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Abstract: In this article, we introduce a new multi-step iteration for approximating a common fixed
point of a finite class of multi-valued Bregman relatively nonexpansive mappings in the setting
of reflexive Banach spaces. We prove a strong convergence theorem for the proposed iterative
algorithm under certain hypotheses. Additionally, we also use our results for the solution of
variational inequality problems and to find the zero points of maximal monotone operators. The
theorems furnished in this work are new and well-established and generalize many well-known
recent research works in this field.
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1. Introduction

In 1967, Bregman [1] found a beautiful and impressive technique named the Bregman distance
function D f for process designing and analyzing feasibility and optimization algorithms. This turned
the research in which Bregman’s technique was applied towards a growing range of different ways to
design and analyze iterative algorithms and to solve not only feasibility and optimization problems,
but also algorithms for solving variational inequality problems, zero points of maximal monotone
operators, equilibrium problems, fixed point problems for nonlinear mappings, and so on (see,
e.g., [2–4] and the references therein).

In recent years, many authors have constructed several iterative methods using Bregman
distances for approximating fixed points (and common fixed points) of nonlinear mappings; we
refer the readers to [5–15] and the reference therein. In 2012, Suantai et al. [7] considered strong
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convergence results of Halpern’s iteration for Bregman strongly nonexpansive mappings T in
reflexive Banach spaces E as follows:

xn+1 = ∇ f ∗(αn∇ f (u) + (1− αn)∇ f (Txn)), ∀n ≥ 0 (1)

where f is a strongly coercive Legendre function, which is bounded, uniformly Fréchet differentiable
and totally convex on bounded subsets of E. They proved that the sequence {xn} defined by
Equation (1) converges strongly to a point p ∈ F(T) = F̂(T) under certain appropriate conditions
on the parameter {αn}, where F̂(T) is the set of asymptotic fixed points of T. Later, Li et al. [8]
extended Halpern’s iteration for the Bregman strongly nonexpansive mapping T : E −→ E of [7] to
Bregman strongly nonexpansive multi-valued mapping T : C −→ N(C) as follows:

xn+1 = ∇ f ∗(αn∇ f (u) + (1− αn)∇ f (zn)), ∀n ≥ 0 (2)

where zn ∈ Txn. They proved that the sequence {xn} defined by Equation (2) converges strongly to
a point p ∈ F(T) = F̂(T) under certain appropriate conditions on the parameter {αn}.

Very recently, Shahzad and Zegeye [5] introduced an iterative process for the approximation of
a common fixed point of a finite family of multi-valued Bregman relatively nonexpansive mappings
Ti : C −→ CB(C) in reflexive Banach spaces E as follows:{

wn = P f
C∇ f ∗(αn∇ f (u) + (1− αn)∇ f (xn))

xn+1 = ∇ f ∗(β0∇ f (wn) + ∑N
i=1 βi∇ f (ui,n)), ∀n ≥ 0

(3)

where ui,n ∈ Tiwn for i = 1, 2, ..., N, C is a nonempty, closed and convex subset of int(dom f ). Under
some mild conditions on the parameters {αn} and {βi,n}, they prove that the sequence {xn} defined
by Equation (3) converges strongly to a point p ∈ ⋂N

i=1 F(Ti). On the other hand, Eslamian and
Abkar [16] introduced a multi-step iterative process by a hybrid method as follows:

yn,1 = J−1((1− βn,1)Jxn + βn,1 Jzn,1)

yn,2 = J−1((1− βn,2)Jxn + βn,2 Jzn,2)
...

yn,N = J−1((1− βn,N)Jxn + βn,N Jzn,N)

un ∈ C such that F(un, y) + 1
rn
〈y− un, Jun − Jyn,N〉 ≥ 0

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)}
xn+1 = ΠCn+1 x0, ∀n ≥ 0

(4)

where zn,1 ∈ T1xn and zn,i ∈ Tiyn,i−1 for i = 2, 3..., N, ΠC is the generalized projection from E onto
C, Ti (i = 1, 2, .., N) is a finite family of relatively quasi-nonexpansive multi-valued mappings and J
is the duality mapping on E. Under some suitable conditions, they proved that the sequence {xn}
defined by Equation (4) converges strongly to common elements of the set of common fixed points
of a finite family of relatively quasi-nonexpansive multi-valued mappings and the solution set of an
equilibrium problem in a real uniformly convex and uniformly smooth Banach space.

Here, from the motivation of the above results, by using Bregman functions, we introduce a new
multi-step iteration for approximating common fixed point of a finite family of multi-valued Bregman
relatively nonexpansive mappings in the setting of reflexive Banach spaces. We derive a strong
convergence theorem of the proposed iterative algorithm under appropriate situations. Furthermore,
we also use our results to solving variational inequality problems and find zero points of maximal
monotone operators. The results obtained in this article are new, improved and generalize many
known recent results in this field.
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Throughout this paper, we assume that E is a real reflexive Banach space with the dual space of
E∗, and 〈·, ·〉 is the pairing between E and E∗. Let x ∈ int(dom f ). The subdifferential of f at x is the
convex set defined by:

∂ f (x) = {x∗ ∈ E∗ : f (x) + 〈x∗, y− x〉 ≤ f (y), ∀y ∈ E}

The Fenchel conjugate of f is the function f ∗ : E∗ −→ (−∞,+∞] defined by:

f ∗(x∗) = sup
x∈E
{〈x∗, x〉 − f (x)}

We know that the Young–Fenchel inequality holds, i.e., f (x) + f ∗(x∗) ≥ 〈x∗, x〉, ∀x ∈ E,
x∗ ∈ E∗. It is also known that x∗ ∈ ∂ f (x) is equivalent to f (x) + f ∗(x∗) = 〈x∗, x〉 (see [17,18]).
The set lev f

≤(r) = {x ∈ E : f (x) ≤ r} for some r ∈ R is called a sub-level of f .
A function f on E is coercive [19] if the sub-level set of f is bounded; equivalently,

lim
‖x‖−→+∞

f (x) = +∞

A function f on E is said to be strongly coercive [20] if:

lim
‖x‖−→+∞

f (x)
‖x‖ = +∞

We denote by dom f the domain of f , i.e., the set {x ∈ E : f (x) < +∞}.

