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Abstract: Clustering is a fundamental task in data mining. Affinity propagation clustering (APC)
is an effective and efficient clustering technique that has been applied in various domains. APC
iteratively propagates information between affinity samples, updates the responsibility matrix and
availability matrix, and employs these matrices to choose cluster centers (or exemplars) of respective
clusters. However, since it mainly uses negative Euclidean distance between exemplars and samples
as the similarity between them, it is difficult to identify clusters with complex structure. Therefore,
the performance of APC deteriorates on samples distributed with complex structure. To mitigate this
problem, we propose an improved APC based on a path-based similarity (APC-PS). APC-PS firstly
utilizes negative Euclidean distance to find exemplars of clusters. Then, it employs the path-based
similarity to measure the similarity between exemplars and samples, and to explore the underlying
structure of clusters. Next, it assigns non-exemplar samples to their respective clusters via that
similarity. Our empirical study on synthetic and UCI datasets shows that the proposed APC-PS
significantly outperforms original APC and other related approaches.

Keywords: clustering; affinity propagation; path-based similarity; complex structure

1. Introduction

Clustering is one of the most important research topics in machine learning and data mining
communities. It aims at grouping samples into several clusters, samples in the same cluster are similar,
while samples in different clusters are dis-similar. From practical perspective, clustering has been
applied in many areas, such as genomic data analysis [1], image segmentation [2], social network [3],
market analysis [4], anomaly detection [5] and so on. However, with the development of information
technology, traditional clustering algorithms faced with two challenges: the structure of samples
becomes much more complex than before and the amount of samples increases sharply. Therefore, it is
necessary to develop advanced clustering algorithms to combat with these challenges.

To mitigate the first challenge, Ester et al. [6] utilized the density of points to explore the
underlying clusters of complex data. Particularly, the density of a sample is defined by counting the
number of samples in a region with specified radius around the sample, samples with density above a
specified threshold form clusters. Another similar algorithm is clustering by fast search and finding
of density peaks [7]. This algorithm is based on two assumptions, the cluster center corresponds to
a sample with high local density and it has large distance from other cluster centers. Under these
assumptions, the algorithm constructs a coordinate graph, the vertical axis reflects the local density
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of each sample, and the horizontal axis reflects the distance between one sample and another closest
sample with higher local density than itself. Based on the graph, the algorithm manually selects
samples, which have high local density and long distance from other samples, as cluster centers. Then,
it assigns non-center samples to their respective nearest cluster centers. However, it is difficult to
correctly determine the density of samples, and the performance of these algorithms on large amount
of samples is not satisfactory.

To combat the second challenge, Frey et al. [8] proposed a clustering technique called affinity
propagation clustering (APC), which propagates affinity message between samples to search a
high-quality set of clusters [9]. APC has been shown its usefulness in image segmentation [10,11],
gene expressions [12] and text summarization [13]. Xiao et al. [14] proposed a semi-supervised APC
to utilize pairwise constraints (must-link constraint that two samples are known in the same cluster,
and cannot-link that two samples belong to different clusters [15]) to adjust the similarity between
samples. It is a non-trivial task for APC to choose a suitable p (predefined preference of choosing a
sample as the cluster center). To mitigate this issue, Wang et al. [16] suggested to adaptively scan
preference values in the search space and seek the optimal clustering results. Xia et al. [17] put forward
two variants of APC based on global and local techniques to speed up APC. The local technique
speedups APC by decreasing the number of iterations and decomposing the original similarity matrix
between samples into sub-matrices. The global approach randomly samples a subset of instances from
original dataset and takes these sampled instances as landmark instances (others as non-landmark
instances). Next, it applies APC on these landmark instances to optimize centers and then assigns
non-landmark instances to the closest center. It repeats the above steps until predefined iterations
and chooses the best final results. Recently, Serdah et al. [18] proposed another efficient algorithm
which not only improves the accuracy but also accelerates APC on large scale datasets. This algorithm
employs random fragmentation or k-means to divide the samples into several subsets. Then, it uses
k-affinity propagation (KAP) [19] to group each subset into k clusters and gets local cluster exemplars
(representative point of a cluster) in each subset. Next, inverse weighted clustering algorithm [20] is
utilized on all local cluster exemplars to select well-suited global exemplars of all the samples. Finally,
a sample is assigned to the respective cluster based on its similarity with respect to global exemplars.

