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Abstract: We investigate the problem of minimizing the total power consumption under the
constraint of the signal-to-noise ratio (SNR) requirement for the physical layer multicasting system
with large-scale antenna arrays. In contrast with existing work, we explicitly consider both the
transmit power and the circuit power scaling with the number of antennas. The joint antenna
selection and beamforming technique is proposed to minimize the total power consumption.
The problem is a challenging one, which aims to minimize the linear combination of `0-norm
and `2-norm. To our best knowledge, this minimization problem has not yet been well solved.
A random decremental antenna selection algorithm is designed, which is further modified by
an approximation of the minimal transmit power based on the asymptotic orthogonality of the
channels. Then, a more efficient decremental antenna selection algorithm is proposed based on
minimizing the `0 norm. Performance results show that the `0 norm minimization algorithm greatly
outperforms the random selection algorithm in terms of the total power consumption and the
average run time.

Keywords: antenna selection; circuit power; large-scale antenna arrays; norm minimization;
physical layer multicasting

1. Introduction

Physical layer multicasting with a base station (BS) transmitting a common information to
multiple terminals simultaneously has attracted intensive attentions recently. This system can
support various applications such as the delivery of headline news, service information, and live
broadcast, etc. Sidiropoulos et al. [1] studied the transmit power minimization problem constrained
by the signal-to-noise ratios (SNRs) of a group of receivers. In addition to proving the NP hardness
of the problem, they optimized the beamforming vector using the semidefinite relaxation (SDR)
and randomization techniques. The problem for multiple cochannel groups was investigated in [2].
Since the number of antennas (N) is usually more than the number of available radio frequency (RF)
chains (K) at the BS, the joint antenna selection and beamforming for a single group and multiple
cochannel groups was studied in [3,4], respectively. Through jointly selecting K antennas from the
total N antennas and optimizing the beamforming vector, the transmit power is minimized while
meeting the quality of service (QoS) requirement of each receiver. Compared with the routine SDR
approach, Tran et al. have solved the transmit power minimization problem using a successive convex
approximation (SCA) approach with a massively reduced computational complexity [5]. Because of
the low computational complexity, the SCA approach is suitable for the physical layer multicasting
system with large-scale antenna arrays.
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The multiple-input multiple-output (MIMO) system with large-scale antenna arrays was
proposed in [6], and has been intensively studied for a higher spectral efficiency, reduced signal
processing complexity, and improved energy efficiency compared with the traditional MIMO [7,8].
It is shown that the required transmit power to support a target rate is inversely proportional to the
number of antennas in the massive MIMO system [9]. The optimal configurations of the RF chains
was studied in [10] to maximize the transmit rate under the total power consumption constraint with
or without the channel state information (CSI).

In the existing literature, the transmit power has been minimized, while the circuit power is
neglected. However, the circuit power actually scales with the number of antennas and it should be
considered for MIMO systems, especially the massive MIMO. In contrast to previous work, this paper
aims to minimize the total power consumption under the SNR constraint of each receiver through
jointly determining the antenna subset and the beamforming vector. Since the circuit power depends
directly on the number of active RF chains in the antenna selection, we explicitly consider the circuit
power in the total power consumption model. The main contributions of this paper are detailed
as follows:

• We formulate the total power consumption minimization problem by joint antenna selection and
beamforming for physical layer multicasting with massive antennas.

• Due to the higher complexity of the exhaustive search for the optimal solution, we propose three
decremental antenna selection algorithms for the sub-optimal solution with low complexity.

• On the basis of the SCA approach, we propose an algorithm to randomly select the antenna
in a decremental manner, and modify the algorithm using the asymptotic orthogonality of the
channels to improve the computational efficiency.

• Instead of random selection, a more effective algorithm is further proposed based on the `0

norm minimization.
• Simulation results are provided to compare the performance of our proposed algorithms in terms

of the total power consumption and the average run time.

The paper is organized as follows. Section 2 formulates the total power minimization problem.
Three decremental antenna selction algorithms are proposed in Section 3. Simulation results are
provided in Section 4 and conclusions are drawn in Section 5.