Definition 1. ([21]) The function f is called:

(1) Essentially smooth if f is both locally bounded and single-valued on its domain.
(2) Essentially strictly convex if (∂ f )−1 is locally bounded on its domain and f is strictly convex on

every convex subset of dom f .
(3) Legendre if it is both essentially smooth and essentially strictly convex.

Remark 1. Let E be a reflexive Banach space, and let f be a Legendre function; then, we have:

(a) f is essentially smooth if and only if f ∗ is essentially strictly convex (see [21], Theorem 5.4).
(b) (∂)−1 = ∂ f ∗ (see [22]).
(c) f is Legendre if and only if f ∗ is Legendre (see [22], Corollary 5.5).
(d) If f is Legendre, then ∇ f is a bijection satisfying:

∇ f = (∇ f ∗)−1, ran∇ f = dom∇ f ∗ = int(dom f ∗) and ∇ f ∗ = dom∇ f = int(dom f )

(see [22], Theorem 5.10, and [2]).

Examples of Legendre functions were given in [21,23]. One nice example of a Legendre function
is f (x) := 1

p‖x‖p (1 < p < ∞) when E is a smooth and strictly convex Banach space. In this case, the
gradient ∇ f of f is coincident with the generalized duality mapping of E, i.e., ∇ f = Jp (1 < p < ∞).
In particular, ∇ f = I the identity mapping in Hilbert spaces.

In the rest of this article, we consider that the convex function f : E −→ (−∞,+∞] is Legendre.
For any x ∈ int(dom f ) and y ∈ E, we denote by f ◦(x, y) the right-hand derivative of f at x in

the direction y, that is:

f ◦(x, y) := lim
t−→0+

f (x + ty)− f (x)
t

(5)

The function f is called Gâteaux differentiable at x, if limit Equation (5) exists for any y. In this
case, the gradient of f at x is the function ∇ f : E −→ E∗ defined by 〈∇ f (x), y〉 = f ◦(x, y) for
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all y ∈ E. The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable at each
x ∈ int(dom f ). If the limit Equation (5) is attained uniformly in ‖y‖ = 1, then the function f is called
Fréchet differentiable at x, if limit Equation (5) is attained uniformly in ‖y‖ = 1, and f is said to be
uniformly Fréchet differentiable on a subset C of E, if limit Equation (5) is attained uniformly for x ∈ C
and ‖y‖ = 1. It is known that if f is Gâteaux differentiable (resp. Fréchet differentiable) on int(dom f ),
then f is continuous, and its Gâteaux derivative ∇ f is norm-to-weak∗continuous (resp. continuous)
on int(dom f ) (see [22,24]).

Definition 2. ([1]) Let f : E −→ (−∞,+∞] be a Gâteaux differentiable function. The function D f :
dom f × int(dom f ) −→ [0,+∞) defined by:

D f (y, x) := f (y)− f (x)− 〈∇ f (x), y− x〉

is called the Bregman distance with respect to f .

We remark that the Bregman distance D f does not satisfy the well-known properties of a metric
because D f is not symmetric and does not satisfy the triangle inequality. The Bregman distance has
the following important properties (see [25]):

(1) (The three point identity): for each x ∈ dom f and y, z ∈ int(dom f ),

D f (x, y) + D f (y, z)− D f (z, x) = 〈∇ f (z)−∇ f (y), x− y〉

(2) (The four point identity): for each y, ω ∈ dom f and x, z ∈ int(dom f ).

D f (y, x)− D f (y, z)− D f (ω, x) + D f (ω, z) = 〈∇ f (z)−∇ f (x), y−ω〉

Definition 3. ([1]) A Bregman projection of x ∈ int(dom f ) onto the nonempty, closed and convex set
C ⊂ dom f is the unique vector P f

C(x) ∈ C satisfying:

D f (P f
C(x), x) = inf{D f (y, x) : y ∈ C}

If E is a smooth Banach space, and setting f (x) = ‖x‖2 for any x ∈ E, we get ∇ f (x) = 2Jx for
all x ∈ E, where J is the normalized duality mapping from E onto 2E∗ ; then, the Bregman distance
reduces to φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for all x, y ∈ E, where φ is called the Lyapunov function
introduced by Alber [26,27]; and the Bregman projection reduces to the generalized projection ΠC
defined by φ

(
ΠC(x), x

)
= miny∈C φ(y, x). If E := H is a Hilbert space, then the Bregman distance

reduces to φ(x, y) = ‖x − y‖2 for all x, y ∈ H, and the Bregman projection reduces to the metric
projection PC from E onto C.

Definition 4. Let C be a nonempty and convex subset of int(dom f ). A mapping T : C −→ int(dom f )
with F(T) 6= ∅ is called:

(1) Relatively quasi-nonexpansive if

φ(p, Tx) ≤ φ(p, x) for all x ∈ C, p ∈ F(T)

(2) Relatively nonexpansive if F̂(T) = F(T),

φ(p, Tx) ≤ φ(p, x) for all x ∈ C, p ∈ F(T)

(3) Bregman relatively quasi-nonexpansive if,

D f (p, Tx) ≤ D f (p, x) for all x ∈ C, p ∈ F(T)
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(4) Bregman relatively nonexpansive if, F̂(T) = F(T),

D f (p, Tx) ≤ D f (p, x) for all x ∈ C, p ∈ F(T)

Remark 2. The class of relatively nonexpansive mappings is contained in a class of Bregman relatively
nonexpansive mappings with f (x) = ‖x‖2.