APC and these aforementioned variants of APC, however, are only suitable for datasets with
simple structure (i.e., non-overlap or non-intersecting clusters), since they mainly depend on the
Euclidean distance between samples. When dealing with datasets with complex structures, the
performance of these approaches downgrades sharply. Walter et al. [21] suggest a path-based similarity
for APC (pAPC) to explore the complex structure of samples. Particularly, for pairwise samples, pAPC
finds out the longest segment for each path directly and indirectly connecting these two samples.
Then it chooses the shortest segment from all the found segments and takes the length of that segment
as the path-based similarity between the pairwise samples. Next, pAPC inputs this similarity into APC
to cluster samples. Zhang et al. [22] proposed APC based on geodesic distances (APCGD). APCGD
uses the negative geodesic distance between samples as the similarity between samples, instead of the
negative Euclidean distance. These approaches improve the performance of APC on datasets with
complex structures. However, their performance is found to be unstable, APCGD involves tuning
more than two scale parameters, and both of them are very time consuming. Guo et al. [23] applied
k-path edge centrality [24] on social networks to efficiently compute the similarity between network
nodes and then employed APC based on that similarity to discovery communities.

To improve the performance of APC on samples distributed with complex structures (as the toy
examples in the Section of Experiment shown), we propose an APC based on path-based similarity
(APC-PS for short). Different from pPAC, we apply APC based on negative Euclidean distance to
find exemplars (or cluster centers) at first. Next, we introduce the path-based similarity to explore
the underlining structure between samples and exemplars, and then assign non-exemplar samples
to its closest cluster using the path-based similarity. Our study on toy examples shows that, the
proposed path-based similarity can better capture the underlying structure of samples than the widely
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used negative Euclidean distance based similarity. The empirical study on publicly available datasets
demonstrate that APC-PS can achieve better results than original APC, pAPC, APCGD and other
representative clustering algorithms, and it is more robust to input values of p than APC.

The rest of this paper is organized as follows. APC and the proposed APC-PS is introduced in
Section 2. Section 3 provides the experimental results on synthetic datasets and UCI datasets [25].
Conclusions and future work are provided in Section 4.

2. Method

In this section, we first introduce original APC and analyze the importance of similarity between
samples for APC. Next, we propose a path-based similarity to adjust the similarity between samples
and incorporate the path-based similarity into APC.

2.1. Affinity Propagation Clustering

APC assumes each sample can be a potential cluster representative sample (cluster center or
exemplar). It iteratively transmits messages between affinity samples, until a high-quality set of
exemplars emerges. Let X = [x1; x2; · · · ; xn] ∈ Rn×d be a data matrix of n samples, and each vector xi
corresponds to a d-dimensional sample. S ∈ Rn×n encodes the similarity between these n samples, the
entry S(i, j) is specified as below:

S(i, j) = −
∥∥xi − xj

∥∥2 , (i 6= j) (1)

where
∥∥xi − xj

∥∥2 is the Euclidean distance between xi and xj. When i = j , since all samples are initially
viewed as the potential exemplars, each diagonal entry of S is set as p, which reflects the preference of
choosing a sample as the cluster center. p can be adjusted to get an appropriate number of exemplars
(or clusters). In most cases, p is set as the median of S. Frey et al. [8] suggested that p can be adjusted
to produce an expected (or user-specified) number of clusters. The smaller the value of p, the fewer
the clusters are.

There are two matrices involved with APC: the responsibility matrix (R ∈ Rn×n) and availability
matrix (A ∈ Rn×n). R(i, j) measures the accumulated evidence of how well-suited sample xj serves as
the exemplar for sample xi. A(i, j) measures the accumulated evidence of how appropriate xi chooses
xj as its exemplar. At first, elements of R and A are initialized with zero. The response matrix R is
updated by a formula as follow:

R(t)(i, j) = S(i, j)−maxh 6=j

{
A(t−1)(i, h) + S(i, h)

}
(2)

where R(t)(i, j) is the updated R(i, j) in the t-th iteration, and A(t−1)(i, h) is the updated A(i, h) in the
(t− 1)-th iteration. A(t−1)(i, h) + S(i, h) measures the potentiality of taking xh as the exemplar of xi.
R(t)(i, j) reflects the degree that xi supports xj to be an exemplar compared with xi supporting the
most potential sample xh to be an exemplar. If R(t)(i, j) is larger than zero, xj is more supported as an
exemplar of xi than xh. The larger the value of R(t)(i, j), the larger the likelihood xj as an exemplar of
xi is. For special case i = j, R(t)(j, j) reflects accumulated evidence that xj is an exemplar based on the
initial preference value p.

