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Abstract: In the pursuit of finding subclasses of the makespan minimization problem on unrelated
parallel machines that have approximation algorithms with approximation ratio better than 2, the
graph balancing problem has been of current interest. In the graph balancing problem each job can
be non-preemptively scheduled on one of at most two machines with the same processing time on
either machine. Recently, Ebenlendr, Krčál, and Sgall (Algorithmica 2014, 68, 62–80.) presented a
7/4-approximation algorithm for the graph balancing problem. Let r, s ∈ Z+. In this paper we
consider the graph balancing problem with two weights, where a job either takes r time units or
s time units. We present a 3/2-approximation algorithm for this problem. This is an improvement
over the previously best-known approximation algorithm for the problem with approximation
ratio 1.652 and it matches the best known inapproximability bound for it.

Keywords: approximation algorithms; scheduling; graph balancing problem; restricted assignment
problem; makespan minimization

1. Introduction

Let G = (V, E, p, q) be a weighted multigraph, where V is the set of vertices, E is the set of edges,
p = (p1, . . . , p|E|) are non-negative edge weights, and q = (q1, . . . , q|V|) are the dedicated loads. A
dedicated load qv of vertex v is the sum of the weights of self-loops incident on v in the multigraph;
we assume the self-loops are removed from G. An orientation γ : E → V orients each edge e ∈ E
towards one of its endpoints. Given a weighted multigraph G, the graph balancing problem is to find
an orientation γ where the maximum load of the vertices is minimized, where the load of a vertex v
is defined as qv + ∑e|γ(e)=v pe.

Let r, s ∈ Z+, where r < s. We focus on a special case of this problem we call the graph balancing
problem with two weights (GBP2W), where the edges have either weight r or s and each dedicated load
is of the form ar + bs for a, b ∈ Z+ ∪ {0}.

The graph balancing problem is a special case of the makespan minimization problem on
unrelated parallel machines (R||Cmax in Graham notation, see [1]). Presently, the best-known
approximation algorithms for R||Cmax have approximation ratio 2. The first 2-approximation
algorithm for R||Cmax was presented by Lenstra et al. [2], and in 2005 a (2 − 1/m)-approximation
algorithm was given by Shchepin and Vakhania [3], where m is the number of machines. These
2-approximation algorithms utilize linear programming, but it is worth noting that there is a
combinatorial 2-approximation algorithm by Gairing et al. [4] that employs generalized flow
networks. Finding an approximation algorithm with approximation ratio better than 2 for R||Cmax

is an important open problem in scheduling theory, and trying to get any further insight into the
problem through the study of subclasses of R||Cmax has been of attention lately [5–13].

Recently, Ebenlendr et al. [7] gave a 7/4-approximation algorithm for the graph balancing
problem. In addition, Ebenlendr et al. [14] showed that for p < 3/2, there is no p-approximation
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algorithm for the graph balancing problem when the edges of the multigraph have weight 1/2 or 1,
unless P=NP. Note that this hardness result was also independently proven by Asahiro et al. [5,15].
This matches the inapproximability bound for the makespan minimization problem on unrelated
parallel machines given by Lenstra et al. [2], so, GBP2W is worth investigating due to being one of the
simplest scheduling problems presently known to share inapproximability properties with R||Cmax.

3/2-approximation algorithms have been presented for some special cases of GBP2W. The graph
orientation problem with two weights is a NP-hard special case of GBP2W where G is simple, and every
dedicated load qv = 0. In [5,15], Asahiro et al. gave two approximation algorithms that achieve the
bound 3/2 for variants of the graph orientation problem with two weights: one called Cycle-Canceling
when r = 1 and s = 2; and another called Refined Cycle-Canceling when r = 1 and s = 3. Later,
Kolliopoulos and Moysoglou [9] gave a 3/2-approximation algorithm for GBP2W when r = 1 and
s = k, where k is a positive integer (Theorem 4.1).