Notations: Throughout this paper, scalers and vectors are denoted by lowercase letters and
boldface lowercase letters, respectively. For any vector, the superscript (·)H denotes the Hermitian
transpose. The notations |·| and ‖·‖2 denote the absolute value and 2-norm, respectively. We use
CN

(
m, σ2) to denote the circular symmetric complex Gaussian distribution with mean m and

covariance σ2.

2. Problem Formulation

We consider the physical-layer multicasting system, where a single BS equipped with N antennas
and N RF chains broadcasts a common message to M single antenna receivers. The received signal at
the receiver i is given as

yi =
√

βihH
i ws + ni (1)

where s ∼ CN (0, 1) is the common signal transmitted to M receivers.
√

βi and the N × 1 vector
hi ∼ CN (0, IN) represent the large-scale and small-scale fading of the i-th receiver’s channel,
respectively. w ∈ CN is the beamforming vector and ni ∼ CN (0, σ2

i ) is the additive white Gaussian
noise at the receiver i. The received SNR of the i-th receiver is

γi = βi

∣∣∣wHhi

∣∣∣2/σ2
i (2)
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Considering the circuit power of the RF chains, the total power minimization problem can be
formulated as:

P1 : min
w∈CN

‖w‖2
2

η
+ Pcir‖w‖0

s. t. |wHhi|2 ≥ γ̄i, i = 1, . . . , M (3)

where γ̄i = γ̃iσ
2
i /βi with γ̃i denoting the SNR threshold of the i-th receiver. In the objective function,

the first term represents the transmit power with η denoting the power amplifier efficiency, and the
second term represents the circuit power consumption with Pcir denoting the circuit power cost per
RF chain. The `0-norm ‖w‖0 := |{n : wn 6= 0}| represents the number of nonzero entries of the
beamforming vector w, where wn represents the n-th element of w. We can select the antenna subset
corresponding to the nonzero entries of the beamforming vector and the unnecessary RF chains are
switched off to reduce the circuit power consumption. The circuit power consumption is proportional
to the number of active RF chains ‖w‖0. The total consumed power comprises of both the transmit
power and the circuit power of the RF chains.

3. Decremental Antenna Selction Algorithms

Since the `0-norm is non-convex and it has no accurate approximations, it is difficult to solve the
optimization problem P1. To our best knowledge, there exists no approach to minimize the linear
combination of `0-norm and `2-norm. The optimal solution can be found by exhaustive searching 2N

antenna subsets, i.e., solving the following NP-hard problem with 2N times,

P2 : min
w∈CN

‖w‖2
2

s. t. |wHhi|2 ≥ γ̄i, i = 1, . . . , M (4)

The complexity is enormous when the BS is equipped with large-scale antenna arrays. An
iterative SCA algorithm has been proposed by Tran et al. to solve the problem P2 effectively [5].
In this sections, we try to find the near-optimal solution by jointly optimizing the antenna subset and
its beamforming vector.

Theorem 1. Let Υ and Φ denote two antenna subsets with the relationship Υ ⊂ Φ. wopt
Υ and wopt

Φ are the
optimal beamforming vectors regarding to Υ and Φ, respectively. The minimal transmission power consumed

by the antenna subset Υ is no less than that of Φ, i.e.,
∥∥∥wopt

Υ

∥∥∥2

2
≥
∥∥∥wopt

Φ

∥∥∥2

2
.

Proof. Let wΦ = (wopt
Υ ; 0), then the elements of beamforming vector corresponding to the antenna

subset ∆=Φ− Υ equal zero. It is obvious that
∥∥∥wopt

Υ

∥∥∥2

2
= ‖wΦ‖2

2 ≥
∥∥∥wopt

Φ

∥∥∥2

2
.

