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Abstract: Kung-Traub conjecture states that an iterative method without memory for finding the
simple zero of a scalar equation could achieve convergence order 2971, and d is the total number

of function evaluations. In an article “Babajee, D.K.R. On the Kung-Traub Conjecture for Iterative
Methods for Solving Quadratic Equations, Algorithms 2016, 9, 1, d0i:10.3390/29010001”, the author
has shown that Kung-Traub conjecture is not valid for the quadratic equation and proposed an
iterative method for the scalar and vector quadratic equations. In this comment, we have shown

that we first reported the aforementioned iterative method.

Keywords: Kung-Traub conjecture; System of quadratic equations; Iterative methods

1. Iterative Methods for Solving Quadratic Equations Presented in [1]

According to Kung-Traub conjecture (KTC) [2], an iterative method without memory for solving

nonlinear equations in the case of simple zeros, could achieve a maximum convergence order of

del

, where d is the number of function evaluations. Recently, an article was published for solving

quadratic equations [1] with arbitrary order of convergence by using one function and two derivatives
evaluations. The details of the proposed formulation in [1] is given as follows. Let f(x) = xp x* +
K1 X + ko be a quadratic function where x, # 0 and 1, xy are constants. The proposed iteration

function 1/) o thBQIM( x) in [1] is
_ fx)
u(x) = 716
= ' (x=2/3u(x))
f(x)

H(t,r) =1+ Z a; (t—1)}
lp(r+2)thBQIM( )

The error equation of Equation (1) is given as v

—u(x) H(t,r)

(r+2 thBQIM< ) =

)

¥ o= G ( r+1) (e(k))’+2 n

r+3
@) ( (e(k)) ) where C, is asymptotic error constant, x* is the simple root of quadratic equation
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and c; = 1/2f'(x*)~1f"(x*). The error equation clearly shows that KTC is not valid in the case of
quadratic equations. By using binomial expansion, the weight function H(t,r) can be written as

o ; o
H(T,T’) =1+ 2 Zai ( 1 ) (_1)(1—]) T/
i=1j=0 N 7] 2
r .
H(t,r)=1+) b7
i=0
where b; is constant and can be computed by comparing two expressions of H(t,r) in Equation (2).
The powers of T can be computed recursively and hence the iteration function Equation (1) is
written as
N (€9)
ux) = 76
y=x—2/3u(x)

_ 'y
T=70

¢o = u(x)
for i=1,r
$i =TPi1

end

#](r+2)thBQIM (X) =X—= ¢0 - ';0 bi (Pi'

®)

The computationally efficient vector version of iteration function Equation (3) is

F'(x) 90 = F(x)
y=x—2/3¢p
fori=1,r
F'(x) ¢; = F'(y) i1 @)

end

;
¢(7+2)thBQIM(X) =X—= ¢0 - 'ZO bi ¢i .
i=

2. Iterative Methods for Solving Matrix-Vector Quadratic Equations Presented in [3]

In this direction, a manuscript [3] was posted on 4 May 2015 on Researchgate in which the author
provided models of three iterative methods, with their respective convergence orders, for computing
the solution of matrix-vector quadratic equations. As the proposed iterative methods are valid for
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solving systems of nonlinear equations with quadratic nonlinearity, they are also valid for scalar
quadratic equations. In the article [3] the model of iterative Method II can be written as:

Xo = initial guess
F'(x0) 1 = F(xo)
X1 = X + 1,1 91
fori=1,m

F'(x0) $ir1=F (x1) ®)
end
m
X2 = Xq + 121 062’]‘ 4)]
]:
X2 = Xp

where F(x) = 0is a quadratic equation i.e., F’(x) = B is a bilinear form and F®) (x) = O (zero tensor)
for s > 3 and the convergence order is m + 2. The scalar version of iterative method Equation (5) can
be written as

Xp = initial guess
f'(x0) @1 = f(x0)

X1 = X0+ a1,1P1

for i=1,m

f'(x0) pix1 = f(x1) ¢ (6)

end

m
X2 = X0+ Y a2 ¢;
j=1

Xp = X2

where f(x) = ax? + bx + c with a # 0 and convergence order is m + 2. The convergence proofs of
different iterative methods are established in Figures 1-4. We can see that the error equations in all
cases are the same. The Figure 4 shows that the iterative method (1) is a particular case of iterative
method Equation (6) for a;; = —2/3. Finally we provide the convergence proof of the iterative
method Equation (5).

