Constraints (10) and (11) ensure that the variables pk(ed),
qk(ed) cannot have value 1 if the edge e has not been traversed in the direction d along the walk
Wk. Constraints (12) ensure that for each visited node u along Wk except the node slk, only one of
the edges leading to u has been traversed along Wk and indeed just before the visit of that node.
Symmetrically, Constraints (13) guarantee that for each visited node u along Wk except the node elk,
only one of the edges starting from u has been traversed along Wk, immediately after the visit of that
node. Constraints (14) reflect the fact that when an edge e is traversed along the walk Wk (yk(ed) = 1),
one of the two mutually exclusive possibilities can occur before this traversal: either the tail node
of e has been visited (qk(ed) = 1) and thus all r-variables are zero or that visit did not take place
(qk(ed) = 0) and thus only one of the r-variables is 1, that corresponding to the edge e′ traversed
just before e in the walk Wk. In case that the edge e is not traversed, (yk(ed) = 0), all variables in
these constraints are forced to be 0. Constraints (15) have a similar explanation and determine what
is possible after the traversal of an edge. Constraints (16)–(18) ensure that the sequence of starting
times of node visits and edge traversals along a walk is feasible. For instance, Constraints (16) ensure
that the visit at a node along a walk can start only after the edge which is just before that node on the



Algorithms 2016, 9, 6 8 of 21

walk (pk(ed) = 1) has been traversed. Constraints (19) and (20) indicate that the start of a visit at a
node can only take place during its time window. Similarly, Constraints (21) and (22) ensure that the
edge traversal can only take place during its time window. Finally, Equations (23) and (24) require
that the walk Wk should start at time stk and be completed no later than etk.

As has already been mentioned, the MTOPTW problem is a NP-hard problem which models
the core task of suggesting interesting itineraries for tourists. The envisaged tourist application
should be on-line and should return suggestions within a few seconds after receiving a user request.
Considering these strict time restrictions, solving the MILP directly, either exactly or approximately,
is not expected to return the solution in acceptable time. In the following sections, two metaheuristics
are presented for the MTOPTW which can be used in practice for deriving approximate solutions to
the problem relatively fast.

4. MTOPTW Algorithmic Approaches—Preprocessing Phase

In the sequel, for the sake of simplicity and ease of the presentation of the algorithmic techniques,
a different notation of graph edges is followed. Specifically, an edge e between two nodes u and v will
be denoted by {u, v} hereafter. The same notation will be used for assigning direction of traversal
to an edge. For instance, the notation {v, u} will denote the traversal of the edge in the direction
from v to u. In case of two edges between the nodes u, v (one representing a scenic route and the
other the shortest path connection), the notation {u, v} will be used for representing either one of the
two edges. To distinguish them, we will call an edge {u, v} of the input graph with Pu,v > 0 which
models a scenic route, as profitable edge. Similarly, we will call a node u of the input graph with Pu > 0
which models a POI, as profitable node.

With regard to the algorithmic approaches for solving MTOPTW, we propose two metaheuristic
approaches, namely an Iterated Local Search approach inspired by the one presented by
Vansteenwegen et al. [17] for the TOPTW, and a Simulated Annealing approach. Among other
operations, both these approaches repeatedly execute local-search steps. At each of these steps, the
neighborhood of the current solution is examined in search of higher profit feasible solutions. Thus, it
is important to keep the size of this neighborhood relatively small in order that each local search step
can be executed fast. For that reason, the input graph G should satisfy the following requirements:

• for each profitable node u of G there is no profitable edge incident to u, i.e., there is no v such
that Pu,v > 0, and

• for each profitable edge {u, v} of G there is no other profitable edge incident to u or v, i.e., there
is no node w such that Pu,w > 0 or Pw,v > 0.

In the case that G does not satisfy the above requirements then, in a preprocessing phase, G is
transformed to a new graph G′ that satisfies them. This is done in a way that any solution in G′ can be
easily transformed to an equivalent solution of the same profit in G. Specifically, the transformation
first separates all profitable nodes from adjacent profitable edges as follows. For each profitable node
u of the input graph which is connected to at least one profitable edge, we introduce a dummy node u′

and a dummy edge {u′, u} with Pu′ = 0, Tu′ = 0, (Ok
u′ , Ck

u′) = (stk, etk) (k ∈ [K]) and Pu′ ,u = Pu,u′ = 0,
Tu′ ,u = Tu,u′ = 0, (Ok

u,u′ , Ck
u,u′) = (Ok

u′ ,u, Ck
u′ ,u) = (stk, etk) (k ∈ [K]). Then, each profitable edge

incident to u in G is connected to the dummy node u′ in G′ while each non-profitable edge incident to
u in G remains connected to u in G′. As an example, Figure 1a shows a graph G with a profitable node
u with two profitable and two non profitable incident edges, while Figure 1b shows the corresponding
new graph G′. Next, all profitable edges incident to the same node are “separated" by inserting a
corresponding number of dummy nodes and edges whose profit and time attributes are set as above.
As an example, Figure 1c shows a graph G with three profitable edges incident to the same node u,
while Figure 1d shows the corresponding new graph G′ which includes three dummy nodes and
three dummy edges. Admittedly, this preprocessing increases the number of edges and nodes in the
graph, however, since the tourist attraction routes (edges) are relatively few in a graph modeling a



Algorithms 2016, 9, 6 9 of 21

metropolitan city, this increase will be relatively small and easily offset by the simplification of the
solution neighborhoods in the local search steps.

u

w1

w2

w3

w4

(a)

uu'

w1

w2

w3

w4

(b)

u

w1

w2

w3

w5

w4

(c)

u

w1

w2

w3

w5

w4

u1

u3

u2

(d)

Figure 1. Preprocessing steps. Profitable edges and profitable nodes are colored gray. (a) Profitable
edges incident to a profitable node; (b) Elimination of the adjacency among the profitable node and
profitable edges; (c) Profitable edges incident to the same node; (d) Elimination of the adjacency
among profitable edges.