As can be seen from Theorem 1, with the shrinking of the antenna subset, the minimal transmit
power consumption gets larger, while the circuit power consumption gets smaller. Therefore, we can
determine a tradeoff between the circuit power and the transmit power through designing the
decremental antenna selection algorithms. The initial antenna subset is defined as S(0) with all the
antennas selected. In each iteration, a new antenna subset is obtained from the previous subset
according to different methods. The iteration of antenna selection continues when the total power
consumption of the new antenna subset is less than the previous antenna subset. So, in each step
of the antenna selection, we can make sure that the obtained new subset is superior to the previous
subset and it is thus updated. Otherwise, when the total power consumption of the current iteration is
no less than the previous subset, the antenna selection process is terminated. In this process, the total
power consumption decreases step by step. Inspired by this fact, we proposed three decremental
antenna selection algorithms based on the SCA approach.
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3.1. Random Decremental Selection (RDS) Algorithm

We first propose a random decremental selection (RDS) algorithm. In the r-th step, k antennas
are randomly selected from the antenna subset S(r−1) and removed, the new subset is S(r).
Then, we calculate the minimal transmit power consumption of S(r) using the SCA approach as it
leads to an efficient solution with lower transmit power consumption compared with the routine SDR
approach [1]. The total consumed power of S(r) can be obtained by summing the circuit power and
the minimal transmit power calculated by the SCA approach [5]. If the antenna subset S(r) consumes
less power than S(r−1), the algorithm goes into the next step, otherwise, the algorithm should be
terminated with S(r−1) being the selected best antenna subset. Since k antennas are randomly selected
and removed from the previous subset in each iteration, the tradeoff between the system performance
and the algorithm efficiency can be balanced by judiciously adjusting the parameter k.

3.2. Modified Random Decremental Selection (MRDS)

To improve the efficiency of the RDS algorithm, we further propose the modified random
decremental selection (MRDS) algorithm through introducing an effective and accurate approximation of
the minimal transmit power consumption based on the asymptotic orthogonality of the channels [11].
The asymptotic orthogonality reduces the complexity of signal processing. To maximize the
minimum SINR of all the users constrained by the transmit power, Xiang et al. proved that the
asymptotically optimal beamformer when N → ∞ is a linear combination of the channels between
the BS and its served users [12].

Theorem 2. To minimize the transmit power constrained by the SNR requirement, the optimal beamforming
vector is a linear combination of user’ channels if they are orthogonal, that is wopt = ∑M

i=1 αihi, where αi is the
coefficient of user i in the combination.

Proof. Let {uj}N−M
j=1 be an orthogonal basis for the complement of the space spanned by {hi}M

i=1, then

w =
M

∑
i=1

αihi +
M−N

∑
j=1

ξ juj (5)

Let v = ∑M
i=1 αihi. We can observe that if w satisfies the constrains, v also satisfies,

and ‖w‖2
2 ≥ ‖v‖

2
2 due to the orthogonality of {uj}N−M

j=1 and {hi}M
i=1. Thus, the beamforming vector

w is optimal unless all the coefficients {ξ j} equal zero.

Based on the SNR constrains, the optimal beamforming vector for the problem P2 is given
as wopt = ∑M

i=1
√

γ̄ihi/‖hi‖2
2 when the channels are orthogonal. The minimal transmit power is

‖wopt‖2
2 = ∑M

i=1 γ̄i/‖hi‖2
2. Since ‖wopt‖2

2 ≈ ∑M
i=1 γ̄i/N as hi ∼ CN (0, IN), the minimal transmit

power is reduced by approximately ∑M
i=1 γ̄i/N(N + 1) through adding one antenna. Therefore,

when the channels are orthogonal, the decreasing speed of the minimal transmit power gets slower
with the enlarge of the antenna size N. Since the channels are asymptotically orthogonal but not
exactly orthogonal, to satisfy all the constrains of the problem P2, the beamforming vector w should
be scaled as w = ζwopt with ζ = maxi