Let C be a nonempty, closed and convex subset of a Banach space E, and let N(C) and CB(C)
denote the family of nonempty subsets and nonempty closed bounded subsets of C, respectively. Let
H be the Hausdorff metric on CB(C) defined by:

H(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}

for all A, B ∈ CB(C), where d(a, B) = infb∈B{‖a− b‖} is the distance from the point ato the subset B.
Let T : C −→ CB(C) be a multi-valued mapping. A mapping T is said to be nonexpansive if:

H(Tx, Ty) ≤ ‖x− y‖, ∀x, y ∈ C

We denote the set of fixed points of T by F(T), that is F(T) = {p ∈ C : p ∈ Tp}. A point p ∈ C
is called an asymptotic fixed point of T if there exists a sequence {xn} in C that converges weakly to p,
such that limn−→∞ d(xn, Txn) = 0. We denote by F̂(T) for the set of asymptotic fixed points of T.

Now, we give some definitions for class of multi-valued Bregman mappings.

Definition 5. A multi-valued mapping T : C −→ CB(C) with F(T) 6= ∅ is called:

(1) Relatively quasi-nonexpansive if,

φ(p, u) ≤ φ(p, x) for all u ∈ Tx, x ∈ C and p ∈ F(T)

(2) Relatively nonexpansive if T is relatively quasi-nonexpansive and F̂(T) = F(T);
(3) Bregman relatively quasi-nonexpansive if,

D f (p, u) ≤ D f (p, x) for all u ∈ Tx, x ∈ C, p ∈ F(T)

(4) Bregman relatively nonexpansive if T is Bregman relatively quasi-nonexpansive and F̂(T) = F(T).

We remark that the class of single-valued Bregman relatively nonexpansive mappings is
contained in the class of multi-valued Bregman relatively nonexpansive mappings. Hence, the class
of multi-valued Bregman relatively nonexpansive mappings is more general than class single-valued
Bregman relatively nonexpansive mappings.

The example of multi-valued Bregman relatively nonexpansive mapping given by [5] is
shown below:

Example 1. Let I = [0, 1], X = Lp(I), 1 < p < ∞ and C = { f ∈ X : f (x) ≥ 0, ∀x ∈ I}. Let
T : C −→ CB(C) be defined by:

T( f ) =

{
{h ∈ C : f (x)− 1

2 ≤ h(x) ≤ f (x)− 1
4 , ∀x ∈ I} if f (x) > 1, ∀x ∈ I

{0}, otherwise
(6)

It is clear in [5] that T defined by Equation (6) is a multi-valued Bregman relatively
nonexpansive mapping.
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Let us take E as a reflexive real Banach space and E∗ as its dual. Let f : E −→ (−∞,+∞] be
a Gâteaux differentiable mapping. The modulus of total convexity of f at x ∈ dom f is the function
v f (x, ·) : [0,+∞) −→ [0,+∞] defined by:

v f (x, ·) := inf{D f (y, x) : y ∈ dom f , ‖y− x‖ = t}

The function f is said to be totally convex at x if v f (x, t) > 0, whenever t > 0. Any function f
is called totally convex if it is totally convex at any point x ∈ int(dom) f and is called totally convex on
bounded sets if v f (B, t) > 0 for any nonempty bounded subset B of E and t > 0, where the modulus
of total convexity of the function f on the set B is the function v f : int(dom f )× [0,+∞) −→ [0,+∞]

defined by:

v f (B, t) := inf{v f (x, t) : x ∈ B ∩ dom f }

It is well known that f is totally convex on bounded sets if and only if it is uniformly convex on
bounded sets (see [28], Theorem 2.10).

Lemma 1. ([29]) If f : E −→ R is uniformly Fréchet differentiable and bounded on bounded subsets of E,
then∇ f is uniformly continuous on bounded subsets of E from the strong topology of E to the strong topology
of E∗.

Lemma 2. ([20]) Let E be a reflexive Banach space, and let f : E −→ R be a convex function that is bounded
on bounded sets. Then, the following assertions are equivalent:

(1) f is strongly coercive and uniformly convex on bounded sets;
(2) f ∗ is Fréchet differentiable, and ∇ f ∗ is uniformly norm-to-norm continuous on bounded sets of

dom( f ∗) = E∗.

Lemma 3. ([5]) Let E be a real reflexive Banach space, and let f : E −→ R be a uniformly Fréchet differentiable
and totally convex on bounded subsets of E. Let C be a nonempty, closed and convex subset of int(dom f ) and
T : C −→ CB(C) be a finite family of multi-valued Bregman relatively nonexpansive mappings. Then, F(T)
is closed and convex.

Lemma 4. ([28]) Let C be a nonempty, closed and convex subset of E. Let f : E −→ R be a Gaâteaux
differentiable and totally convex function, and let x ∈ E. Then:

(1) z = P f
C(x) if and only if 〈∇ f (x)−∇ f (z), y− z〉 ≤ 0, ∀y ∈ C.

(2) D f (y, P f
C(x)) + D f (P f

C(x), x) ≤ D f (y, x), ∀y ∈ C.

Lemma 5. ([30]) Let E be a Banach space; let r > 0 be a constant; and let f : E −→ R be a uniformly convex
on bounded subsets of E. Then:

f
( n

∑
k=1

αkxk

)
≤

n

∑
k=0

αk f (xk)− αiαjρ(‖xi − yj‖)

for all i, j ∈ {0, 1, 2, ..., n}, xk ∈ Br, αk ∈ (0, 1) and k = 0, 1, 2, ..., n with ∑n
k=0 αk = 1, where ρr is the gauge

of uniform convexity of f .

Lemma 6. ([31]) Let f : E −→ (−∞,+∞] be a proper, lower semi-continuous and convex function, then
f ∗ : E∗ −→ (−∞,+∞] is proper, weak∗lower semi-continuous and convex function. Thus, for all z ∈ E,
we have:

D f

(
z,∇ f ∗

( N

∑
i=1

ti∇ f (xi)

))
≤

N

∑
i=1

tiD f (z, xi)

where {xi}N
i=1 ⊂ E and {ti}N

i=1 with ∑N
i=1 ti = 1.