The available matrix A is iteratively updated as:

A(t)(i, j) = min

{
0, R(t)(j, j) + ∑

h 6=i,h 6=j
max{0, R(t)(h, j)}

}
(3)

where max{0, R(t)(h, j)}means only the positive elements of incoming R(t)(h, j) are considered, since
it is only necessary for a good exemplar to well account for some samples (positive responsibilities),
regardless how poorly it accounts for other samples (negative responsibilities). To restrict the influence
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of large positive R(t)(j, j) , Equation (3) restricts the total sum is no more than zero. The diagonal entry
of A(t)(i, i) is updated as:

A(t)(i, i) = ∑
h 6=i

max
{

0, R(t)(h, i)
}

(4)

The A(t)(i, j) indicates the possibility of xj as an exemplar based on its all positive responsibilities.
However, if there are two or more exemplars suitable for the same cluster, it is difficult to identify

the optimal exemplar. To address this issue, APC introduces a damping factor λ(λ ∈ [0, 1)) and
updates R and A as follow:

R(t)(i, j) = (1− λ)(S(i, j)−maxh 6=j

{
A(t−1)(i, h) + S(i, h)

}
) + λR(t−1)(i, j) (5)

A(t)(i, j) = (1− λ)min

{
0, R(t)(j, j) + ∑

h 6=i,h 6=j
max

{
0, R(t)(h, j)

}}
+ λA(t−1)(i, j) (6)

A(t)(i, i) = (1− λ) ∑
h 6=i

max
{

0, R(t)(h, i)
}
+ λA(t−1)(i, i) (7)

APC iteratively updates R and A using Equations (5)–(7). If A(i, j) + R(i, j) is the maximum and
i = j, then xi is an exemplar; otherwise, xj is the exemplar and xi is assigned to the cluster whose
exemplar is xj. Equations (5)–(7) describe the basic procedure of APC. After finding out exemplars,
APC assigns non-exemplar samples to the closest cluster whose exemplar has smallest Euclidean
distance from them. However, Euclidean distance does not work well on samples distributed with
complex structure, as our illustrative examples demonstrated in the next subsection. To mitigate this
problem, we propose a path-based similarity to explore the underlying structure between samples and
incorporate the similarity into APC to assign samples to their respective clusters.

2.2. Affinity Propagation Clustering Using Path-Based Similarity

To discuss the necessity of introducing path-based similarity, we first give an illustrative example
in Figure 1. In the figure, there are 202 samples distributed with two curves and each curve correspond
to a cluster. Samples “e1” and “e2” are two exemplars identified by running APC on the toy dataset
plotted in the figure. From Figure 1, we can clearly see sample “a” is closer to exemplar “e2” than
to “e1”. Based on the non-exemplar samples assignment rule of APC and adopted similarity in
Equation (1), non-exemplar sample “a” will be assigned to the upper cluster whose exemplar is “e2”.
Similarly, “b” will be viewed as a member of the lower cluster whose exemplar is “e1”. However, from
Figure 1, we could say “a” and “e1” should be in the lower cluster, “b” and “e2” should be in the
upper cluster. This occurs principally because APC assigns non-exemplar samples to a cluster based
their distance (or similarity) from the exemplar (or center sample) in each cluster. Although this rule is
widely used in center-based clustering techniques (i.e., k-means and k-median [26]) and other variants
of APC [16,17], the rationality of this rule for samples distributed with complex structure is not as well
as expected. Our additional examples in the following Experiment Section further confirm this issue.

To address the issue in Figure 1, we suggest a path-based similarity to explore the underlying
structure of samples and assign a non-exemplar to its most similar exemplar based on the path-based
similarity between them. Suppose G ∈ Rn×n is a distance matrix of a fully connected graph, xi
corresponds to the i-th node of the graph, and G(i, j) encodes the distance from i to j. e is an exemplar
and serves as the start node. Let Ze = {e} and Ve = {V − e}, where V includes all nodes of the graph
described by G. Initially, the length of path from e to node i ∈ Ve is specified as P(e, i) = G(e, i) and
P(e, e) = 0.
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Figure 1. A toy example: 202 samples distributed in two curves. “e1” and “e2” are the exemplars of
the lower cluster and upper cluster, respectively.