Theorem 2.1. Let F : D C R" — R”" be a function with all continuous Fréchet derivatives, F'(x) = B
and FU)(x) = O for j > 3, where B is a bilinear form and D is convex open subset of R". If we take xq in the
vicinity of a simple root x* of F(x) = 0 then the sequence of successive approximation generated by iterative
method Equation (5) for m = 6 and a1 = —2/3 converges to x* with convergence order eight.

Proof. We denote e, = x; — x*, C; = F/(x*) and C; = F/(x*)"'F’(x*)/2. By expanding F'(xo)
around x* we get

F(xo) = C1 (&0 + Co ¢}) @)
The Fréchet derivative of Equation (7) with respective to eg is

F(x0) = C; (I+2Cze) 8)
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The inverse of Equation (8) is

F(xo) ! = (1—2C2e0+4C§e3—8C2e0+16c:2e0 32C5 e + 64 CS el — 128 C e

)
+256C3ef ) C7' + 0 (ef)
We compute ¢; using Equations (9) and (7)
$1=eo—Cred+2CGe] —4CTef +8CHe] —16CTef+32CFe] —64Chef+0 (). (10)
The expression for ey is
e1=1/3 (eo+2Cref —4C3e) +8CTef —16Chef +32CF ef + 64 C ] +128C ef))
(11)
+0 (e%)
First order Fréchet derivative of F(x) at x; is
F(x1) :c1(1+ 1/3 (2C2eo +4C2e2 —8C3ed +16Ch et —32C5 ] +64CS el
(12)
~128C]ef +256CSef ) ) + O (ef)
Next we compute M = F/(xo) ~'F'(x1)
M=1-4/3Cyey+4C3el—32/3C3 e} +80/3C5et —64C5e)+448/3C5 el
(13)
—~1024/3Cj €] +768 C ef + O (ef)
with help of Equation (13), we obtain the expressions for ¢; fori € {2,3,4,5,6,7}
—2944/3C} e + 0 (eo)
¢3 =ep—11/3Cye5+130/9C3 el —460/9 C3 et +168 C5 e — 1568/3 C; e§
+4672/3C§ €] — 4480 C] ef + O (ef)
¢s=eg —5Cy e +70/3C3el —2584/27 C5 el +9712/27 C; e] — 34208/27 C5 §
+114496/27 C§ ] — 367616/27 Cj ] + O (<)
(14)

¢s =eg—19/3Cped +34 C2 el — 4252/27 C3 et + 53512/81 C4 e — 208624/81 C5 e
+ 767968 /81 C§ ef — 2697920/81 C e + O (eo)

P = eo —23/3Cped +418/9 C3 e3 — 6448/27 C e + 89168 /81 Ch €]
— 1137712/243 CJ ef -+ 4543840/243 C§ ] — 5747840/81 C] ] + O (<)

P7 =eg—9Cy el +182/3C3 &3 — 9236/27 C e + 46264,/27 Ch €] — 637376/81 C3 €
+24618880/729 C§ €] — 100011520/729 Cj e + O (ef ) -
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We obtain expression for e, by using Equation (14)

ey = (1 +ap1+app+ar3+ a4+ 025+ a6+ oc2,7) )
+ ( —wp1—7/3m25 —11/3ap3 — 5apy — 19/3 005 — 23/3 026 — 9 azy) C, &2
+ (2 ap1 +22/3020 +130/9 23 +70/3ap4 +34a05C3 +418/9ap 6
+182/3 azy) Cled+ ( —dayy —64/30p0 —460/9ap3 — 2584/27 ap 4 — 4252/27 ay 5