Most recently, Kolliopoulos and Moysoglou [9] presented a 1.652-approximation algorithm for
GBP2W. Their approximation algorithm employs binary search, and for a given estimation of the
optimal load T different approximation algorithms are used based on the values of the weights
with respect to T. A core component of this approximation algorithm is a flow-network based
approximation algorithm for the two-valued case of the restricted assignment problem introduced
in the same paper. In this paper we present a 3/2-approximation algorithm for GBP2W. We adopt a
technique of considering particular intervals for the weights during a binary search similar to that of
by Kolliopoulos and Moysoglou to derive our 3/2-approximation algorithm.

To conclude this section, we outline the remainder of this paper. In Section 2, we present our
contribution—a 3/2-approximation algorithm for GBP2W. After describing our algorithm, we give
subroutines used by the algorithm and their correctness in Sections 2.1–2.4, then prove our algorithm
is indeed a 3/2-approximation algorithm for GBP2W in Section 2.5. In Section 3, we conclude
our paper.

2. Algorithm

Similar to the algorithm by Lenstra et al. [2], our approximation algorithm uses an estimation T
of the maximum load of a vertex in an optimal orientation as a parameter. The algorithm GB2W
presented below as Algorithm 1 finds a solution of value at most 3T/2 if a solution of value at most T
exists. We combine this algorithm with a binary search procedure to find the smallest value for T for
which an orientation with load at most 3T/2 for the graph balancing problem with two weights is
found: if for a given T the algorithm does not find a solution of value at most 3T/2 then the value of
T is increased in the binary search; otherwise it is decreased. By the above property of our algorithm
this smallest value of T must be less than or equal to the value of an optimum solution, hence our
algorithm has approximation ratio 3/2.

The remainder of this section gives Lemmas 1–4 which provide the subroutines used by
our algorithm, then in Theorem 5 we prove our algorithm is a 3/2-approximation algorithm
for GBP2W. First, we present Lemma 1 which covers Step 4 of our algorithm. Note that in
Step 1 the algorithm scales the weights so the estimation for the optimum load is T = 1.
We define a big edge e to be an edge with weight pe > 1/2; otherwise, we call an edge
small. Let the value for an optimum solution for the problem be denoted as OPT. From this
point forward, we assume that as edges are oriented in Steps 4–5.3, they are removed from G.
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Algorithm 1: GB2W (G = (V, E, p, q), T)
Input: Multigraph G, value T.
Output: An orientation γ for the edges in E with maximum vertex load at most 3T/2 or FAIL. If

FAIL is returned there is no orientation for E with maximum vertex load T.

1. Divide edge weights and vertex dedicated loads by T; set T = 1.
2. If s > 1 or qv > 1 for any v ∈ V then return FAIL.
3. If r, s ∈ (0, 1/2] then apply the algorithm by Lenstra et al. [2].
4. If r, s ∈ (1/2, 1] then apply the algorithm given in Lemma 1.
5. If r ∈ (0, 1/2] and s ∈ (1/2, 1] we consider three subcases. Let k = b1/rc, so 1/(k + 1) < r ≤

1/k.
5.1. If k/(k + 1) ≤ s ≤ 1 then apply the algorithm in Lemma 2.
5.2. If (k− 1)/k ≤ s < k/(k + 1) then apply the algorithm in Lemma 3.
5.3. If 1/2 < s < (k− 1)/k then apply the algorithm in Lemma 4.

6. If any of the algorithms used in Steps 3–5 reports FAIL or if the solution computed by them
has value larger than 3/2 then return FAIL; otherwise return the solution computed in the
above steps.

2.1. Step 4

Lemma 1. There is a polynomial-time algorithm for the graph balancing problem with two rational
weights r, s ∈ (1/2, 1] that either finds a solution of value at most 1 or proves that OPT > 1.

Proof. Since r, s ∈ (1/2, 1], each edge of G is a big edge. If there is an orientation for the edges with
maximal load at most 1, then at most one edge can be oriented towards a given vertex. Therefore, if
any connected component C = (VC, EC) of G has |EC| > |VC| then there is no solution for the graph
balancing problem of value at most 1. The algorithm is as follows (Big_rs, Algorithm 2).

Algorithm 2: Big_rs (G = (V, E, p, q))
Input: Multigraph G.
Output: An orientation γ for the edges in E with maximum vertex load at most 1 or FAIL. If FAIL

is returned there is no orientation for E with maximum vertex load 1.