At first, we find the node that has largest path-based similarity e as below:

P(e, i) = mini∈Ve P(e, i) (8)

Next, we update Ze = Ze
⋃

i and Ve = Ve − i.
For j ∈ Ve, we define its largest path-based similarity to e by taking into account nodes in Ze

as follow:
P(e, j) = minj∈Ve ,i∈Ze {G(e, j), max {P(e, i), G(i, j)}} (9)

Equation (9) means that if the longest segment (P(e, i) or G(i, j)) in the path connecting e and j is
smaller than G(e, j),the shortest one from these longest segments is chosen as the path-based similarity
between e and j; otherwise, G(e, j) is taken as the path-based similarity between them. P(e, j) reflects
the biggest difference inside the path and accounts for the distribution of exemplar and non-exemplar
samples. In this way, we can get the path-based similarity between e and j, and then append j into Ze.
By iteratively removing a node j from Ve, appending j into Ze and updating P(e, j) using Equation (9),
we can find the path-based similarity between e and all the other n− 1 samples. Similarly, we can
repeatedly utilizes Equations (8) and (9) to find path-based similarity between another exemplar and
the left n− 1 samples. Suppose there are k exemplars, P ∈ Rk×n, P encodes the path-based similarity
between k exemplars and n samples. APC based on path-based similarity (APC-PS) is summarized in
Algorithm 1.

Algorithm 1: APC-PS: APC Based on Path-Based Similarity
Input:

S: negative Euclidean distance based similarity between n samples
p < 0: preference value of a sample chosen as the cluster center (or exemplar)
λ: damping factor for APC
k: number of clusters

Output:
clust(i): the cluster membership for sample i ∈ {1, 2, · · · , n}

1: Initialize A = 0, R = 0 and set each diagonal entry of S as p.
2: Iteratively update R(i, j), A(i, j) and A(j, j) using Equations (5)–(7), respectively.
3: Identify exemplars based on the summation of A and R.
4: If the number of exemplars is larger (or smaller) than k, then reduce (or increase) p and goto line 1.
5: Compute the path-based similarity matrix P using Equations (8) and (9).
6: Assign non-exemplar sample i to the closest cluster (i.e., e) based on P and set clust(i) = e .
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3. Results

3.1. Results on Synthetic Datasets

In this section, to comparatively and visually study the difference between APC and APC-PS,
we generate three representative synthetic datasets, whose samples are distributed with different
complex structures. The first dataset has two spirals, the second includes two half-moons, and the
third has two circles with different radiuses.

In Figure 2a, we can see APC equally cuts two spirals and does not identify the cluster structure of
samples. In Figure 2b, APC correctly groups most samples, but it still wrongly assigns some samples.
In Figure 2c, APC divides two circles into two semi-circles: left and right semicircles. Obviously,
APC does not correctly discover the underlying cluster structure of samples. The reason is that
after finding out center samples (or exemplars), APC employs negative Euclidean distance between
non-center samples and center samples, and assigns non-center samples to their closest center samples.
The Euclidean distance and assignment rule ignore the underlying structure of samples, especially
for samples distributed with complex structures. On the contrary, in Figure 2d, APC-PS accurately
groups samples into two interwound spirals. In Figure 2e, APC-PS precisely assigns samples into
two different half-moons. In Figure 2f, APC-PS also perfectly divide samples into two circles without
any mistake. Different from APC, APC-PS correctly reveals the underlying cluster structure of these
three datasets.

From these comparisons, we can conclude that APC-PS can more correctly identify the underlying
cluster structure of samples than APC. This occurs principally because path-based similarity not
only takes into account Euclidean distance between samples, but also the longest segment along the
path between samples, to explore the structure of samples. For example, although Figure 2a,d have
the same exemplars, the results of APC and APC-PS are quite different. APC assigns no-exemplar
samples based on their Euclidean distance from exemplars. Samples are assigned to the cluster whose
exemplar is closest to them, irrespective of how these samples distributed. In contrast, APC-PS assigns
non-exemplar samples to a cluster based on path-based similarity between the cluster exemplar and
these samples. As Figure 2d shows, the path-based similarity between blue samples and purple
exemplar is larger than the path-based similarity between blue samples and black exemplar. Therefore,
blue samples is assigned to the cluster, whose center sample is the purple exemplar, and APC-PS can
get more accurate results than APC.