√
γ̄i/|hi

Hwopt|.
The corresponding transmit power ‖w‖2

2 = ∑M
i=1 γ̄iζ

2/‖hi‖2
2 will be an accurate approximation

of the minimal transmit power when the channels are asymptotically orthogonal. To check the

orthogonality of the channels, we investigate the correlation matrix C with Cij =
|hH

i hj|
‖hi‖‖hj‖ . If C− IM � δ,

the channels are regarded as orthogonal and the minimal transmit power can be calculated more
efficiently using the linear approximation instead of the SCA approach. Compared to the worst-case
complexity O(N3) per iteration for the SCA approach [5], the linear approximation introduced here
merely has the complexity of O(NK). Since the linear approximation has a much lower complexity,
the MRDS algorithm is more efficient than the RDS algorithm. Apparently, the probability of channel
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orthogonality gets larger with the increase of the parameter δ, as a result, the MRDS algorithm turns
to be more efficient. However, the linear approximation becomes inaccurate when δ is large enough,
so δ should be determined as a compromise between the accuracy and the efficiency.

3.3. `0-Norm Minimization (L0NM) Algorithm

In each step of the RDS and the MRDS algorithms, k antennas are randomly selected and
dropped, and the beamforming vector is optimized given the selected antenna subset. In other words,
we first fix the item Pcir‖w‖0 and then minimize the item ‖w‖2

2/η as the `0-norm and the `2-norm
cannot be minimized simultaneously. The main drawback of the two algorithms is the randomness
of the antenna selection. In this subsection, we propose an `0-norm minimization (L0NM) algorithm
with higher efficiency. Different from the RDS and the MRDS algorithms, L0NM selects the antennas
through minimizing the `0-norm instead of random selection. That is, we first fix the item ‖w‖2

2/η

and then minimize the item Pcir‖w‖0.

In the r-th step, we first calculate the minimum transmit power
∥∥∥w(r−1)

∥∥∥2

2
by the SCA approach

for the previous subset S(r−1) whose `0-norm is
∥∥∥w(r−1)

∥∥∥
0
. Then, we set a positive value θ, if the new

subset satisfies the following requirement, i.e.,∥∥∥w(r)

∥∥∥2

2
−
∥∥∥w(r−1)

∥∥∥2

2
η

≤ θ ≤ Pcir(
∥∥∥w(r−1)

∥∥∥
0
−
∥∥∥w(r)

∥∥∥
0
) (6)

which implies ∥∥∥w(r)

∥∥∥2

2
η

+ Pcir

∥∥∥w(r)

∥∥∥
0
≤

∥∥∥w(r−1)

∥∥∥2

2
η

+ Pcir

∥∥∥w(r−1)

∥∥∥
0

(7)

The subset S(r) is superior to the subset S(r−1). The requirement Equation (7) is equivalent

to minimize
∥∥∥w(r)

∥∥∥
0

and the minimal value of
∥∥∥w(r)

∥∥∥
0

should be less than
∥∥∥w(r−1)

∥∥∥
0
− θ/Pcir.

So, we have the following optimization problem,

P3 : min
w(r)∈CN

∥∥∥w(r)

∥∥∥
0

s. t.
∥∥∥w(r)

∥∥∥2

2
≤
∥∥∥w(r−1)

∥∥∥2

2
+ ηθ∣∣∣wH

(r)h
(r−1)
i

∣∣∣2 ≥ γ̄i, i = 1, · · · , M (8)

The problem P3 is a minimum `0-norm problem where both the objective function and the first
constraint are non-convex. Since the `1-norm is the closest convex approximation to the `0-norm [3,13],
we replace the `0-norm with `1-norm which can also induces the sparsity. Then, the problem P3 can
be reformulated as

P4 : min
w(r)∈CN

∥∥∥w(r)

∥∥∥
1

s. t.
∥∥∥w(r)

∥∥∥2

2
≤
∥∥∥w(r−1)

∥∥∥2

2
+ ηθ∣∣∣wH

(r)h
(r−1)
i

∣∣∣2 ≥ γ̄i, i = 1, · · · , M (9)
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For the non-convexity of the SNR constraints, we adopt the iterative successive convex
approximation method similarly as [5]. In each iteration step, the minimal transmit power increases
by a fixed value ηθ. Since the decreasing speed of the minimal transmit power becomes slower with
the increase of N, we drop more antennas in the first step to improve the efficiency of the L0NM
algorithm. The operation of the L0NM algorithm is summarized as Algorithm 1.