1. If any connected component C = (VC, EC) of G has |EC| > |VC|, then return FAIL.
2. While G has cycles do

2.1. Find a cycle C′ of G.
2.2. Mark the vertices in C′ and orient the cycle in an arbitrary direction. Remove the edges

in C′ from G.
3. For every maximal tree T in G do

3.1. If there is a vertex v in T with qv > 0 or that is marked, then set v as the root of T
3.2. else choose any vertex v in T as the root.
3.3. Orient all the edges in T away from its root.
3.4. If any edge in T is oriented towards a vertex u with qu > 0 or that is marked then return

FAIL.
4. Return orientation for the edges of G.

Multigraph G must have at most |V| edges, and an optimal orientation matches each edge to
a unique vertex with no dedicated load. If a solution of value at most 1 exists, it must be found in
Steps 2 and 3. The above algorithm runs in O(|V|+ |E|) time.
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2.2. Step 5.1

Next, we consider the case handled in Step 5.1 of the algorithm, namely when k/(k + 1) ≤ s ≤ 1
and k = b1/rc so 1/(k + 1) < r ≤ 1/k. In Lemma 2, we utilize the property that r + s > 1, which
means that if OPT ≤ 1, then no small edge can be oriented with a big edge towards a given vertex
without causing the maximal load to be greater than 1.

Lemma 2. For any k ≥ 2, there is a polynomial-time algorithm for the graph balancing problem with two
rational weights r, s, where 1/(k + 1) < r ≤ 1/k and k/(k + 1) ≤ s ≤ 1 that either finds a solution of value
at most 3/2 or proves that OPT > 1.

Proof. If OPT ≤ 1, since r + s > 1, for any optimal orientation either at most a big edge is oriented
towards a vertex, or at most k small edges are oriented towards a vertex. This property is natural
to encode into a flow network. To find an orientation for the edges of the weighted multigraph
G = (V, E, p, q), we use a multi-level flow network similar to that in [9].

We build a flow network N as follows. First, we consider the dedicated loads of the vertices.
For each vertex v ∈ V, define a value βv ≥ 0 as follows: if qv ≥ s, set βv = k; otherwise there is a
non-negative integer pv so that qv = pvr, assign βv = pv. The flow network will have a source α1 and
sink α2. We will describe the network level by level. First, we have a level of nodes in the network
called edge nodes. These are nodes corresponding to the edges in the multigraph. There are two types
of edge nodes: big edge nodes for edges with weight s; and small edge nodes for those with weight r.
From source α1, add an arc from α1 to each edge node, and set its capacity to k if it is to a big edge
node, and 1 otherwise. The next level consists of buffer nodes, one for each vertex. The buffer nodes
are added to prevent excess flow from being contributed by the big edge nodes. While this part of the
network is not important for proving this lemma, it will be vital for how we later use this network
in Lemma 3. For each big edge {u, v} ∈ E, add arcs with capacity k from its big edge node to buffer
nodes u and v. For the next level of the network, create a vertex node that will correspond to each
vertex in the multigraph. For each buffer node for v ∈ V, add an arc from its buffer node to its vertex
node with capacity k. Next, for each small edge {u, v} ∈ E, include arcs with capacity 1 from its small
edge node to vertex nodes u and v. Finally, for each vertex v ∈ V, add an arc from vertex node v to
sink α2 with capacity k− βv. The resulting flow network is shown in Figure 1.
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Figure 1. The flow network N for the case when 1/(k + 1) < r ≤ 1/k and k/(k + 1) ≤ s ≤ 1. Shaded
nodes represent big edge nodes, and each black node is a buffer node associated with one vertex node.
Arcs that are unlabelled have flow capacity 1.

Before we proceed to describe the algorithm, we show that this network has the following
property: if OPT ≤ 1, an integral maximum flow on this network saturates all the arcs
leaving source α1. Consider any optimal orientation γ∗. Using γ∗ we construct a flow function in
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which every small edge node receives 1 unit of flow, and each big edge node receives k units of flow
from the source α1. For each big edge {u1, u2} of G with γ∗(u1, u2) = ui, if u is the big edge node
for {u1, u2} send k units of flow from α1 to u, k units of flow from u to buffer node ui, k units of flow
from buffer node ui to vertex node ui, and k units of flow from ui to the sink α2. Similarly, for each
edge {u1, u2} represented by small edge node u and γ∗(u1, u2) = ui, send 1 unit of flow from α1 to u,
from u to vertex node ui, and from ui to α2. It is not hard to see that this flow function is feasible and
that no additional flow can be sent through the network.