— 6448/27 035 — 9236/27 a27) C e + (81 +176/3 22 +168 a5 +9712/27 a4

4 53512/81 a0y 5 + 89168/81 ap g + 46264/27 zxz,y) Ciel + ( 16y — 464/3 25 (15)

—1568/3 ap 3 — 34208/27 ay 4 — 208624 /81 ap 5 — 1137712 /243 a6
— 637376/81 a2,7) CGeb+ (32 tp1 + 1184/3 0y 0 + 4672/3 a3 + 114496 /27 ay 4

+767968/81 25 + 4543840/ 243 2 + 24618880/ 729 57 ) C§ ] + ((— 64a:
—2944/3 035 — 4480 0y 3 — 367616/27 3 4 — 2697920/81 a5 — 5747840/81 sz
~100011520/729.5,7) Cj €§ +O(ef ) .

By equating the coefficients of powers of ej in Equation (15), we get system of seven equations

eqp :=1+az1 +agp+asz+ars+ass+age+any =0

eqy i =—wp1 —7/3a20 —11/3 033 —5a24 —19/3 025 —23/3 06 — 927 =0

eqs =201 +22/3 032 +130/9 633 +70/3 024 + 34 a5 + 418/9 a6 + 182/3 a7 = 0

eqyi=—4ay, —64/302y —460/9 0y 3 — 2584/27 ap 4 — 4252/27 ay 5 — 6448/27 a6
—9236/27 a7 = 0

eqs :=80y1 +176/3 0y + 168 433 4+ 9712/27 a3 4 + 53512/81 sz 5 + 89168/81 sz 6 (16)
+46264/27 057 = 0

eqe := — 16y 1 — 464/3 a5 — 1568 /3 a3 — 34208/27 a4 — 208624/81 az 5
— 1137712 /243 a6 — 637376 /81 az7 = 0

eqy =321 + 1184/3 0y + 4672/3 tp 3 + 114496 /27 a 4 + 767968 /81 ay 5
+ 4543840/243 ap 6 + 24618880/729 a5 7 = 0.

The solution set of seven equations is

o = d gy 43903 55767 497763 37719 416421
TP 10247 T 256 TP T 1024 YT e T 1024
(17)
L 38637 24057
267 7256 T 1024
After simplification the error equation we get
_ 7 A8 9
e; = 429C] ef +0(ef). (18)
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fi=e—cl(e+c2e%):
df:==e—cl-(1+2-c2-e):
r:=06:
— cimi]i fle) j)
u = simplify| taylor ,e=0,r+3]|:
P fy[ Y (df(e)
[ [df(e—g-u) ]
tau := simplify| taylor| ————%,e=0,r+3
Plify tay df(e) _
H = simplify(taylor (1 + add(a[i]-(tau—1) i=1.r),e=0,r+3)):
x := factor(simplify(taylor(e— H-u,e=0,r+3))):
forifrom2tor+1do

eqnli—1]:= Simplify[ coeff(X, e, i) );

o1
end do:
eq:={}:
forifrom?2tor+1do
X, e, i
eq = eq U| mg_’f’)]:
end do:
sol := simplify(solve(eq))
[az—iazgaz—@azﬂaz—ma=24057} (1)
14772 g™ 64 4 128" 512776 1024
error_equation := simplify(eval(x, sol))
429¢2” &® +0(&°) (2)
restart:
wl = la __3 a _9 a __135 a _ 567 a _ _5103 . = 24057}
1472 g™ 64 4 128" 512776 1024
[a:_ga:ga:_wsa:@a:_wa:MOS?} 3)
14772 g7 ™ 64 4 128" 7 512776 1024
r==2=06
6 (4)
H := eval(simplify(taylor(1 + add(a[i]- (tau—1)’ i=1.r),e=0, r+3)), sol)
24057 T6_ 38637 r5+ 416421 r4— 37719 T3 n 497763 T2 _ 55767 T (5)
1024 256 1024 64 1024 256
43903
1024