The path-based similarity in APC-PS is quite different from the well known Floyd Warshall
algorithm [27], which finds shortest paths for any pairwise nodes in a not fully connected graph with
positive (or negative) edge weights. On the contrary, our proposed path-based similarity mainly
focuses on path-based similarity between exemplars and other samples, and assumes there are direct
edges between all samples. In addition, it first finds out all the longest segments of all paths connecting
an exemplar and another sample, and then chooses the shortest segment from these found longest
segments as the path-based similarity between them. If we adopt the Floyd’s shortest path to cluster
samples in Figure 2a–c, the shortest path between an exemplar and a non-exemplar is the direct
edge connecting them, instead of the summed edge weight of a path, which connects them via other
intermediate samples. Therefore, Floyd’s shortest path produces similar clustering results as APC
based on negative Euclidean distance. Furthermore, APC-PS only computes the path-based similarity
between center samples and non-center samples, its time complexity is O(kn2), k is the number of
exemplars. However, the time complexity of original Floyd Warshall algorithm is O(n3) and that for
pAPC is also O(n3). Therefore, the path-based similarity adopted by APC-PS takes much less time
than Floyd Warshall algorithm and pAPC.
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Figure 2. Discovered clusters of affinity propagation clustering (APC) and affinity propagation
clustering based on path-based similarity (APC-PS) on three artificial datasets. Upper figures (a–c) show
the results of APC, and lower figures (d–f) show the results of APC-PS.
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3.2. Results on UCI Datasets

In this section, we conduct two kinds of experiments on UCI datasets [25]. In Section 3.2.1,
we compare APC-PS with original APC [8], pAPC [21], APCGD [22], k-means [28], expectation
maximization (EM) [29,30] and subspace sparse clustering (SSC) [31] to study the effectiveness of
APC-PS. In the following experiments, λ for APC, APC-PS, pAPC and APCGD is set as 0.9, k for
APC, APC-PS, pAP, APCGD, SSC, k-means and EM is fixed as the number of ground truth labels. For
APCGD, the number of nearest neighbors and ε is predefined based on the scale of dataset. The number
of nearest neighbors is 10 for Balance, Glass, Synthetic, and 20 for Mushroom. ε for APCGD is set
as 5 on Balance, Glass, Synthetic, and is 10 on Mushrooms. We investigate the influence of different
input values of p for APC-PS and APC in Section 3.2.2. These experiments are involved with four
UCI datasets, Balance scale, Glass identification, Synthetic control chart time series and Mushrooms
datasets. Detail information of these four datasets is listed in Table 1.

Table 1. Four UCI datasets used for experimental study.

Dataset n d k

Balance 625 4 3
Glass 214 9 6

Synthetic 600 60 6
Mushrooms 8124 112 2

Two evaluation metrics are adopted to evaluate the quality of clusterings, F-measure [32,33]
and Fowlkes-Mallows Index (FMI) [34]. F-measure is the harmonic average of precision (Prec)
and recall (Rec). Suppose n samples are categorized by l classes and grouped into k clusters by
a clustering algorithm. C = {C1, C2, · · · , Ck} and Ck′ represents the set of samples in the k′-th
(k′ ∈ {1, 2, · · · , k}). The precision for l′-th class (l′ ∈ {1, 2, · · · , l}) and Ck′ is Prec(l′, Ck′) =

nl′k′
nk′

,

and recall is Rec(l′, Ck′) =
nl′k′
nl′

. nk′ is the number of samples in cluster k′, nl′ is the number of samples
labeled with l′ and nl′k′ is the number of samples whose label is l′ and assigned to cluster k′. The
FMeasure between class l′ and cluster k′ is:

Fmeasure(l′, Ck′) =
Prec(l′, Ck′)× Rec(l′, Ck′)

Prec(l′, Ck′) + Rec(l′, Ck′)
(10)

The overall F-measure of C is:

F(C) = 2×
l

∑
l′=1

nl′

n
maxCk′∈C(Fmeasure(l′, Ck′)) (11)

FMI is another commonly-used metric for clustering [34] and defined as:

FMI =
√

a
a + b

× a
a + c

(12)

where a is the number of samples of the same label and grouped into the same cluster, b is the number
of samples of the same label but grouped into different clusters, and c is the number of samples of
different labels but grouped in the same cluster.