Algorithm 3: BigSmall_rs (G = (V, E, p, q))
Input: Multigraph G. Note that k = b1/rc.
Output: An orientation γ for the edges in E with maximum vertex load at most 3/2 or FAIL. If

FAIL is returned there is no orientation for E with maximum vertex load 1.

1. Build the flow network N.
2. Compute an integral maximum flow f of N.
3. If all the arcs leaving the source are not saturated in f , then return FAIL.
4. Construct bipartite graph G′ = (Vbig ∪Vrec, E′), where Vbig is the set of big edge nodes, Vrec is

the set of buffer nodes that receive at least dk/2e units of flow from a big edge node, and

E′ = {(u, v) | u ∈ Vbig, v ∈ Vrec, f (u, v) ≥ dk/2e}.

5. Compute a matching on G′ that matches each node in Vbig with a unique vertex in Vrec.

6. For each arc (u, ui) in the matching of Step 5, orient big edge u towards vertex ui.
7. For each small edge node u and vertex node ui with f (u, ui) = 1, orient u towards ui.
8. Return orientation for the edges of G.

The time complexity of algorithm BigSmall_rs (Algorithm 3) is polynomial. Now we prove that
this algorithm finds an orientation with maximal load at most 3/2 if OPT ≤ 1. If OPT ≤ 1, then
as shown above, every small edge node receives 1 unit of flow from α1. By flow conservation, each
small edge node u sends its one unit of flow to a vertex node ui, and the algorithm orients small
edge u towards vertex ui. As a result, every small edge is oriented by the algorithm. What remains
to be shown is that all the big edges are oriented. The orientation of each big edge is determined
by the matching computed by the algorithm. We must show this matching exists. Consider any
subset V′big ⊆ Vbig, and denote the neighbourhood in G′ of this subset of nodes as NG′(V′big). Note
that NG′(V′big) ⊆ Vrec. To show the above matching exists, we prove |V′big| ≤ |NG′(V′big)|. Two key
observations are that the outdegree of every edge node is 2, and every big edge node is sent at most
k units of flow. Furthermore, by flow conservation every big edge node must send at most k units of
flow to the buffer nodes. We have two cases:

• If k is odd, a buffer node in NG′(V′big) can receive at least dk/2e units of flow from only one big
edge node in V′big because k < 2 · dk/2e. Furthermore, since k− dk/2e = bk/2c < dk/2e, each big
edge node in G′ has degree 1. Hence, |V′big| = |NG′(V′big)|.

• If k is even, dk/2e = k/2, and a buffer node can receive k/2 units of flow from at most two big
edge nodes. Partition NG′(V′big) into two disjoint sets N1 and N2, where N1 contains the buffer
nodes that receive more than k/2 units of flow from a big edge node, and N2 has the buffer nodes
that receive k/2 units of flow from a big edge node. Similar to when k is odd, each big edge node
in V′big is adjacent to only one buffer node in N1, and so each buffer node in N1 has degree 1 in G′.
This leaves |V′big| − |N1| vertices adjacent to buffer nodes in N2. The indegree of each buffer node
in N2 is at least one (and no more than 2), but the outdegree of every big edge node adjacent to
the buffer nodes in N2 is exactly 2. This implies that the |V′big| − |N1| ≤ |N2|. Putting this together,
|V′big| ≤ |N1|+ |N2| = |NG′(V′big)|.
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Since |V′big| ≤ |NG′(V′big)|, by Hall’s Theorem [16], a matching covering Vbig exists. Hence, the
algorithm computes an orientation if OPT ≤ 1 and reports FAIL otherwise.

Consider the orientation produced by the algorithm. If vertex v has βv = k, then the edge from
v to α2 in N has capacity zero which implies that no edge is oriented towards v, so the load of v is
qv ≤ 1. Next we check when v has βv = pv < k.