Algorithms 2016, 9, 37 7 of 18

Lemma 7. ([32]) Let f : E −→ R be a Gâteaux differentiable and totally convex function. If x ∈ E and the
sequence {D f (xn, x)} is bounded, then the sequence {xn} is also bounded.

Lemma 8. ([30]) Let E be a Banach space, and let f : E −→ R be a Gâteaux differentiable function, which is
totally convex on bounded subsets of E. Let {xn} and {yn} be bounded sequences in E. Then:

lim
n−→∞

D f (xn, yn) = 0 ⇐⇒ lim
n−→∞

‖xn − yn‖ = 0

The following lemma can be found in [27,33,34].

Lemma 9. ([27,33,34]) Let E be a reflexive Banach space, f : E −→ R be Legendre and Gâteaux differentiable
function, and let Vf : E× E∗ −→ [0,+∞) defined by:

Vf (x, x∗) = f (x)− 〈x, x∗〉+ f ∗(x∗), ∀x ∈ E, x∗ ∈ E∗

Then, the following assertions hold:

(1) D f (x,∇ f ∗(x∗)) = Vf (x, x∗), ∀x ∈ E, x∗, y∗ ∈ E∗.
(2) Vf (x, x∗) + 〈y∗,∇ f ∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗〉), ∀x ∈ E, x∗, y∗ ∈ E∗.

Lemma 10. ([5]) Let E be a real reflexive Banach space and f : E −→ R be a Gâteaux differentiable and
totally convex function. Let C be a nonempty, closed and convex subset of int(dom f ) and Ti : C −→ CB(C)
(i = 1, 2, ..., N) be a finite family of multi-valued Bregman relatively nonexpansive mappings, such that
F := ∩N

i=1F(Ti) is nonempty, closed and convex. Suppose that u ∈ C and {xn} are a bounded sequence
in C such, that limn−→∞ d(xn, Tixn) = 0. Then:

lim sup
n−→∞

〈∇ f (u)−∇ f (x∗), xn − p〉 ≤ 0

where p = P f
F (u) and P f

F is the Bregman projection of C onto F .

Lemma 11. ([35]) Assume that {an} is a sequence of nonnegative real numbers such that:

an+1 ≤ (1− αn)an + αnδn

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R, such that limn−→∞ αn = 0, ∑∞
n=1 αn = ∞

and lim supn−→∞ δn ≤ 0. Then, limn−→∞ an = 0.

Lemma 12. ([36]) Let {an} be sequences of real numbers, such that there exists a subsequence {ni} of {n},
such that ani < ani+1 for all i ∈ N. Then, there exists an increasing sequence {mk} ⊂ N, such that mk −→ ∞,
and the following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1

In fact, mk is the largest number n in the set {1, 2, ..., k} such that the condition an ≤ an+1 holds.

2. Main Results

Theorem 1. Let E be a real reflexive Banach space and f : E −→ R be a strongly coercive
Legendre function, which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E. Let C be a nonempty, closed and convex subset of int(dom f ) and Ti : C −→
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CB(C) (i = 1, 2, ..., N) be a finite family of multi-valued Bregman relatively nonexpansive mapping,
such that F :=

⋂N
i=1 F(Ti) 6= ∅. For u, x0 ∈ C, let {xn} be a sequence generated by:

yn,1 = ∇ f ∗(βn,1∇ f (xn) + (1− βn,1)∇ f (zn,1))

yn,2 = ∇ f ∗(βn,2∇ f (xn) + (1− βn,2)∇ f (zn,2))
...

yn,N = ∇ f ∗(βn,N∇ f (xn) + (1− βn,N)∇ f (zn,N))

xn+1 = ∇ f ∗(αn∇ f (u) + (1− αn)∇ f (yn,N)), ∀n ≥ 0

(7)

where zn,1 ∈ T1xn, zn,i ∈ Tiyn,i−1 for i = 2, 3, ..., N. Suppose that {αn} and {βn,i}N
i=1 are sequences in

(0, 1) satisfying the following conditions:

(C1) limn−→∞ αn = 0 and ∑∞
n=1 αn = ∞;

(C2) {βn,i}N
i=1 ⊂ [a, b] ⊂ (0, 1).

Then, {xn} converges strongly to p = P f
F (u), where P f

F is the Bregman projection of C onto F .

Proof. From Lemma 3, we obtain that each F(Ti) for i = 1, 2, ..., N is closed and convex; hence,
F :=

⋂N
i=1 F(Ti) is closed and convex. Let p = P f

F (u). Then, from Lemmas 5 and 9, we get that:

D f (p, yn,1) = D f
(

p,∇ f ∗(βn,1∇ f (xn) + (1− βn,1)∇ f (zn,1))
)

= Vf
(

p, βn,1∇ f (xn) + (1− βn,1)∇ f (zn,1)
)

= f (p)− 〈p, βn,1∇ f (xn) + (1− βn,1)∇ f (zn,1)〉+ f ∗
(

βn,1∇ f (xn) + (1− βn,1)∇ f (zn,1)
)

≤ f (p)− βn,1〈p,∇ f (xn)〉 − (1− βn,1)〈p,∇ f (zn,1)〉+ βn,1 f ∗(∇ f (zn,1)) + (1− βn,1) f ∗(∇ f (zn,1))

−βn,1(1− βn,1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,1)‖)

= βn,1Vf (p,∇ f (xn)) + (1− βn,1)Vf (p,∇ f (zn,1))− βn,1(1− βn,1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,1)‖)

= βn,1D f (p, xn) + (1− βn,1)D f (p, zn,1)− βn,1(1− βn,1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,1)‖)

≤ βn,1D f (p, xn) + (1− βn,1)D f (p, xn)− βn,1(1− βn,1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,1)‖)

= D f (p, xn)− βn,1(1− βn,1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,1)‖),

which implies that:

D f (p, yn,1) ≤ D f (p, xn)

In a similar way, we obtain that:

D f (p, yn,2) ≤ D f (p, yn,1)− βn,2(1− βn,2)ρ
∗
r (‖∇ f (xn)−∇ f (zn,2)‖)

≤ D f (p, xn)− βn,2(1− βn,2)ρ
∗
r (‖∇ f (xn)−∇ f (zn,2)‖)

which implies that:

D f (p, yn,2) ≤ D f (p, xn)
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By continuing this process, we can prove that:

D f (p, yn,i) ≤ D f (p, yn,i−1)− βn,i(1− βn,i)ρ
∗
r (‖∇ f (xn)−∇ f (zn,i)‖)

≤ D f (p, yn,i−2)− βn,i−1(1− βn,i−1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,i−1)‖)

−βn,i(1− βn,i)ρ
∗
r (‖∇ f (xn)−∇ f (zn,i)‖)

...