For convenience, we denote a profitable node or edge as a Tourist Attraction (TA). Then, the
TA representation of a walk Wi will be Wi = (pi

0, pi
1, . . . , pi

mi−1), with pi
0 = sli, pi

mi−1 = eli and
pi

j, j = 1, 2, . . . , mi−2 the included TAs in Wi. On the other hand, the representation of the walk as
a sequence of nodes shall be denoted as the node representation. For example, the walk Wi in Figure 2
consists of the starting/ending locations as well as the nodes u, v and w from which only u has a
positive profit. Apart from u, the edge {v, w} is also associated with profit, hence the TAs of Wi are
the node u and the edge {v, w}. Therefore, the node representation of the walk is Wi = (sli, u, v, w, eli)
while its TA representation is Wi = (pi

0, pi
1, pi

2, pi
3) with pi

1 = u and pi
2 = {v, w}.

sli u v w eli

Figure 2. Walk representation.

5. The Iterated Local Search Metaheuristic

The Iterated Local Search [18,19] is a metaheuristic method widely used in combinatorial
optimization problems in order to search the solution space extensively. The intuition of this
metaheuristic is to iteratively reach a local optimum solution by applying a local search process
and then perturb the solution. Specifically, the local search process explores a neighbourhood
by iteratively generating the neighbourhood of the current solution and moving from the current
solution to an improving neighbouring solution. This process is repeated until a local optimum is
reached. The solution is perturbed in order to escape from the local optimum and reach a different
local optimum in the next iteration. By exploring different local optimum solutions, the method is
expected to produce better results than a simple local search method.

The neighborhood structure in our MTOPTW metaheuristic approach is obtained as follows.
Consider a solution of an instance of the problem and any walk Wi belonging to that solution.
A neighboring solution (Insert Neighborhood) can be obtained by inserting a non-included TA
between two consecutive nodes of the walk Wi that are not connected with a profitable edge.



Algorithms 2016, 9, 6 10 of 21

For example in Figure 3 we consider the neighboring solutions of the single walk solution with
node representation Wi = (sli, u, v, w, eli) given in Figure 2. We consider that there are only
two non-included TAs, the profitable edge {y, z} and the profitable node x. Figure 3a–f show the
neighboring solutions that are produced by inserting the edge {y, z} between two consecutive nodes
of the walk. Figure 3a,b depict the two solutions obtained by inserting {y, z} between sli and u, the
former with direction from y to z and the latter from z to y. Similarly, Figure 3c,d depict the insertion
of {y, z} between u and {v, w}, while Figure 3e,f present the solution obtained by inserting {y, z}
after {v, w}. As far as the non-included profitable node x is concerned, the neighboring solutions are
depicted in Figure 3g–i, where the insertion after sli, u and {v, w} is considered, respectively. Note,
that neither {y, z} nor x can be inserted between v and w, since {v, w} is a profitable edge.

sli u v w eli

y z

sli u v w eli

z y

(a) (b)

sli u v w eli

y z

sli u v w eli

z y

(c) (d)

sli u v w eli

y z

sli u v w eli

z y

(e) (f)

sli u v w eli

x

sli u v w eli

x

(g) (h)

sli u v w eli

x

(i)

Figure 3. Illustration of the Insert Neighborhood. (a) Insertion of the edge {y, z} between sli and u
with direction from y to z; (b) Insertion of the edge {y, z} between sli and u with direction from z
to y; (c) Insertion of the edge {y, z} between u and {v, w} with direction from y to z; (d) Insertion of
the edge {y, z} between u and {v, w} with direction from z to y; (e) Insertion of the edge {y, z} after
{v, w} with direction from y to z; (f) Insertion of the edge {y, z} after {v, w} with direction from z to
y; (g) Insertion of the node x between sli and u; (h) Insertion of the node x between u and {v, w}; (i)
Insertion of the node x after {v, w}.

Inspired by [17], each included node in a walk of the solution is associated with its arrival
(arrive), starting (start) and leaving (leave) time, as well as the latest time the arrival at the
node can take place (maxArrive), such that the walk remains feasible. Considering the walk
Wi = (wi

0, wi
1, . . . , wi

li−1) in its node representation, that takes place in day d, the time attributes
of each included node are given by the recursive formulas:



Algorithms 2016, 9, 6 11 of 21

arrive(wi
0) = start(wi

0) = leave(wi
0) = sti and for each k = 0, 1, . . . , li − 2

arrive(wi
k+1) = max(leave(wi

k),Oi
wi

k ,wi
k+1

) + Twi
k ,wi

k+1
,

start(wi
k+1) = max(arrive(wi

k+1),Oi
wi

k+1
) and leave(wi

k+1) = start(wi
k+1) + Twi

k+1
.

The maxArrive time of the nodes is calculated recursively from the ending location to the start
as follows:

maxArrive(wi
li−1) = eti and for each k = li − 2, li − 3, . . . , 1, 0

maxArrive(wi
k) = min(Ci

wi
k
, Ci

wi
k ,wi

k+1
− Twi

k
,maxArrive(wi

k+1) −Twi
k
− Twi

k ,wi
k+1

).