• First, let v be a vertex with a big edge oriented towards it. Since a big edge oriented towards
v implies a big edge node sends at least dk/2e units of flow to the vertex node for v, at most
(k− pv)− dk/2e units of flow can be additionally sent to this vertex node by small edge nodes;
hence at most (k− pv)− dk/2e additional small edges are oriented towards v.

• Second, the capacity from any vertex node v to α2 is k − pv, so any vertex that is not assigned a
big edge has at most k− pv small edges oriented towards it.

Hence, the load of a vertex v is at most

pvr + max{r(k− pv), s + r((k− pv)− dk/2e)}
≤ max{rk, s + r(k− k/2)}
≤ max{k/k, s + k/(2k)}
≤ 1 + 1/2 = 3/2

2.3. Step 5.2

Next, we cover the case when 1/(k + 1) < r ≤ 1/k and (k− 1)/k ≤ s < k/(k + 1). In this case,
it is possible that r + s ≤ 1. If OPT ≤ 1, at most one big edge can be oriented along with one small
edge toward the same vertex; we exploit this property below.

Lemma 3. For any k ≥ 2, there is a polynomial-time algorithm for the graph balancing problem with two
rational weights r, s, where 1/(k + 1) < r ≤ 1/k and (k− 1)/k ≤ s < k/(k + 1) that either finds a solution
of value at most 3/2 or proves that OPT > 1.

Proof. We consider two cases: r + s > 1, and r + s ≤ 1. Assuming OPT ≤ 1, if r + s > 1 either
at most one big edge is oriented towards a vertex or at most k small edges are oriented towards a
vertex; apply Lemma 2 to obtain an orientation where each vertex has load at most 3/2, if such an
orientation exists.

From this point forward, assume r + s ≤ 1. Observe that 2r + s > 1. If OPT ≤ 1, an optimal
orientation either has at most a big edge oriented along with a small edge towards the same vertex,
or at most k small edges are oriented towards a vertex. Like Lemma 2, compute a value βv for the
dedicated load of each v ∈ V. When qv ≥ r + s, set βv = k. Otherwise, if qv ≥ s set βv = k − 1,
and if not, assign βv = pv where qv = pvr. The algorithm will build a modified version of the flow
network N of Lemma 2, which we describe now. First, change the capacities on the arcs incident
on the big edge nodes from k to k − 1. Second, for each v ∈ V, set the capacity of the arc from
buffer node v to vertex node v to k − 1 instead of k. Leave the capacities from the vertex nodes to
the sink α2 as k − βv. We show this flow network in Figure 2. It is straightforward to see that this
modified network maintains the same property that all the arcs leaving α1 are saturated in an integral
maximum flow if OPT ≤ 1.
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Figure 2. The modified flow network constructed for the case when 1/(k + 1) < r ≤ 1/k and
(k− 1)/k ≤ s < k/(k + 1). Shaded nodes represent big edge nodes, and every black node is a buffer
node associated with a vertex node. Assume arcs that are unlabelled have flow capacity 1.

We modify the algorithm from Lemma 2 as follows. We refer the reader to BigSmall_rs
(Algorithm 3). The modified flow network we described above is built for Step 1. Steps 2–3 are
the same as before. In Step 4, when constructing the bipartite graph G′ between the big edge
nodes and buffer nodes, Vbig remains the same, but Vrec contains buffer nodes that receive instead
at least d(k− 1)/2e units of flow from a big edge node and

E′ = {(u, v) | u ∈ Vbig, v ∈ Vrec, f (u, v) ≥ d(k− 1)/2e}

steps 5–8 remain the same as before. Since the capacities of the arcs leaving the buffer nodes and the
incoming flow to the big edge nodes are one less than in the network in Lemma 2, one can show a
matching on G′ exists if OPT ≤ 1 by replacing k with k− 1 and switching the even and odd cases of
our original argument in Lemma 2.