≤ D f (p, xn)− βn,1(1− βn,1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,1)‖)

−...− βn,i−1(1− βn,i−1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,i−1)‖)

−βn,i(1− βn,i)ρ
∗
r (‖∇ f (xn)−∇ f (zn,i)‖) (8)

which implies that:

D f (p, yn,i) ≤ D f (p, xn)

for each i = 1, 2, ..., N. Then, we have:

D f (p, xn+1) = D f
(

p,∇ f ∗(αn∇ f (u) + (1− αn)∇ f (yn,i))
)

≤ αnD f (p, u) + (1− αn)D f (p, yn,i)

≤ αnD f (p, u) + (1− αn)D f (p, xn)

≤ max{D f (p, u), D f (p, xn)}

By induction, we have:

D f (p, xn) ≤ max{D f (p, u), D f (p, xn)}, ∀n ≥ 0

which implies that {xn} is bounded; so are {yn,i} for i = 1, 2, ..., N. Moreover, by Lemma 9 and the
property of D f , we obtain:

D f (p, xn+1) = D f
(

p,∇ f ∗(αn∇ f (u) + (1− αn)∇ f (yn,i))
)

= Vf (p, αn∇ f (u) + (1− αn)∇ f (yn,i))

≤ Vf
(

p, αn∇ f (u) + (1− αn)∇ f (yn,i)− αn(∇ f (u)−∇ f (p))
)
+ 〈αn(∇ f (u)−∇ f (p)), xn+1 − p〉

= Vf
(

p, αn∇ f (p) + (1− αn)∇ f (yn,i)
)
+ αn〈∇ f (u)−∇ f (p), xn+1 − p〉

= D f
(

p,∇ f ∗(αn∇ f (p) + (1− αn)∇ f (yn,i))
)
+ αn〈∇ f (u)−∇ f (p), xn+1 − p〉

≤ αnD f (p, p) + (1− αn)D f (p, yn,i) + αn〈∇ f (u)−∇ f (p), xn+1 − p〉
= (1− αn)D f (p, yn,i) + αn〈∇ f (u)−∇ f (p), xn+1 − p〉

Then, from Equation (8), we obtain that:

D f (p, xn+1) ≤ (1− αn)D f (p, xn)− βn,1(1− βn,1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,1)‖)

−...− βn,i−1(1− βn,i−1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,i−1)‖) (9)

−βn,i(1− βn,i)ρ
∗
r (‖∇ f (xn)−∇ f (zn,i)‖)

+αn〈∇ f (u)−∇ f (p), xn+1 − p〉

≤ (1− αn)D f (p, xn) + αn〈∇ f (u)−∇ f (p), xn+1 − p〉 (10)

Now, we consider two cases:
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Case 1. Let us take n0 ∈ N, such that {D f (p, xn)} is non-decreasing. Then, {D f (p, xn)} is convergent.
It follows from Equation (9) that:

βn,1(1− βn,1)ρ
∗
r (‖∇ f (xn)−∇ f (zn,1)‖) + ... + βn,i−1(1− βn,i−1)ρ

∗
r (‖∇ f (xn)−∇ f (zn,i−1)‖)

+βn,i(1− βn,i)ρ
∗
r (‖∇ f (xn)−∇ f (zn,i)‖)

≤ D f (p, xn)− D f (p, xn+1) + αn〈∇ f (u)−∇ f (p), xn+1 − p〉

Thus, from (C1) and (C2), we get that:

lim
n−→∞

ρ∗r (‖∇ f (xn)−∇ f (zn,1)‖) = 0

and:

lim
n−→∞

ρ∗r (‖∇ f (xn)−∇ f (zn,i)‖) = 0

for each i = 2, 3, ..., N, which imply by the property of ρ∗r that:

lim
n−→∞

‖∇ f (xn)−∇ f (zn,1)‖ = 0

and:

lim
n−→∞

‖∇ f (xn)−∇ f (zn,i)‖ = 0

for each i = 2, 3, ..., N. From the assumption of f , we have form Lemma 2 that ∇ f ∗ is uniformly
norm-to-norm continuous on bounded subsets of E∗, and hence:

lim
n−→∞

‖xn − zn,1‖ = lim
n−→∞

‖∇ f ∗(∇ f (xn))−∇ f ∗(∇ f (zn,1))‖ = 0

and:

lim
n−→∞

‖xn − zn,i‖ = lim
n−→∞

‖∇ f ∗(∇ f (xn))−∇ f ∗(∇ f (zn,i))‖ = 0 (11)

for each i = 2, 3, ..., N. From Lemma 8, we also have:

lim
n−→∞

D f (xn, zn,i) = 0

for each i = 2, 3, ..., N. Moreover, from Lemma 6, we have:

D f (xn, yn,i) ≤ βn,iD f (xn, xn) + (1− βn,i)D f (xn, zn,i)

= (1− βn,i)D f (xn, zn,i) −→ 0 as n −→ ∞

which implies by Lemma 8 that:

lim
n−→∞

‖xn − yn,i‖ = 0 (12)

for each i = 1, 2, ..., N and:

D f (yn,i, xn+1) ≤ αnD f (yn,i, u) + (1− αn)D f (yn,i, yn,i)

= αnD f (yn,i, u) −→ 0 as n −→ ∞
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which implies by Lemma 8 that:

lim
n−→∞

‖xn+1 − yn,i‖ = 0

for each i = 1, 2, ..., N. Then:

‖xn+1 − xn‖ ≤ ‖xn+1 − yn,i‖+ ‖yn,i − xn‖ −→ 0 as n −→ ∞ (13)

Since:

d(xn, T1xn) ≤ ‖xn − zn,1‖ −→ 0 as n −→ ∞

and:

d(xn, Tixn) ≤ d(xn, Tiyn,i−1) + H(Tiyn,i−1, Tixn)

≤ ‖xn − zn,i‖+ ‖yn,i−1 − xn‖

for i = 2, 3, .., N. From Equations (11) and (12), we get that:

d(xn, Tixn) −→ 0 as n −→ ∞ (14)

for each i = 1, 2, ..., N. Since E is reflexive and {xn} is bounded, there exists a subsequence
{xnj} ⊂ {xn} such that xnj ⇀ z as j −→ ∞. From Equation (14), we obtain that z ∈ F(Ti) for
each i = 1, 2, ..., N; hence, z ∈ F :=

⋂N
i=1 F(Ti). Then, from Equation (13) and Lemma 10, we get that:

lim sup
n−→∞

〈∇ f (u)−∇ f (p), xn+1 − p〉 = lim sup
n−→∞

〈∇ f (u)−∇ f (p), xn − p〉 ≤ 0 (15)

Therefore, from Lemma 11 and Equation (15), we get that D f (p, xn) −→ 0 as n −→ ∞, which
implies by Lemma 8 that xn −→ p ∈ F .

Case 2. Suppose that there exists a subsequence {ni} of {n}, such that:

D f (p, xj) < D f (p, xni+1)

for all j ∈ N. Then, by Lemma 12, there exists a nondecreasing sequence {mk} ⊂ N such that
mk −→ ∞ with D f (p, xmk ) < D f (p, xmk+1) and D f (p, xk) < D f (p, xmk+1) for all k ∈ N. Thus, from
Equation (9), (C1) and (C2), we get that:

lim
k−→∞

ρ∗r (‖∇ f (xnk )−∇ f (znk ,1)‖) = 0

and:

lim
k−→∞

ρ∗r (‖∇ f (xnk )−∇ f (znk ,i)‖) = 0

for each i = 2, 3, ..., N. By using the same method of proof in Case 1, we obtain that ‖xnk+1 − xnk‖ −→ 0
and d(xnk , Tixn,k) −→ 0 for each i = 1, 2, ..., N, as k −→ ∞. Hence, we get that:

lim sup
k−→∞

〈∇ f (u)−∇ f (p), xnk+1 − p〉 = lim sup
k−→∞

〈∇ f (u)−∇ f (p), xnk − p〉 ≤ 0 (16)

From Equation (10), we also have:

D f (p, xmk+1) ≤ (1− αmk )D f (p, xmk ) + αmk 〈∇ f (u)−∇ f (p), xnk+1 − p〉 (17)
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Since D f (p, xmk ) ≤ D(p, xmk+1), it follows from Equation (17) that:

αmk D f (p, xmk ) ≤ D f (p, xmk )− D f (p, xmk+1) + αmk 〈∇ f (u)−∇ f (p), xnk+1 − p〉
≤ αmk 〈∇ f (u)−∇ f (p), xnk+1 − p〉

Since αmk > 0, we have:

D f (p, xmk ) ≤ 〈∇ f (u)−∇ f (p), xnk+1 − p〉

Then, from Equation (16), we obtain that D f (p, xmk ) −→ 0 as k −→ ∞. This together with
Equation (17), we get D f (p, xmk+1) −→ 0 as k −→ ∞. Since D f (p, xk) ≤ D f (p, xmk+1) for all k ∈ N,
thus we obtain that xk −→ p as k −→ ∞, which implies that xn −→ p as n −→ ∞. Therefore, from
the above two cases, we conclude that {xn} converges strongly to p ∈ F . �

If we take Ti (i = 1, 2, ..., N) to be a multi-valued quasi-Bregman relatively nonexpansive
mapping in Theorem 1, then we get the following result:

Corollary 1. Let E be a real reflexive Banach space and f : E −→ R be a strongly coercive Legendre function,
which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a
nonempty, closed and convex subset of int(dom f ) and Ti : C −→ CB(C) (i = 1, 2, ..., N) be a finite family of
multi-valued quasi-Bregman relatively nonexpansive mapping with F(Ti) = F̂(Ti) (i = 1, 2, ..., N). Suppose
that F :=

⋂N
i=1 F(Ti) is nonempty. For u, x0 ∈ C, let {xn} be a sequence generated by:

yn,1 = ∇ f ∗(βn,1∇ f (xn) + (1− βn,1)∇ f (zn,1))

yn,2 = ∇ f ∗(βn,2∇ f (xn) + (1− βn,2)∇ f (zn,2))
...

yn,N = ∇ f ∗(βn,N∇ f (xn) + (1− βn,N)∇ f (zn,N))

xn+1 = ∇ f ∗(αn∇ f (u) + (1− αn)∇ f (yn,N)), ∀n ≥ 0

(18)

where zn,1 ∈ T1xn, zn,i ∈ Tiyn,i−1 for i = 2, 3, ..., N. Suppose that {αn} and {βn,i}N
i=1 are as in Theorem 1.

Then, {xn} converges strongly to p = P f
F (u), where P f

F is the Bregman projection of C onto F .

If we take Ti = T for each i = 1, 2, ..., N in Theorem 1, then the following corollary is obtained as:

Corollary 2. Let E be a real reflexive Banach space and f : E −→ R be a strongly coercive Legendre function,
which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a
nonempty, closed and convex subset of int(dom f ) and T : C −→ CB(C) be a multi-valued Bregman relatively
nonexpansive mapping, such that F := F(T) 6= ∅. For u, x0 ∈ C, let {xn} be a sequence generated by:

yn,1 = ∇ f ∗(βn,1∇ f (xn) + (1− βn,1)∇ f (zn,1))

yn,2 = ∇ f ∗(βn,2∇ f (xn) + (1− βn,2)∇ f (zn,2))
...

yn,N = ∇ f ∗(βn,N∇ f (xn) + (1− βn,N)∇ f (zn,N))

xn+1 = ∇ f ∗(αn∇ f (u) + (1− αn)∇ f (yn,N)), ∀n ≥ 0

(19)

where zn,1 ∈ Txn, zn,i ∈ Tyn,i−1 for i = 2, 3, ..., N. Suppose that {αn} and {βn,i}N
i=1 are as in Theorem 1.