Using the previously introduced time attributes of the included nodes, checking that the
insertion of a non-included TA after an included TA in a walk Wi is feasible requires constant time,
i.e., time independent of the size of the walk. To see this, consider that the candidate for insertion TA
will be inserted between nodes wi

k and wi
k+1, i.e., after the included TA whose last node is wi

k, (i.e.,
either the profitable node wi

k or the profitable edge (wi
k−1, wi

k)) and that the walk takes place at day d.
In the case that the candidate for insertion TA is the edge {y, z}, we have to examine both directions,
i.e., from y to z and from z to y. The insertion of {y, z} with the direction from y to z after node wi

k
(see Figure 4a) is feasible if and only if the following conditions are satisfied:

1. leave(wi
k) ≤ Ci

wi
k ,y

2. the arrival time at y is at most Ci
y

3. the leaving time from y is at most Ci
y,z

4. the arrival time at z is at most Ci
z

5. the leaving time from z is at most Ci
z,wi

k+1
6. the new arrival time at wi

k+1 is at most maxArrive(wi
k+1)

If the insertion of the edge (y, z) after the included TA (inclTA) with last node wi
k is feasible, the

difference between the new arrival time at wi
k+1 and the former one will be considered as the time

shift. Notice that the insertion of a new TA in a walk always results in a positive time shift as this
insertion is done over a non profitable edge corresponding to shortest time connection. A negative
shift would be possible only if the insertion process allowed insertion over profitable edges. The
pseudo code of the method that checks the feasibility of the insertion of the edge (y, z) after an
included TA with last node wi

k follows (Algorithm 1).
In a similar fashion, we may check if the insertion of a non-included profitable node x is feasible

after an included TA, just by skipping the time window feasibility of the second node, i.e., the node x
can be inserted after wi

k (see Figure 4b) if and only if the following conditions are satisfied:

1. leave(wi
k) ≤ Ci

wi
k ,x

2. the arrival time at x is at most Ci
x

3. the leaving time from x is at most Ci
x,wi

k+1
4. the new arrival time at wi

k+1 is at most maxArrive(wi
k+1)

Similarly to the Algorithm 1, there is the subroutine check_insertion_feasibilty(x, wi
k) which

implements the logic above.

sli wik wik+1 eli

y z

sli wik wik+1 eli

x

(a) (b)

Figure 4. Illustration of insertion’s feasibility. (a) Insertion of the edge {y, z} with the direction from y
to z after node wi

k; (b) Insertion of the node x after node wi
k.



Algorithms 2016, 9, 6 12 of 21

Algorithm 1 Check_insertion_feasibility ((y, z), wi
k)

. Check if the edge (y, z) can be inserted between wi
k and wi

k+1
shift← 0
if leave(wi

k) > Ci
wi

k ,y
then . departure when the route ahead is not available

return (FALSE,shift)

firstArrive← max(leave(wi
k),Oi

wi
k ,y
) + Twi

k ,y
if firstArrive > Ci

y then . arrival at y after its closing time
return (FALSE,shift)

firstLeave← max(firstArrive,Oi
y) + Ty

if firstLeave > Ci
y,z then . departure from y with closed route (y, z)

return (FALSE,shift)

secondArrive← max(firstLeave,Oi
y,z) + Ty,z

if secondArrive > Ci
z then . arrival at z after its closing time

return (FALSE,shift)

secondLeave← max(secondArrive,Oi
z) + Tz

if secondLeave > Ci
z,wi

k+1
then . departure from z with closed route (z, wi

k+1)

return (FALSE,shift)

newArrive← max(secondLeave,Oi
z,wi

k+1
) + Tz,wi

k+1
if newArrive ≤maxArrive(wi

k+1) then . the visits along Wi after wi
k+1 still valid

shift← newArrive − arrive(wi
k+1)

return (TRUE,shift)

The insertBestTAIn method implements the local search step of the ILS algorithm. The local
search step takes as input a walk Wi of the current solution and considers for insertion in Wi all TAs
not yet included in any walk. For each such candidate TA every possible insert position is examined,
i.e., the insertion between every consecutive pair of included TAs, and the position of the lowest shift
is stored. When all candidate TAs and possible insert positions have been examined, the TA achieving
the highest ratio of profit over shift is chosen for insertion in Wi. The use of the ratio of profit over
the shift as a optimization criterion is a common approach in resource-constraint problems where
profit should be maximized by properly selecting some items each having a cost and at the same
time without exceeding a certain budget. A well-known algorithm which uses this sort of ratios is
the optimal greedy algorithm for the fractional knapsack problem, an exemplary problem for all the
resource-constrained problems. This particular ratio represents a trade-off between selecting a highly
profitable item which at the same time costs a lot. Thus, it will be more beneficial if we first select
highly profitable items of low cost for inclusion in the solution, that is, items giving large values in
this particular ratio. If we took into account only the profit of a newly inserted TA without seeing
the cost, namely the shift caused by the new insertion, we might have ended up choosing a highly
profitable TA but associated with large shift value which would consume most of the available time
of a walk. This in turn would exclude other subsequent insertions whose total profit could be actually
higher than that of the costly TA.

The pseudocode of the insertBestTAIn method is listed below (Algorithm 2). It is also worth
mentioning that for each walk, a doubly-linked list is used for storing the TAs in that walk.
Specifically, the TAs are stored in this list in the same order that they appear in the walk. This data
structure is the most appropriate for Algorithm 2 since for each candidate TA, each possible insertion
point is examined along the walk and the linked lists are suitable for this sequential processing, in
general. Also, after deciding the best insertion point for each candidate TA, a pointer to the node of the
TA preceding that point is kept so that later the insertion of the highest overall ratio can be executed



Algorithms 2016, 9, 6 13 of 21

fast. Also, the update of the time attributes of TAs along the just expanded walk also requires a
sequential visit of nodes of the corresponding list, which can be implemented fast.