3.2.1. Clustering results on UCI datasets

In this section, we take APC, k-means [28], EM [29,30] , SSC [31], pAPC [21] and APCGD [22] as
the comparing methods and comparatively study the performance of APC-PS on four UCI datasets.
To avoid random effect, we repeat the experiments 20 times for each comparing method on each
dataset, and report the average results and standard deviations in Tables 2 and 3. Since pAPC can not
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finish on Mushroom in 12 days, its results on Mushroom are not reported in these two tables. In these
table, the numbers in boldface denote the statistical significant best (or comparable best) results at 95%
confident level.

Table 2. Experimental results (average ± standard deviation) on UCI datasets under evaluation metric
Fmeasure. The numbers in boldface denote the best performance.

Method Balance Scale Synthetic Control Glass Identification Mushrooms

EM 0.5718 ± 0.0020 0.5950 ± 0.0531 0.5096 ± 0.0291 0.6798 ± 0.1030
k-means 0.5652 ± 0.0328 0.6662 ± 0.0240 0.5364 ± 0.0234 0.7740 ± 0.1368

SSC 0.5728 ± 0.0000 0.5926 ± 0.0000 0.4840 ± 0.0012 0.7934 ± 0.0000
pAPC 0.5638 ± 0.0987 0.6477 ± 0.0000 0.4971 ± 0.0000 ——————

APCGD 0.5829 ± 0.1021 0.4192 ± 0.0000 0.4248 ± 0.0297 0.5781 ± 0.0000
APC 0.5518 ± 0.0563 0.6350 ± 0.0000 0.5598 ± 0.0000 0.7616 ± 0.0000

APC-PS 0.5925 ± 0.0018 0.6650 ± 0.0000 0.5620 ± 0.0000 0.7634 ± 0.0000

Table 3. Experimental results (average ± standard deviation) on four datasets under evaluation metric
Fowlkes-Mallows Index (FMI). The numbers in boldface denote the best performance.

Method Balance Scale Synthetic Control Glass Identification Mushrooms

EM 0.4708 ± 0.0130 0.5581 ± 0.0545 0.4516 ± 0.0397 0.6086 ± 0.0828
k-means 0.4567 ± 0.0241 0.6277 ± 0.0251 0.4775 ± 0.0464 0.7232 ± 0.1106

SSC 0.4675 ± 0.0000 0.5664 ± 0.0000 0.3778 ± 0.0005 0.6732 ± 0.0000
pAPC 0.5076 ± 0.1039 0.5664 ± 0.0000 0.3895 ± 0.0000 ——————

APCGD 0.5173 ± 0.0872 0.4750 ± 0.0000 0.4912 ± 0.0239 0.5198 ± 0.0000
APC 0.4294 ± 0.0449 0.6015 ± 0.0000 0.5606 ± 0.0000 0.7105 ± 0.0000

APC-PS 0.6539 ± 0.0046 0.6390 ± 0.0000 0.5477 ± 0.0000 0.7277 ± 0.0000

From Tables 2 and 3, we have clear observation that none of these comparing algorithms are
always performing better than others. This is because different algorithms have different bias and
these adopted four datasets are also distributed with different structures.

EM is outperformed by k-means, APC and APC-PS in majority cases. The reason is that EM
assumes samples are normally distributed. But samples in these four datasets are not subject to normal
distribution. k-means outperforms SSC on Synthetic control and Glass identification, but it loses to
SSC on other two datasets. The reason is that k-means can work well on spherical datasets, but it does
not perform well on other datasets, whose samples are distributed with complex structures. Although
SSC assumes the sparsity of features and mixture of subspace clusters, it is still often loses to APC and
always loses to APC-PS. The possible cause is that the assumption used by SSC does not hold for these
four datasets.

APC-PS significantly performs better than APC in most cases under different evaluation metrics
and it often performs as well as the best of the other five methods in terms of F-measure and FMI.
APC only utilizes Euclidean distance between samples to explore the underlying structures between
samples. In contrast, APC-PS not only exploits the Euclidean distance, but also a path-based similarity
to explore the underlying structures of samples and to assign samples to their respective clusters via
this similarity. Therefore, APC-PS produces better results than APC. From these results, we can draw a
conclusion that the path-based similarity can faithfully explore underlying structures of samples and
thus to boost the accuracy of APC.