Figure 1. Iterative method Equation (1).
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fi=e—cl-(e+c2¢):

df==e—cl-(14+2-c2-e):

m:=7:

phi:= Array(1l..m):

phi[1] = Simplify( taylor( 5;(2) ,e=0 m+ 2)) :

x1 := simplify(taylor(e + alpha[1, 1]-phi[1],e=0, m+2)):

forifrom1to m—1do
phi[i+1]:= simpliﬁ/(mylor(%, e=0, m+2));

end do:
x1 := factor(simplify(taylor (e + add(alpha[ 2, i]-phi[i], i=1.m),e=0, m+2))):
forifrom1 to mdo

eqnli] = Simplify( coeff(x1, e, i) )

o1 ’
end do:
eq:={}:
forifrom 1 to mdo
e 1, e i
eq = eq U{ coejxL el fgi‘_l J }:
end do:
sol .= simplify(solve(eq))
[O‘l, 1-0,1p % 1= (1)
1 160) ,—80  +8a; ,—100  +140s , —21o; +33
16 o8 10 5 =
1,1
5 4 3 2
1 8o, —160 ,+300; , —560; ; +1050, ; —198
16 o8 O 3=
1,1
4 3 2
1 8oy, =300 +840; ; —2100; | +495 B
16 o8 10 4=
1,1
1 50,,-280;  +1050,,-330 | 140}, 1050, +495
3 6 %57 " 16 6 ’
01 O
3 —66+70L1 1 33
0 6= “16 - 6 %= 6
o 160c1,1
error_equation := simplify(eval(x1, sol))
429¢2” & +0(e%) (2)

Figure 2. Iterative method Equation (6) for arbitrary finite &y ;.
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fi=e—ocl-(e+c2e):
df:=e—cl-(1+2-c2-e):
m:=7:

phi:= Array(1.m) :

phi[1] := simplify(taylor( [(e) ,e=0, m+2)) :

df(e)
alpha[l, 1]:=-1:
x1 = simplify(taylor (e + alpha[1, 1]-phi[1], e=0, m+2)):
forifrom1to m—1do
phi[i+1]:= simplify( taylor(

end do:
x1 = factor (simplify(taylor (e + add(alpha[2, i]-phi[i], i=1.m),e=0,m+2))):
forifrom 1 to mdo

eqnli] == Simplify( coeff(x1, e, i) );

df(x1) -phili]

df(e) ’ezo’m”));

o1
end do:
eq:={}:
for ifrom 1 to mdo
o coeff(x1, e 1) |,
eq:=eq U{ T}
end do:
sol .= simplify(solve(eq))
_ .55 _ 413 _ 87  _ 17  _ 307  _219 ]
1= g % 2T e % 3T T g %aT T %5 T T g %6 1 M
__33
%7716
error_equation = simplify(eval(x1, sol))
429¢2” S+ 0(e%) (2)

Figure 3. Iterative method (6) for ay ; = —1.

fi=e—cl-(e+c2-¢):
df=e—cl-(1+2-c2-e):
m:=7:

phi:= Array(1.m) :

phi[1] = Simplify[taylor( f(e) ,e=0, m+2)j :

alpha[1l, 1] :=—% :
x1 := simplify(taylor(e + alpha[1, 1]-phi[1],e=0, m+2)):

forifrom1lto m—1do
phi[i+1]:= simplify( taylor(

df(x1)-phili]

df(e)
end do:
x1 := factor(simplify(taylor (e + add(alpha[2, i]-phi[i], i=1.m),e=0, m+2))):
forifrom1 to mdo

eqnli] = Simplify[ coeff(x1, e, i) );

ce=0,m+2])

i1
end do:
eq:={}:
for ifrom 1 to mdo
— coeff(x1, e 1) .
eq = eq U{ T } :
end do:
sol := simplify(solve(eq))
43903 _ 55767 497763 _ 37719 _ 1
%217 771024 " %227 T256 1 %237 T 1024 1247 T 6a 25T M
416421 o = 38637 o = - 24057}
1024 ° 26 256 ' &7 1024
error_equation := simplify(eval(x1, sol))
429c2” & +0(e°) (2

Figure 4. Iterative method (6) for &y 1 = —2/3.
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As we have seen, the convergence order of the iterative method Equation (5) is eight for m = 6
and this confirms our claimed order of convergence which is s 4 2 for m = s. Now we provide the
proof of convergence order via mathematical induction.