Algorithm 2 InsertBestTAIn (Wi)

BestInsertionPoint← ∅
BestTA← ∅
BestRatio← −∞
for each candidate TA cp do

TempLowestShift← ∞
TempBestInsertionPoint← ∅
for each included TA ip in Wi do

(feasible, shift)=check_insertion_feasibility(cp,ip)
if feasible then

if shift < TempLowestShift then
TempLowestShift← shift
TempBestInsertionPoint← ip

if
profitcp

TempLowestShift > BestRatio then
BestInsertionPoint← TempBestInsertionPoint
BestTA← cp

BestRatio←
profitcp

TempLowestShift

Insert the BestTA after BestInsertionPoint in Wi

Update the time attributes of all nodes along Wi

The ILS algorithm escapes from the current local optimum by applying the perturb method.
In this method a randomly selected chain of consecutive TAs is removed from the TA representation
of each walk Wi in the solution. More specifically, for each walk Wi, the number of the TAs that
will be removed (numberOfRemoved), is chosen randomly. Then, the position (L) in Wi where the
removal of the TAs will start, is selected randomly in the range [1, mi − 1 − numberOfRemoved]
where mi denotes the number of TAs in Wi. Finally, starting from the position L, (i.e., node pi

L),
numberOfRemoved consecutive TAs are removed from Wi and the time attributes associated to each
one of the nodes of Wi are recalculated. The pseudocode of the method follows (Algorithm 3).

Algorithm 3 Perturb

for each walk Wi do
mi ← the number of TAs in Wi

numberOfRemoved← a random number in [0, mi]

L← a random number in [1, mi − 1− numberOfRemoved]
R← L + numberOfRemoved −1
remove all TAs from L (pi

L) to R (pi
R)

update the time attributes of all the nodes along Wi

The ILS algorithm loops for a number of iterations (numberOfIterations) that is given as
a parameter. At each iteration, W is a random ordering of the set of the constructed walks
{W0, W1, . . . , WK−1}. Note that at the first iteration each walk Wi in W consists only of the staring
and ending nodes, i.e., Wi = (sli, eli), i = 0, · · · , K − 1. Then, a loop is executed as long as W is not
empty. Inside the loop, each walk Wi in W is considered and the best insertion for this walk is applied.
If no insertion was feasible, then Wi is removed from W. When the loop is over, the current solution
is considered. If its profit is the largest found so far, the current solution becomes the best solution



Algorithms 2016, 9, 6 14 of 21

found so far and its profit becomes the best profit (bestProfit). The last step in the loop is the perturb
step. When the method ends, the best found solution as well as the best found profit are returned.
The pseudocode of the ILS algorithm follows (Algorithm 4).

Algorithm 4 ILS

for numberOfIterations do
W ← {Wj0 , Wj1 , . . . , WjK−1} is a random ordering of the set of walks {W0, W1, . . . , WK−1}
DelWalks← ∅
while W 6= ∅ do

for each Wi in W do
insertBestTAIn(Wi)
if no insertion was feasible then

DelWalks← DelWalks∪ {Wi}

W ←W −DelWalks

if currentSolutionProfit > bestProfit then
bestProfit← currentSolutionProfit
bestSolution← currentSolution

perturb()

return bestSolution;bestProfit

6. The Simulated Annealing Metaheuristic

The Simulated Annealing [18,20] is a metaheuristic method that escapes from a local optimum
by allowing moves that result in worse solutions. An initial local optimum solution is usually
constructed. Then, moves that result in worse solutions are allowed with a probability that is
high in the early stages of the algorithm in order to search the solution space in more depth. This
probability is reduced along the execution of the method until it becomes negligible in order to allow
only improving solutions and find new (possibly better) local optima. In the generic scheme of the
Simulated Annealing an auxiliary parameter is used, the temperature (T). The likelihood of worse
resulting moves is usually a function inversely proportional to T and proportional to the decrease of
the solution’s value, i.e., it may be exp(∆P

T ), where ∆P is the difference of the value of the resulting
solution from the initial. The temperature is initially set to the maximum temperature which is high
enough to allow moves to worse solutions with high probability, and is decreased after a number
of iterations. The temperature is usually decreased, multiplied by a cooling factor after a number
of iterations (coolingIterations). In order to add diversification, we may allow a lot of schemes, i.e.,
when the temperature becomes too low, we may reinitialize it to the maximum temperature and start
a new scheme again.

In our setting the initial solution of the Simulated Annealing procedure will be obtained from
the SimultaneousWalkConstruction function. This function produces the same solution with the ILS
algorithm executed for a single iteration.

In the Simulated Annealing procedure, apart from the Insert neighborhood we also consider
the Replace neighborhood. The Replace neighborhood of a feasible MTOPTW solution consists
of all the solutions that can be obtained by replacing an included profitable TA in a walk by a
non-included profitable TA. For example, in Figure 5 the neighboring solutions of the walk with
node representation Wi = (sli, u, v, w, eli) in the Replace neighborhood are presented, considering
that the only non-included profitable TAs are the edge {y, z} and the node x. Figure 5a,b depict the
replacement of u by the edge {y, z}, considering both directions that the edge can be traversed, i.e.,
from y to z and from z to y, respectively. Similarly, Figure 5c,d depict the replacement of {v, w} by the
edge {y, z}, while Figure 5e,f depict the replacement of u and {v, w} by the non-included profitable
node x, respectively.