Algorithm 1 `0-Norm Minimization (L0NM) Algorithm

Input: M, N, η, Pcir, γ̃i, i = 1, ..., M and θ.
Output: The optimal subset S(r) and the beamforming vector w(r).
Main procedure:

1. Initialization
Given the initial set S(0) including all the antennas and

∥∥∥w(0)

∥∥∥
0
= N. Set r = 1.

2. Step r

Calculate the minimum transmit power
∥∥∥w(r−1)

∥∥∥2

2
for S(r−1) according to the SCA approach.

To solve the minimum `0-norm problem P3, the objective function is replaced by `1-norm.
Solve the reformulated problem P4. If ∃

∥∥∥w(r)

∥∥∥
0
<
∥∥∥w(r−1)

∥∥∥
0
− θ/Pcir, S(r) is the antenna

subset corresponding to the nonzero entries of
∥∥∥w(r)

∥∥∥
0
, r = r + 1, and repeat this operation.

Otherwise, stop and the optimal subset is S(r−1).
3. End

Remark 1. Considering a high antenna correlation or a large amount of line of sight, the MRDS
algorithm is not suitable because the factors have an harmful impact on the channel orthogonality.
However, the L0MN algorithm is not influenced by the antenna correlation and amount of
line of sight.

4. Simulation Results

In this section, we first evaluate the asymptotical orthogonality of the channels between the
BS and its served users, which reflects the computational efficiency of MRDS. Figure 1 shows the
orthogonal probability (δ = 0.2) versus the number of BS antennas with M = 10, 15, and 20.
The orthogonal probability gets larger with the increase of the number of BS antennas or with the
decrease of the user amounts.

In Figures 2 and 3, the performance of the three proposed algorithms are compared to show the
total power consumption and the computation time by 500 independent trials. In our experiments,
we use the log-distance path loss model, in which the path loss at distance d is set as β(d)[dB] =
β f r(d0) + 10n log( d

d0
) [14], where n is the path loss exponent and β f r(d0) is the free-space path loss

at the reference distance d0 and the carrier frequency of fc. The simulation parameters are detailed in
Table 1. Without loss of generality, All the users are assumed to be located 1200 m away from the BS,
and all γ̃is are the same and vary from 0 dB to 30 dB.
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Figure 1. The orthogonal probability (δ = 0.2) versus the number of base station (BS) antennas.

Table 1. Simulation Parameters.

Parameter Value Parameter Value

N 200 η 1

n 3.8 θ 0.8 W

d0 100 m σ2
i −96 dBm

Pcir 80 mW fc 2.5 GHz [10]
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Figure 2. The average minimum total consumed power calculated by our methods versus the
signal-to-noise ratio (SNR) constrains.
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Figure 3. The average run time of our algorithms versus the SNR constrains.

Figure 2 shows the average minimal total power consumption calculated by our methods versus
the SNR constrains when M = 10. The average minimal power consumption gets larger when the
SNR requirement becomes more strictly. The difference of the average minimum total consumed
power is minor between the RDS algorithm and the MRDS algorithm. The L0NM algorithm
significantly outperforms the RDS algorithm, because it does not remove antennas randomly in each
step as done by the RDS algorithm.

Figure 3 evaluates the average run time of our algorithms versus the SNR constrains when
M = 10. The codes are executed on a 64-bit desktop with 8 Gbyte RAM and Intel CORE i5
using YALMIP as the Matlab package. It can be seen that, either the MRDS algorithm or the
L0NM algorithm provides noticeable improvement compared with the RDS algorithm in terms of
the average run time.

5. Conclusions

We have studied in this paper how to jointly design the antenna selection and beamforming for
the multicasting system with large-scale antenna arrays to minimize the total power consumption
while guaranteeing the SNR requirement of each user. We proposed three decremental selection
algorithms termed as RDS, MRDS, and L0MN. Performance results show that the L0NM algorithm
can greatly outperform the random selection algorithm in terms of the total power consumption and
the average run time.
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