Theorem 2.2. Let F : D C R" — R" be a function with all continuous Fréchet derivatives, F'(x) = B
and BV (x) = O for j > 3, where B is a bilinear form and D is a convex open subset of R". If we take xq
in the vicinity of a simple root x* of F(x) = 0 then the sequence of successive approximation generated by the
iterative method Equation (5) for m = s and a1 = —2/3 converges to x* with convergence order s 4 2.

Proof. We suppose that our claim about the convergence order of the iterative method Equation (5)
is true for m = s, which means we have

el = H, Gy lej™2 40 (&) (19)

where H; is asymptotic error constant and superscript “(s)” means the value of e; when m = s. We

(s)

can write e,
egs) =e)—2/3¢1+ (a1 + a2 M+ +aps 1 M%) 91 + H,Cy 'ef2+ O (e5+3) (20)
It is convenient to express the combination
o1+ aop M+ aps M? + -+ + g 50 MP
in the powers of I — M [1], we establish the following identity
a1 F oo M- tags M= Bog 4 Bop(I— M)+ 4By 1 (I— M)° (21)

By comparing the same powers of M on both sides we can easily compute the value of §;’s. By
using Equation (21), error Equation (20) can be written as

el —eg—2/3¢1 + (Bo1 + P2 (I— M)+ -+ Bog 1 (I— M)*) ¢y + H C5 el

+0 (e(()s+3) ) )

However, according to our assumption we can find the value of unknowns to make the following
expression equal to zero

e0—2/3¢1+ (Boa +Po2(I— M)+ +Brs 1 (I— M)*) 1 =0 (23)

We can notice from Equation (13) that (I — M)° = (3)° C3ef + O (e(()SH)) and ¢1 = O(ep).
Now we consider

e§s+l) :egs) +,BZ,S (I . M)S—H 1

1
—H Cs+1es+2+'8 (3>S+ Cs+1e(s+2) +0 (e(s+3))
=114, 0 2,5 4 2 0 0

(24)
3 s+1
_ <HS #(3) ) e o (o)
As we know the value of Hs we can find ,, to make the coefficient of e(()SJrz) equals to zero.

Hence we get
eéSH) -0 (e(()s+3)>

which completes the proof. O
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3. Numerical Testing

We adopt the following definition of computational convergence order (COC)

_ 1og (IIF(x1) oo/ | I (xk) []eo)
log (I[F(x¢) oo/ [[F (xt-1)lleo)

To verify the claimed convergence order of our proposed iterative method Equation (5), we study
the following system of quadratic equations

cocC

(25)

XoX3 + X4(x2 + x3) =

F(x) X1X3 + X4 - (26)

X1X2 + x4(x1 + x4

S o~ o~ o~

)=0
X4+x3)=0
)=0
)=1

X1x2 + x3(x1 + X2

In Table 1, we listed the norm of the residue of F(x) and COC against the sequence of iterations
for different values of parameters a1. The Table 1 confirms the claimed convergence order. For two
different values of the parameter a11, we obtained the record of the norm of the residue of F(x) equal
to the system of quadratic Equations (26). The possible reason for his could be the same error equation
of iterative method for different values of parameter w1; in the iterative method Equation (5).

Table 1. Computational convergence order of iterative method Equation (5), initial guess =
[0.5,0.5,0.5, —0.25].

iter ||[F(X)||le €COC [||F(x)||le €COC

app = —1 wg] = —2/3
0 2.50el 2.50el
1 2.71e-6 2.71e-6
2 7.56e-47 8.17 7.56e-47 8.17
3 2.80e-371  8.00 2.80e-371 8.00
4 9.79e-2967 8.00 9.79e-2967  8.00

4. Conclusions

We conclude that the iterative structure of iterative method Equation (1) was first reported in
article [3] as a particular case and our proposed iterative method [3] is general because ;1 is a free
parameter.

Conflicts of Interest: The author declares no conflict of interest.
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