Algorithms 2016, 9, 6 15 of 21

sli u v w eli

y z

sli u v w eli

z y

(a) (b)

sli u v w eli

y z

sli u v w eli

z y

(c) (d)

sli u v w eli

x

sli u v w eli

x

(e) (f)

Figure 5. Illustration of Replace Neighborhood. (a) Replacement of the node u by the edge {y, z}
using the direction from y to z; (b) Replacement of the node u by the edge {y, z} using the direction
from z to y; (c) Replacement of the edge {v, w} by the edge {y, z} using the direction from y to z; (d)
Replacement of the edge {v, w} by the edge {y, z} using the direction from z to y; (e) Replacement of
the node u by the node x; (f) Replacement of the edge {v, w} by the node x.

Note that the replacement of an included profitable TA pi
k by a non-included one candTA,

is equivalent to the removal of pi
k followed by the insertion of candTA between pi

k−1 and pi
k+1.

The Simulated Annealing procedure takes into account five parameters: the number of schemes
(numberOfSchemes), the maximum temperature (maxTemperature), the number of iterations
executed in each scheme (schemeIterations), the cooling factor (coolingFactor) and the iterations
needed in order to update the temperature (coolingIterations). The initial solution of the Simulated
Annealing procedure is obtained by the SimultaneousWalkConstruction function. This function
derives the same solution with the ILS algorithm executed for a single iteration. Then, the Simulated
Annealing method loops for numberOfSchemes schemes. In each scheme, the temperature (T)
initially becomes equal to the maxTemperature and an inner loop is executed for schemeIterations
iterations. In the inner loop, a non-included profitable piece (candPiece) is randomly selected as
well as a walk and an included piece (inclPiece). Then, if candPiece can be inserted after inclPiece
without removing any included piece, the insertion takes place. If the insertion is not feasible, then the
replacement of the inclPiece by candPiece is examined. If the replacement is feasible, then a randomly
computed real number (prob) is obtained in the range [0, 1] and if prob < exp(diff

T ), where diff is
the difference of profits of candPiece and inclPiece, then candPiece replaces inclPiece. If either the
insertion or the replacement results in a solution with the highest profit found, then the solution and
its profit are stored as the bestSolution and bestProfit, respectively. Furthermore, if the inner loop has
been executed for coolingIterations iterations since the last time the temperature was updated, then
the temperature T gets the value T · coolingFactor. When, the first loop is completed, the algorithm
returns the best solution and profit found. The pseudocode of the Simulated Annealing algorithm is
listed in the sequel (Algorithm 5).



Algorithms 2016, 9, 6 16 of 21

Algorithm 5 The SA Metaheuristic

(bestSol,bestProfit)← SimultaneousWalkConstruction
for numberOfSchemes do

T ←maxTemperature
counter=1
for schemeIterations do

candTA← a non-included TA randomly selected
Wi ← a random walk from {W0, W1, . . . , WK−1}
inclTA← a randomly selected included TA or the starting location of Wi

if the insertion of candTA after inclTA in Wi is feasible then
(Solution,Profit)← insertion of candTA after inclTA in Wi

else if candTA can replace inclTA in Wi then
diff← profit of candTA − profit of inclTA
prob← a random real in the range [0, 1]
if prob < exp(diff

T ) then (Solution,Profit)← replacement of inclTA from candTA

else(Solution,Profit)← (∅,−∞)

if Profit > bestProfit then
bestProfit← Profit
bestSolution← Solution

if counter mod coolingIterations = 0 then T ← T · coolingFactor

counter← counter+1

return (bestSolution,bestProfit)

For an effective algorithm, SA parameters should depend on the particular solution. In our
setting, we allow only small changes in the local optimum solutions. Thus, the temperature starts
decreasing shortly after the insertion of the first TAs in the walks. If coolIterations was much higher
than the size of the solution, a very different solution would be obtained finally, especially with
high initial temperature. On the other hand, if coolIterations is relatively small compared to the
solution’s size, the solution will not escape from the local optimum. Thus, if #TAs is the number
of TAs in the initial solution of SimultaneousWalkConstruction, the coolingIterations is set equal
to #TAs · coolItFactor where coolItFactor is a constant much smaller than 1. By the same token,
schemeIterations is given by the product coolingIterations · schemeItFactor.

7. Experimental Results

7.1. Test Instances

To evaluate and compare the proposed algorithms, we have created test instances containing
data related to the city of Athens, Greece (http://dgavalas.ct.aegean.gr/public/aop_instances/
instance.zip). Our topology contains 18 scenic routes and 113 points of interest (POIs) that have
been compiled from various tourist portals (http://www.tripadvisor.com/, http://index.pois.gr/)
and web services offering open APIs (https://developers.google.com/places/documentation/). We
have also included 100 hotels in our topology. The hotels are used as starting and ending locations of
daily tourist walks. Therefore, the graph consists of 249 nodes, i.e., the endpoints of the scenic routes
(36 nodes) plus the 113 POIs and the 100 hotels. The travel costs between the locations of the topology
were calculated using the OpenTripPlanner project (http://www.opentripplanner.org/).

The attributes of the POIs (time windows, visiting times and profits) are chosen as follows
(see also Table 1):



Algorithms 2016, 9, 6 17 of 21

• 20% of POIs are open all day long in both weekdays and weekends, i.e., their time window is
0–1439, while they have profit and visiting time between 15–30.

• 20% of the POIs have time windows 540–960 for weekdays and are closed in weekends, while
their profit and visiting time is between 30–60.

• 20% of POIs have time windows 540–960 for weekdays and weekends, while their profit is
between 70–100 and the visiting time is between 60–120.

• 20% of POIs have time windows 840–1140 for weekdays and weekends, while their profit and
visiting time is between 30–60.

• 20% of POIs have time windows 480–780 for weekdays and are closed in weekends, while their
profit is between 30–60.