Then, {xn} converges strongly to p = P f
F (u), where P f

F is the Bregman projection of C onto F .

If we put Ti (i = 1, 2, ..., N) as a single-valued Bregman relatively nonexpansive mapping in
Theorem 1, then we have the following:

Corollary 3. Let E be a real reflexive Banach space and f : E −→ R be a strongly coercive Legendre function,
which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a
nonempty, closed and convex subset of int(dom f ) and Ti : C −→ C (i = 1, 2, ..., N) be a finite family of
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Bregman relatively nonexpansive mapping, such that: F :=
⋂N

i=1 F(Ti) 6= ∅. For u, x0 ∈ C, let {xn} be a
sequence generated by: 

yn,1 = ∇ f ∗(βn,1∇ f (xn) + (1− βn,1)∇ f (T1xn))

yn,2 = ∇ f ∗(βn,2∇ f (xn) + (1− βn,2)∇ f (T2yn,1))
...

yn,N = ∇ f ∗(βn,N∇ f (xn) + (1− βn,m)∇ f (TNyn,N−1))

xn+1 = ∇ f ∗(αn∇ f (u) + (1− αn)∇ f (yn,N)), ∀n ≥ 0

(20)

Suppose that {αn} and {βn,i}N
i=1 are as in Theorem 1. Then, {xn} converges strongly to p = P f

F (u),

where P f
F is the Bregman projection of C onto F .

If we take E to be a uniformly smooth and uniformly convex Banach space and f (x) = ‖x‖2 for
all x ∈ E in Theorem 1, then we get the following result:

Corollary 4. Let E be a uniformly smooth and uniformly convex Banach space. Let C be a nonempty, closed
and convex subset of E and Ti : C −→ CB(C) (i = 1, 2, ..., N) be a finite family of multi-valued relatively
nonexpansive mapping, such that F :=

⋂N
i=1 F(Ti) 6= ∅. For u, x0 ∈ C, let {xn} be a sequence generated by:

yn,1 = J−1(βn,1 Jxn + (1− βn,1)Jzn,1)

yn,2 = J−1(βn,2 Jxn + (1− βn,2)Jzn,2)
...

yn,N = J−1(βn,N Jxn + (1− βn,N)Jzn,N)

xn+1 = J−1(αn Ju + (1− αn)Jyn,N), ∀n ≥ 0

(21)

where zn,1 ∈ T1xn, zn,i ∈ Tiyn,i−1 for i = 2, 3, ..., N. Suppose that {αn} and {βn,i}N
i=1 are as in Theorem 1.

Then, {xn} converges strongly to p = ΠF (u), where ΠF is the generalized projection of C onto F .

In Theorem 1, if we take E = H to be a real Hilbert space, then J = I is the identity mapping.
Thus, we obtain the following corollary:

Corollary 5. Let H be a real Hilbert space, and let C be a nonempty, closed and convex subset of H. Let
Ti : C −→ CB(C) (i = 1, 2, ..., N) be a finite family of multi-valued relatively nonexpansive mapping, such
that F :=

⋂N
i=1 F(Ti) 6= ∅. For u, x0 ∈ C, let {xn} be a sequence generated by:

yn,1 = βn,1xn + (1− βn,1)zn,1

yn,2 = βn,2xn + (1− βn,2)zn,2
...

yn,N = βn,N xn + (1− βn,N)zn,N
xn+1 = αnu + (1− αn)yn,N , ∀n ≥ 0

(22)

where zn,1 ∈ T1xn, zn,i ∈ Tiyn,i−1 for i = 2, 3, ..., N. Suppose that {αn} and {βn,i}N
i=1 are as in Theorem 1.

Then, {xn} converges strongly to p = PC(u), where PC is the metric projection of C onto F .

3. Some Applications

3.1. Variational Inequality Problems

In this part, we apply Theorem 1 to finding the solution sets of the variational inequality
corresponding to the Bregman inverse strongly monotone operator. Variational inequalities were
introduced by Hartman and Stampacchia as a tool for the study of partial differential equations with
applications principally drawn from mechanics (see [37]). Note that most of the variational inequality
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problems contain, as special cases, such recognized problems in mathematical programming as:
systems of nonlinear equations, optimization problems, equilibrium problems and complementarity
problems. Moreover, these are also related to fixed point problems.

Definition 6. ([2]) Let f : E −→ (−∞,+∞] be a Gâteaux differentiable function. A mapping A :
E −→ 2E∗ satisfying the range condition, i.e., ran(∇ f − A) ⊂ ran(∇ f ) is called Bregman inverse
strongly monotone if domA ∩ int(dom f ) 6= ∅ and for any x, y ∈ int(dom f ) and each u ∈ Ax, v ∈ Ay,

〈u− v,∇ f ∗(∇ f (x)− u)−∇ f ∗(∇ f (y)− v)〉 ≥ 0

If E = H is a real Hilbert space and f (x) = 1
2‖x‖2, then we have ∇ f = I, and the Bregman

inverse strongly monotone mapping reduces to an inverse strongly monotone mapping.
Let A : C −→ E∗ be a Bregman inverse strongly monotone operator, and let C be a nonempty,

closed and convex subset of domA. The variational inequality problem corresponding to A is to find
x∗ ∈ C, such that:

〈Ax∗, y− x∗〉 ≥ 0, ∀y ∈ C (23)

The set of solutions of Equation (23) is denoted by VI(C, A).