Consider the load of a vertex v in the orientation produced by the algorithm. Clearly any vertex v
with qv ≥ r + s has βv = k and k− βv = 0. No flow is sent to these vertex nodes, so the load of these
vertices is at most 1. Now, examine vertices with 0 ≤ qv < r + s. If qv ≥ s, then at most one additional
small edge can be oriented towards v. Hence, the load of v when qv ≥ s is at most qv + r ≤ 1+ r ≤ 3/2
since r ≤ 1/2. Finally, consider when βv = pv and qv = pvr < s.

• Let v be a vertex with a big edge oriented towards it. At least d(k− 1)/2e units of flow are sent
from its big edge node to v. Then, at most (k − pv) − d(k − 1)/2e small edges can be oriented
along with the big edge towards v.

• Let v not have a big edge oriented towards it. At most k− pv small edges are oriented towards v.

Therefore, the load of v is at most

pvr + max{r(k− pv), s + r((k− pv)− d(k− 1)/2e)}
≤ max{rk, s + r(k− (k− 1)/2)}
< max{k/k, k/(k + 1) + (k + 1)/2k}
= k/(k + 1) + 1/(2k) + 1/2

< (k + 1)/(k + 1) + 1/2 = 3/2
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2.4. Step 5.3

For the final case in Step 5 of our algorithm, we apply a variant of the algorithm by
Ebenlendr et al. [7]. First we give a brief explanation of their original algorithm that has approximation
ratio 7/4.

Let EB be the set of big edges and let GB = (V, EB) be the subgraph of G consisting of big edges.
If OPT ≤ 1, every connected component of GB with b vertices contains at most b edges, which implies
that each component has at most one cycle. For each connected component, identify a cycle if it exists,
then orient every big edge not in the cycle away from the cycle and remove each oriented edge. Add
the weight of each oriented big edge to the dedicated load of the endpoint farther from the cycle. GB

is now a disjoint union of trees and cycles.
As shorthand, if v is a vertex and e is an edge, v ∈ e means “v is incident to e”. For any T ⊆ G, let

L(T) = {(v, e) ∈ V × E | v is a leaf of T, v ∈ e, and e ∈ T}

where each (v, e) is called a leaf pair of T. Consider any tree T ⊆ GB. Assuming OPT ≤ 1, since T has
one more vertex than edges, at most one edge in the set of leaf pairs can be oriented away from its leaf.
This leads to what is called the tree constraint (Tree T) in linear program 1 (LP1) shown below, which
is a relaxation of an integer program formulation of the graph balancing problem. A variable xev is
defined for each edge e ∈ E and endpoint v of e. If xev = 1, e is oriented towards v. If 0 < xev < 1, we
say that e is fractionally oriented towards v.

Linear program 1 (LP1)

xeu + xev = 1 for all e = {u, v} ∈ E

qv + ∑
e|v∈e

pexev ≤ 1 for all v ∈ V

∑
(v,e)∈L(T)

pexev ≥ ∑
(v,e)∈L(T)

pe − 1 for each T ⊆ GB (Tree T)

xev ≥ 0 for all e ∈ E and v ∈ e.

Solve LP1 to obtain a fractional solution x. As a brief remark, there can be exponentially many
trees, but there is a separation oracle that can be used to solve LP1 in polynomial time with the
ellipsoid method [7]. Let Ex = {e ∈ E | 0 < xeu < 1 for u ∈ e}. Also, let Gx = (V, Ex) and
GB

x = (V, Ex ∩ EB). If a feasible solution is not found for LP1, then OPT > 1.
The algorithm then considers fractionally oriented edges in Gx, and performs a rounding

procedure to determine their final orientations. It is assumed that as edges are oriented, Gx and GB
x are

updated accordingly. If there is a vertex v of degree 1 in Gx and 0 < xev < 1 for edge e = {u, v} then

• Leaf assignment: if pexeu ≤ 3/4, e is oriented towards v;
• Tree assignment: if pexeu > 3/4 note that e then is a big edge and the connected component of GB

x
containing e must be a tree T. Orient all edges in T away from v.

Finally, if no vertex v as above is found, then there must be a cycle. If so, perform a walk around
the cycle changing the values xeu of the edges in the cycle by the minimum amount δ that makes
at least one of these values zero and the loads on the vertices remain unchanged. Note that when
traversing Gx to find a cycle, big edges are taken in priority over small edges. This step is called
rotation. The algorithm terminates once Gx no longer has an edge.