The attributes of the scenic routes (time windows and profits) are chosen as follows:

• 25% of them are open all day long (their time windows is between 0–1439) for each day of
the week.

• 25% of them have time windows 540–960 for weekdays and weekends.
• 25% of scenic routes have time windows 480–840 for weekdays and weekends.
• 25% of the scenic routes have time windows 540–960 for weekdays and are closed in weekends.
• All scenic routes have profit between 10 and 50.

Table 1. Points of interest (POI) and scenic route parameters.

Percent Time Window (Min) Visiting Time (Min) ProfitWeekdays Weekends

POIs

20% all day all day 15–30 15–30
20% 540–960 closed 30–60 30–60
20% 540–960 540–960 60–120 70–100
20% 840–1140 840–1140 30–60 30–60
20% 480–780 closed 30–60 30–60

Scenic routes

25% all day all day

N/A

10–50
25% 540–960 540–960 10–50
25% 480–840 480–840 10–50
25% 540–960 closed 10–50

Solutions of 1, 2, 3 and 4 walks are required. For each case, 100 test instances are
considered, each with starting/ending location one of the hotels. In particular, pref100–pref199
preferences ask for solutions of 1 walk, while pref2*(pref200–pref299), pref3*(pref300–pref399) and
pref4*(pref400–pref499) ask for 2, 3 and 4 walks, respectively. Considering the starting/ending time
of each walk in an instance, we assign the starting time to a randomly chosen time between 480–600,
while we assign a randomly chosen number between 840–1080 to the ending time. Note, that
for instances requiring more than 1 walk, different walks have the same starting/ending location,
however they usually have different starting/ending times.

7.2. Results

All computations have been executed on a personal computer Intel Core i3 with 2.30 GHz
processor and 4 GB RAM. Our tests aim at comparing the presented ILS and SA algorithm. The
algorithms are compared with respect to the obtained profit and the execution time. Mostly
prefered solutions are those associated with high profit values (higher profit values denote higher
quality solutions) and reduced execution time (as this denotes improved suitability for real-time
applications). Both algorithms have been coded in C++.

The numberOfIterations parameter in ILS takes the values 100, 200, 400 and 800 and the
corresponding results are reported as ILS_100, ILS_200, ILS_400 and ILS_800. We use the
same parameter numberOfIterations(=numSchemes · schemeIt) for denoting the total number of



Algorithms 2016, 9, 6 18 of 21

iterations in SA. The parameters maxTemperature and coolingFactor are always set equal to 10
and 0.5, respectively. These values have been chosen due to providing marginally better results,
as demonstrated experimentally. Also, they guarantee that a large part of the search space is
searched. The other parameters of SA are set to the following values: numberOfIterations = 0.5 and
1 million, coolItFactor = 0.8, 0.5 and 0.25, and the schemeItFactor = 8 and 10. We use the notation
SA_numberOfIterations_coolItFactor_schemeItFactor for denoting the results for the SA for specific
values of the SA parameters; for example, for numberOfIterations equal to 0.5 million, coolItFactor
equal to 0.8 and schemeItFactor equal to 8, the results obtained are indicated with SA_0.5M_0.8_8.

Each one of the proposed algorithms is executed 5 times for each instance. Table 2 illustrates
the experimental results compiled from the executed algorithms for each value of the parameters.
The results obtained are averaged with respect to the number of requested walks. In more detail,
each algorithm with its associated parameter values is shown in the first column. The next four pairs
of columns present the experimental results obtained for instances requesting 1, 2, 3 and 4 walks,
respectively. Each pair of columns shows the average profit obtained and the average execution time
of each algorithm for the 5 executions of each instance asking for a specific number of walks. So, the
average profit and execution time (in ms) for instances requesting 1 walk (pref100-pref199) are given
in the first pair of columns of Table 2, while the average results obtained for 2 (pref200-pref299),
3 (pref300-pref399) and 4 (pref400-pref499) walks are given in the second, third and fourth pair of
columns of Table 2, respectively.

Table 2. Experimental Results–Same number of Iterations.

Algorithm 1 Walk 2 Walks 3 Walks 4 Walks
Profit Time (ms) Profit Time (ms) Profit Time (ms) Profit Time (ms)

ILS_100 816.698 295.728 1359.972 340.59 1865.546 387.194 2286.534 402.608
ILS_200 821.578 590.264 1365.354 678.658 1872.24 771.248 2291.818 803.022
ILS_400 823.754 1179.93 1368.992 1354.696 1876.248 1542.638 2296.038 1604.118
ILS_800 826.342 2353.616 1375.468 2708.656 1880.298 3080.624 2299.984 3203.474

SA_0.5M_0.8_8 818.59 271.05 1333.24 275.958 1815.88 278.432 2233.714 279.096
SA_0.5M_0.5_8 818.16 271.778 1332.56 276.204 1816.134 278.806 2233.43 279.62

SA_0.5M_0.25_8 819.644 272.708 1333.426 277.302 1816.378 279.238 2233.71 279.954
SA_0.5M_0.8_10 820.736 268.846 1335.488 274.206 1818.05 276.85 2236.38 277.52
SA_0.5M_0.5_10 820.58 269.698 1334.888 274.414 1819.804 276.796 2235.72 277.838
SA_0.5M_0.25_10 818.574 271.284 1334.864 275.728 1819.41 277.968 2235.454 278.124

SA_1M_0.8_8 821.072 525.35 1333.036 534.368 1815.194 537.652 2234.246 538.258
SA_1M_0.5_8 820.6 526.03 1334.716 535.174 1815.97 538.54 2234.072 538.6