Definition 7. ([2]) Let A : E −→ 2E∗ be an any operator; the anti-resolvent A f : E −→ 2E of A is
defined by:

A f = ∇ f ∗ ◦ (∇ f − A)

Observe that domA f ⊂ domA ∩ int(dom f ) and ranA f ⊂ int(dom f ). Therefore, we know an
operator A is Bregman inverse strongly monotone if and only if anti-resolvent A f is a single-valued
Bregman firmly nonexpansive mapping (see [38], Lemma 3.5 (c) and (d), p. 2109).

From the definition of the anti-resolvent, we obtain the following useful fact, which concerns the
variational inequality problem:

Lemma 13. ([3,29]) Let A : E −→ E∗ be a Bregman inverse strongly monotone mapping and f : E −→
(−∞, ∞] be a Legendre and totally convex function that satisfies the range condition. If C is a nonempty,
closed and convex subset of domA ∩ int(dom f ), then:

(1) P f
C ◦ A f is Bregman relatively nonexpansive mapping, where A f = ∇ f ∗ ◦ (∇ f − A);

(2) F(P f
C ◦ A f ) = VI(C, A).

From Theorem 1 and Lemma 13, we immediately have the following result:

Theorem 2. Let us consider a real reflexive Banach space E; let f : E −→ R be a strongly
coercive Legendre function, which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E, which satisfies the range condition, C be a nonempty, closed and convex subset
of domA ∩ int(dom f ), and Ai : C −→ E∗ (i = 1, 2, ..., N) be a Bregman inverse strongly monotone
function, such that F :=

⋂N
i=1 VI(C, Ai) 6= ∅. For u, x0 ∈ C, let {xn} be a sequence generated by:

yn,1 = ∇ f ∗(βn,1∇ f (xn) + (1− βn,1)∇ f
(

P f
C ◦ A f

1 xn
)
)

yn,2 = ∇ f ∗(βn,2∇ f (xn) + (1− βn,2)∇ f
(

P f
C ◦ A f

2 yn,1
)
)

...
yn,N = ∇ f ∗(βn,N∇ f (xn) + (1− βn,N)∇ f

(
P f

C ◦ A f
Nyn,N−1

)
)

xn+1 = ∇ f ∗(αn∇ f (u) + (1− αn)∇ f (yn,N)), ∀n ≥ 0

(24)

where A f
i = ∇ f ∗ ◦ (∇ f − Ai) for i = 1, 2, ..., N. Suppose that {αn} and {βn,i}N

i=1 are as in Theorem 1.

Then, {xn} converges strongly to p = P f
F (u), where P f

F is the Bregman projection of E onto F .
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3.2. Zeros of Maximal Monotone Operators

In this section, we apply Theorem 1 to the problem of finding zero points of maximal monotone
operators. This is a very active topic in many fields of pure and applied mathematics. In the real
world, many important problems have reformulations that require finding zero points of a maximal
monotone operator; for instance, evolution equations, convex minimization problem, economics,
finance, image recovery and applied science (see, e.g., [11,39–46] and the references therein).

Let A : E −→ 2E∗ be a set-valued mapping. We show G(A) as the graph of A, i.e., G(A) =

{(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}. An operator A is called monotone if 〈x∗ − y∗, x − y〉 ≥ 0 for each
(x, x∗), (y, y∗) ∈ G(A). We call monotone operator A a maximal if its graph is not contained in the
graph of any other monotone operators on E. It is known that if A is maximal monotone, then the set
A−1(0∗) = {x ∈ E : 0∗ ∈ Ax} is closed and convex. The resolvent of A, denoted by Res f

λA : E −→ 2E,
is defined as follows [47]:

Res f
λA(x) = (∇ f + λA)−1 ◦ ∇ f (x)

where λ > 0. Moreover, from [47], it is known that F(Res f
λA) = A−1(0∗), and Res f

A is single-valued
and Bregman firmly nonexpansive. If f is a Legendre function, which is bounded, uniformly
Fréchet differentiable on bounded subsets of E, then F̂(Res f

λA) = F(Res f
λA) (see [48]). It is obvious

that if F̂(Res f
λA) = F(Res f

λA), then a Bregman that is firmly nonexpansive is a Bregman relatively
nonexpansive mapping. The Yosida approximation Aλ : E −→ E, λ > 0, is defined by:

Aλ(x) =
1
λ

(
∇ f (x)−∇ f

(
Res f

λA
))

for all x ∈ E and λ > 0

From Proposition 2.7 in [32], we know that
(

Res f
λA(x), Aλ(x)

)
∈ G(A) and 0∗ ∈ Ax if and only

if 0∗ ∈ Aλ(x) for all x ∈ E and λ > 0.
Take C = E and Ti = Res f

λAi
, λ > 0 for each i = 1, 2, ..., N in Theorem 1; we immediately have

the following result:

Theorem 3. Let us take a real reflexive Banach space E, and let f : E −→ R be a strongly coercive
Legendre bounded function, which is uniformly Fréchet differentiable and totally convex on bounded
subsets of E, and let Ai : E −→ 2E∗ (i = 1, 2, ..., N) be a finite collection of maximal monotone
operators, such that F :=

⋂N
i=1 A−1

i (0) 6= ∅. For u, x0 ∈ E, let {xn} be a sequence generated by:

yn,1 = ∇ f ∗(βn,1∇ f (xn) + (1− βn,1)∇ f
(

Res f
λA1

xn
)
)

yn,2 = ∇ f ∗(βn,2∇ f (xn) + (1− βn,2)∇ f
(

Res f
λA2

yn,1
)
)

...
yn,N = ∇ f ∗(βn,N∇ f (xn) + (1− βn,N)∇ f

(
Res f

λAN
yn,N−1

)
)

xn+1 = ∇ f ∗(αn∇ f (u) + (1− αn)∇ f (yn,N)), ∀n ≥ 0

(25)

where λ > 0. Suppose that {αn} and {βn,i}N
i=1 are as in Theorem 1. Then, {xn} strongly converges to

p = P f
F (u), where P f

F is the Bregman projection of E onto F .
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