The rounding performed by a leaf assignment increases the load of a vertex u by at most 3/4 if
the edge e under consideration is big or it increases by at most 1/2 if e is small. Furthermore, a tree
assignment can increase the load of a vertex u by at most 1/4. A vertex u can have its load increased
by either only one leaf assignment or by a tree assignment plus a leaf assignment involving a small
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edge. In either case the maximum load of a vertex is at most 7/4. Note that a rotation does not
change loads.

Now we show how to modify this algorithm for our problem.

Lemma 4. For every positive integer k ≥ 2, there is a polynomial-time algorithm for the graph balancing
problem with two rational weights r, s, where 1/(k + 1) < r ≤ 1/k and 1/2 < s < (k − 1)/k that either
finds a solution of value at most 3/2 or proves that OPT > 1.

Proof. We make the following modifications to the algorithm in [7]. Consider any tree T ⊆ GB. Every
big edge e has weight pe = s, so we simplify the tree constraint to

∑
(v,e)∈L(T)

sxev ≥
(

∑
(v,e)∈L(T)

s

)
− s⇔ ∑

(v,e)∈L(T)
xev ≥ |L(T)| − 1

Also, in the rounding procedure of [7] we change the leaf assignment and tree assignment:

• New leaf assignment: if pexeu ≤ 1/2, e is oriented towards v.
• New tree assignment: if pexeu > 1/2, then e is a big edge and the connected component of GB

x
containing e is a tree T. Orient all edges in T away from v.

Use the algorithm of Ebenlendr et al. [7] with the above modifications. If no fractional solution is
found then no orientation exists; report FAIL if this is the case. Since modifying the above threshold
from 3/4 to 1/2 will still allow all fractionally oriented edges to be rounded, the algorithm still finds
an orientation in polynomial time.

We can extend the arguments by Ebenlendr et al. [7] to show that the algorithm has
approximation ratio 3/2 in our case. It is not hard to modify the proof of Theorem 1 in [7] to show
that the following conditions are maintained by each vertex v ∈ V before and after each step in the
rounding procedure.

(1) The load of v is at most 3/2.
(2) If e ∈ Gx is incident on v, then v has load at most 1 + (s− 1/2).
(3) If eB is a big edge in GB

x incident on v, the load of v is at most 1.
(4) For any tree T that is a subgraph of GB

x , the tree constraint (Tree T) is never violated.

For completeness we sketch a proof that the above conditions hold throughout the rounding
procedure. At the beginning of the algorithm, after the modified LP1 is solved, all the conditions
above are satisfied and the load of each vertex is at most 1. Next, we show conditions (1)–(4) are
preserved for any vertex that changes its load during the rounding procedure.

• Tree assignment: In a tree assignment, only vertices in the tree T ⊆ GB
x containing big edge e =

{u, v} for which pexeu > 1/2 and v is a leaf of T have their loads modified. Every vertex in T is
incident with a big edge in Gx. Hence before this step is performed, by condition (3), each one
of these vertices has load at most 1. Consider vertex u′ in T after the tree assignment has been
performed. If u′ = v, the load of v is decreased as big edges are oriented away from v. If u′ 6= v,
there exists a path P in T from u′ to v. Say this path begins at edge e′. As P is a subtree of T, it
must satisfy our tightened tree constraint of LP1 and so

xev + xe′u′ ≥ |L(P)| − 1 = 2− 1 = 1⇔ xe′u′ ≥ (1− xev) = xeu

All the edges in P are big, so sxe′u′ ≥ sxeu > 1/2. Hence, the load of u′ increases by at most
s− sxe′u′ < s− 1/2, and conditions (1) and (2) are satisfied for vertex u′. Note that since fractional
edge assignments in T have been eliminated, u′ cannot be incident on a big edge following a tree
assignment. Thus, condition (3) does not apply to this case and condition (4) is satisfied.
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• Leaf assignment: In a leaf assignment, edges are oriented towards a leaf vertex. Say vertex v is a
leaf. We consider two cases for edge e = {u, v} such that pexeu ≤ 1/2: pe > 1/2, and pe ≤ 1/2.