SA_1M_0.25_8 820.324 530.034 1334.178 536.93 1815.918 539.41 2233.732 539.794
SA_1M_0.8_10 820.066 522.626 1336.474 531.182 1818.038 534.66 2235.464 535.366
SA_1M_0.5_10 820.944 523.026 1336.128 531.81 1819.59 534.704 2237.192 535.798
SA_1M_0.25_10 820.3 527.324 1335.462 533.492 1820.054 536.534 2236.73 537.258

Based on the experimental results, we can easily conclude that increasing the algorithms’
execution time, i.e., increasing the allowed number of iterations, improves the solutions’ quality
marginally. To see this, consider first the ILS algorithm. The average profit for 200 iterations is
higher than that for 100 iterations by less than 0.7% for all number of walks. The same holds when
comparing the results for 400 and 200 iterations as well as for 800 and 400 iterations. With regard to
the SA algorithm, the profit for one million iterations is higher than that of half a million iterations by
at most 0.5% for any number of walks.

As for the parameters coolItFactor and schemeItFactor, the results indicate that the parameter
coolItFactor does not significantly influence the output of SA algorithm. For example, for half a
million iterations and schemeItFactor equal to 10, the difference of SA_0.5M_0.8_10’s profit and
SA_0.5M_0.25_10’s profit is less than 0.27% and this is the largest difference, given that the other
parameters are the same. The parameter schemeItFactor seems to influence the results slightly more,
however, the difference in profit is always less than 0.5%.



Algorithms 2016, 9, 6 19 of 21

The experimental results demonstrate that ILS outperforms SA with respect to solution quality,
yet, at the expense of longer execution time. For one walk, the solutions obtained by both ILS
and SA are of similar profit, i.e., the ILS_100 produces slightly inferior solutions than those of SA
overall, while ILS_200, ILS_400, ILS_800 produce marginally better solutions, however, with higher
running time. For more than one walks, ILS prevails over SA even with 100 iterations. For example,
ILS_100’s profit for two walks is higher than that of SA by at least 1.7%, regardless of the particular
parameters of SA. For three or four walks, the profit is at least 2.47% and 2.19% respectively, higher
than the profit obtained from any execution of SA. However, ILS requires more execution time than
SA. For constant number of iterations, the running time of ILS increases with the number of walks,
since in the perturbation step, ILS removes a chain of included TAs from each walk. This increases the
running time when the number of walks is large, since reaching a local optimum requires inserting
TAs to all the walks. On the other hand, the execution time of the SA algorithm does not depend
on the number of the constructed walks, but only on the number of iterations. This is because at
each step of SA, only one walk is modified, hence, the execution time is independent of the number
of walks.

In the sequel we examine the behavior of ILS and SA in the case that the same running time
is allowed to both algorithms, whatever the number of iterations. Tables 3–5 present the results
obtained when the running time is fixed to one second, five and ten seconds respectively. Again, the
experimental results show that ILS outperforms SA in solution quality. For one walk, the solutions
obtained by both ILS and SA are of similar profit while the difference in solution quality increases
as the number of walks increases. A reasonable explanation for the observed differences is that in
the case of multiple walks, SA does not explicitly allow an exchange between walks, so it may move
around less efficiently within the feasible region.

Table 3. Experimental Results—Same Execution Time (1 s).

Algorithm 1 Walk 2 Walks 3 Walks 4 Walks
Profit Profit Profit Profit

ILS 824.54 1367.09 1872.44 2292.89
SA_0.8_8 822.47 1332.41 1816.25 2234.34
SA_0.5_8 821.95 1332.52 1815.94 2234.58

SA_0.25_8 822.08 1332.13 1816.58 2234.47
SA_0.8_10 822.84 1335.05 1819.53 2236.54
SA_0.5_10 821.79 1333.94 1819.09 2235.98
SA_0.25_10 822.92 1336.21 1818.63 2236.30

Table 4. Experimental Results—Same Execution Time (5 s).

Algorithm 1 Walk 2 Walks 3 Walks 4 Walks
Profit Profit Profit Profit

ILS 832.48 1381.05 1886.10 2303.01
SA_0.8_8 823.34 1332.36 1816.23 2233.94
SA_0.5_8 824.15 1332.59 1815.91 2234.28

SA_0.25_8 824.05 1333.06 1816.29 2234.76
SA_0.8_10 824.70 1335.58 1819.55 2236.04
SA_0.5_10 824.80 1336.19 1818.93 2236.74
SA_0.25_10 825.53 1335.78 1819.42 2235.84



Algorithms 2016, 9, 6 20 of 21

Table 5. Experimental Results—Same Execution Time (10 s).

Algorithm 1 Walk 2 Walks 3 Walks 4 Walks
Profit Profit Profit Profit

ILS 834.46 1386.06 1889.16 2306.26
SA_0.8_8 824.85 1333.96 1816.68 2234.28
SA_0.5_8 825.01 1333.66 1815.88 2234.76
SA_0.25_8 823.98 1333.85 1815.84 2234.60
SA_0.8_10 824.54 1336.20 1819.04 2236.72
SA_0.5_10 824.85 1336.39 1818.31 2237.52

SA_0.25_10 825.62 1336.11 1818.51 2237.23

8. Conclusions

In this work, we introduced the Mixed Team Orienteering Problem with Time Windows, i.e.,
the extension of the MOP to multiple tours which can be used for modeling a realistic variant of
the Tourist Trip Design Problem where the objective is the derivation of near-optimal multiple-day
tours for tourists visiting a destination which features several points of interest (POIs) and scenic
routes. We presented the first two algorithmic (metaheuristic) approaches to tackle it. We employed
a preprocessing phase for speeding-up the local search operations heavily used by both heuristics.
The main conclusion from the experimental evaluation of the two proposed heuristics is that the ILS
approach derives solutions of higher quality than those of the SA approach.