APCGD and pAPC adopts different techniques to measure the similarity between samples, instead
of the original negative Euclidean distance. They are still outperformed by APC-PS in most cases.
APC-PS and pAPC employ similar path-based similarity to assign a non-exemplar sample to the cluster,
whose exemplar has largest similarity with the sample. APC-PS achieves better results than pAPC.
This occurs principally because APC-PS and pAPC take different samples as exemplars. In practice,
pAPC computes the path-based similarity between any pairwise samples at first. Then, it performs
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APC based on this similarity. In contrast, APC-PS firstly finds out the exemplar for each cluster using
the negative Euclidean distance between samples. Next, it calculates the path-based similarity between
the found exemplars and other samples. This observation suggests APC-PS can more correctly find
out exemplars than pAPC. APCGD defines a neighborhood graph at first, and then it takes the shortest
path between two samples in the graph as the geodesic distance between them. Next, APCGD takes the
negative geodesic distance as the similarity between them and performs APC based on this similarity.
Obviously, if two samples are directly connected in the graph, the shortest path between two samples
is the direct edge. However, it is rather difficult to construct a suitable neighborhood graph for APCGD,
and an inappropriate neighborhood graph can bring direct connection between two samples, which
belong to two different clusters. Given that, the performance of APCGD often loses to APC-PS.

3.2.2. Sensitivity of p on APC and APC-PS

In this section, we investigate the sensitivity of APC and APC-PS on the input values of p. For this
purpose, we vary p from −100 to −10 on Balance and vary p from −200 to −110, since the number of
exemplars is equal (or close) to k in the chosen range.

From Figure 3, we can easy see APC-PS is always significantly better than APC on the Balance
scale dataset across the specified range of p, irrespective of F-measure or FMI. In practice, both APC
and APC-PS initially identify the same exemplars, but their results are quite different. The cause is that
APC-PS uses the path-based similarity to assign a non-exemplar sample to a cluster, whose exemplar
is most similar to the non-exemplar sample. In contrast, APC takes the negative Euclidean distance
between two samples as the similarity between them and it assigns a non-exemplar sample to its most
similar exemplar based on this similarity. This observation justifies our motivation to incorporate the
path-based similarity to improve the performance of APC. In addition, we can find the performance
of APC-PS in Figure 3 keeps relatively stable, whereas the performance of APC fluctuates sharply.
This fact further demonstrates the path-based similarity not only helps exploring the underlying
structure between samples, but also helps achieving stable results.
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Figure 3. APC and APC-PS on Balance scale dataset under different values of p. (a) F-measure; (b) FMI.

As to Figure 4, APC-PS also always produce higher results than APC on Synthetic control
chart time series dataset. In fact, both APC and APC-PS are also based on the same exemplars.
The performance difference between APC-PS and APC indicates the samples in Balance scale dataset
and Synthetic control chart time series dataset are distributed with complex structures. These results
again suggest that solely utilizing negative Euclidean distance based similarity between samples to
assign non-center samples to a cluster is not so reasonable, and this similarity can assign a sample, far
away from its cluster center but close to other samples in the cluster, to another cluster, whose exemplar
has large similarity with the sample. On the other hand, APC-PS employs a path-based similarity.
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This similarity combines negative Euclidean distance based similarity and path-based similarity
between exemplars and non-exemplar samples. For samples far away from a target exemplar, APC-PS
considers the connection between non-exemplar samples and the exemplar. And hence, the path-based
similarity can explore the structure of samples, and help APC-PS to achieve better results than APC.
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Figure 4. APC and APC-PS on Synthetic control chart dataset under different values of p. (a) F-measure;
(b) FMI.

Another interesting observation is that APC-PS in Figure 4 does not show as stable results as that
in Figure 4. APC-PS fluctuates similarly as APC in Figure 4. One explanation is that the identified
exemplars are changed as p varying. p also influences the availability matrix A and response matrix R.
However, since APC-PS additionally employs the path-based similarity, it still correctly assigns more
samples to their respective clusters, thus it gets better results than APC. In summary, we can say that
APC-PS is more robust to input values of p than APC.

4. Conclusions

In this paper, to improve the performance of APC on samples distributed with complex structures,
we introduce an algorithm called affinity propagation clustering based on path-based similarity
(APC-PS). The experimental results on synthetic datasets and UCI datasets show APC-PS outperforms
other related algorithms, and it is also robust to input values of p. Our study shows the path-based
similarity can help to explore the underlying cluster of samples and thus to improve the performance
of APC. In our future work, we will investigate other similarity measures to capture the local and
global structure of samples, and to boost the performance of APC.
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