If pe > 1/2, then v is incident on a big edge and so by condition (3), the load of v is at most 1
before the leaf assignment. Since pe − xev pe = xeu pe ≤ 1/2, then following the leaf assignment,
the load of v is at most 1 + 1/2 = 3/2.

If pe ≤ 1/2, then pe = r. By condition (2), before the leaf assignment the load of v is at most 1 +

(s− 1/2). So after the leaf assignment the load of v is at most

1 + (s− 1/2) + r ≤ 1 + (k− 1)/k− 1/2 + 1/k = 3/2

In any case, after a leaf assignment v is isolated in Gx, so conditions (1)–(4) are satisfied.
• Rotation: The rotation step does not change the vertex loads so conditions (1)–(3) hold. The

argument showing that condition (4) holds is essentially the same as that in [7] and since it is
a bit lengthy we omit it here.

Therefore, by condition (1), the load of a vertex is at most 3/2.

2.5. Proof of Approximation Algorithm

Finally we prove our algorithm is indeed a 3/2-approximation algorithm for GBP2W.

Theorem 5. There is a 3/2-approximation algorithm for the graph balancing problem with two weights.

Proof. Recall that in Step 1, algorithm GB2W scales the edge weights and vertex dedicated loads
by T, then sets T = 1. Step 3 of algorithm GB2W invokes the algorithm of Lenstra et al. [2]. This
algorithm finds a fractional solution using linear programming, and then it performs a two-step
rounding procedure. If the value of an optimum solution is OPT ≤ 1, the first step guarantees
that the load of any vertex is at most 1; the second step orients at most one more edge towards each
vertex. Hence, either an orientation with maximum load 1 + max{r, s} ≤ 1 + 1/2 = 3/2 is found,
or OPT > 1 and an orientation is not produced. For Steps 4 and 5 of algorithm GB2W, Lemmas 1–4
ensure that either a solution of value at most 3/2 is found or OPT > 1. Therefore, if OPT ≤ 1, Step 6
of the algorithm returns an orientation γ; otherwise it returns FAIL.

The binary search then is guaranteed to find a value T ≤ OPT and an orientation with load at
most 3T/2. For a weighted multigraph G = (V, E, p, q), since OPT ≤ |E|s, the number of iterations
of the binary search is at most O(log |E|+ log s) and since algorithm GB2W has polynomial running
time, the overall running time is also polynomial in the size of the input.

3. Conclusions

We have presented a 3/2-approximation algorithm for the graph balancing problem with two
weights, which meets the best-known inapproximability bound 3/2. We hope our result further
motivates other researchers to investigate the 3/2 to 2 inapproximability-to-approximation gap for
the makespan minimization problem on unrelated parallel machines.

Acknowledgments: The second author was partially supported by the Natural Sciences and Engineering
Research Council of Canada, grant 04667-2015 RGPIN.

Author Contributions: The results in this paper were developed by both authors. Daniel Page prepared the
manuscript, and Roberto Solis-Oba commented and contributed to the preparation of the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic
sequencing and scheduling: A survey. Ann. Discrete Math. 1979, 5, 287–326.



Algorithms 2016, 9, 38 11 of 11

2. Lenstra, J.K.; Shmoys, D.B.; Tardos, É. Approximation algorithms for scheduling unrelated parallel
machines. Math. Program. 1990, 46, 259–271.

3. Shchepin, E.V.; Vakhania, N. An optimal rounding gives a better approximation for scheduling unrelated
machines. Oper. Res. Lett. 2005, 33, 127–133.

4. Gairing, M.; Monien, B.; Woclaw, A. A faster combinatorial approximation algorithm for scheduling
unrelated parallel machines. Theor. Comput. Sci. 2007, 380, 87–99.

5. Asahiro, Y.; Jansson, J.; Miyano, E.; Ono, H.; Zenmyo, K. Approximation algorithms for the graph
orientation minimizing the maximum weighted outdegree. J. Comb. Optim. 2011, 22, 78–96.

6. Chakrabarty, D.; Khanna, S.; Li, S. On (1, ε)-restricted assignment makespan minimization. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Diego, CA, USA,
4–6 January 2015; pp. 1087–1101.
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