Acknowledgments: This work has been supported by the EU FP7/2007-2013 Programme under grant
agreements No. 288094 (eCOMPASS) and No. 621133 (HoPE). We would like to sincerely thank the anonymous
reviewers for their constructive comments and suggestions which significantly improved the technical content
and the presentation of our work.

Author Contributions: D.G, C.K., K.M. and G.P. conceived and designed the proposed algorithms; K.M.
implemented the algorithms; K.M., C.K. and G.P wrote the paper; K.M and N.V. designed and conducted the
experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gavalas, D.; Konstantopoulos, C.; Mastakas, K.; Pantziou, G. A Survey on Algorithmic Approaches for
Solving Tourist Trip Design Problems. J. Heuristics 2014, 20, 291–328.

2. Tsiligirides, T. Heuristic Methods Applied to Orienteering. J. Oper. Res. Soc. 1984, 35, 797–809.
3. Vansteenwegen, P.; Souffriau, W.; van Oudheusden, D. The orienteering problem: A survey. Eur. J.

Oper. Res. 2011, 209, 1–10.
4. Souffriau, W.; Vansteenwegen, P.; Vanden Berghe, G.; van Oudheusden, D. The planning of cycle trips in

the province of East Flanders. Omega 2011, 39, 209–213.
5. Archetti, C.; Speranza, M.G.; Corberan, A.; Sanchis, J.M.; Plana, I. The Team Orienteering Arc Routing

Problem. Transp. Sci. 2013, 48, 442–457.
6. Verbeeck, C.; Vansteenwegen, P.; Aghezzaf, E.H. An extension of the arc orienteering problem and its

application to cycle trip planning. Transp. Res. Part E Logist. Transp. Rev. 2014, 68, 64–78.
7. Archetti, C.; Corberan, A.; Plana, I.; Sanchis, J.; Speranza, M. A matheuristic for the team orienteering arc

routing problem. Eur. J. Oper. Res. 2015, 242, 392–401.
8. Archetti, C.; Feillet, D.; Hertz, A.; Speranza, M.G. The undirected capacitated arc routing problem with

profits. Comput. Oper. Res. 2010, 37, 1860–1869.
9. Zachariadis, E.; Kiranoudis, C. Local search for the undirected capacitated arc routing problem with profits.

Eur. J. Oper. Res. 2011, 210, 358–367.
10. Deitch, R.; Ladany, S. The one-period bus touring problem: Solved by an effective heuristic for the

orienteering tour problem and improvement algorithm. Eur. J. Oper. Res. 2000, 127, 69–77.
11. Maervoet, J.; Brackman, P.; Verbeeck, K.; de Causmaecker, P.; Vanden Berghe, G. Tour Suggestion for

Outdoor Activities. In Proceedings of the 12th International Symposium on Web and Wireless Geographical
Information Systems (W2GIS’13), Banff, AB, Canada, 4–5 April 2013; Volume 7820, pp. 54–63.



Algorithms 2016, 9, 6 21 of 21

12. Černá, A.; Černý, J.; Malucelli, F.; Nonato, M.; Polena, L.; Giovannini, A. Designing Optimal Routes for
Cycle-Tourists. Transp. Res. Procedia 2014, 3, 856–865.

13. Gavalas, D.; Konstantopoulos, C.; Mastakas, K.; Pantziou, G.; Vathis, N. Approximation algorithms for the
arc orienteering problem. Inf. Process. Lett. 2015, 115, 313–315.

14. Benavent, E.; Corberan, A.; Plana, I.; Sanchis, J. Arc Routing Problem with Min-Max Objectives.
In Arc Routing: Problems, Methods, and Applications; MOS-SIAM Series on Optimization; Society for
Industrial and Applied Mathematics: Philadelphia, USA, 2014; pp. 255–280.

15. Corberan, A.; Plana, I.; Sanchis, J. The Chinese Postman Problem on Directed, Mixed, and Windy Graphs.
In Arc Routing: Problems, Methods, and Applications; MOS-SIAM Series on Optimization; Society for
Industrial and Applied Mathematics: Philadelphia, USA, 2014; pp. 65–84.

16. Corberan, A.; Plana, I.; Sanchis, J. The Rural Postman Problem on Directed, Mixed, and Windy Graphs.
In Arc Routing: Problems, Methods, and Applications; MOS-SIAM Series on Optimization; Society for
Industrial and Applied Mathematics: Philadelphia, USA, 2014; pp. 101–127.

17. Vansteenwegen, P.; Souffriau, W.; Vanden Berghe, G.; van Oudheusden, D. Iterated local search for the team
orienteering problem with time windows. Comput. Oper. Res. 2009, 36, 3281–3290.

18. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison.
ACM Comput. Surv. 2003, 35, 268–308.

19. Lourenco, H.; Martin, O.; Stützle, T. Iterated Local Search. In Handbook of Metaheuristics; Glover, F.,
Kochenberger, G., Eds.; International Series in Operations Research & Management Science; Springer:
New York, NY, USA, 2003; Volume 57, pp. 320–353.

20. Kirkpatrick, S.; Gelatt, D.J.; Vecchi, M. Optimization by Simmulated Annealing. Science 1983, 220, 671–680.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Related Work
	Problem Definition
	MTOPTW Algorithmic Approaches—Preprocessing Phase
	The Iterated Local Search Metaheuristic
	The Simulated Annealing Metaheuristic
	Experimental Results
	Test Instances 
	 Results

	Conclusions

