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Abstract:



This paper discusses the parameter estimation problems of multi-input output-error autoregressive (OEAR) systems. By combining the auxiliary model identification idea and the data filtering technique, a data filtering based recursive generalized least squares (F-RGLS) identification algorithm and a data filtering based iterative least squares (F-LSI) identification algorithm are derived. Compared with the F-RGLS algorithm, the proposed F-LSI algorithm is more effective and can generate more accurate parameter estimates. The simulation results confirm this conclusion.
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1. Introduction


System modeling and identification of single variable processes have been well studied. However, most industrial processes are multivariable systems [1,2,3], including multiple-input multiple-output (MIMO) systems and multiple-input single-output (MISO) systems. For example, in chemical and process industries, the heat exchangers are MIMO systems, in which the state of a heat exchanger often is represented by four field input variables: the cold inlet temperature, the hot inlet temperature, the cold mass flow and the hot mass flow; the outputs are respectively the cold outlet temperature and hot outlet temperature [4]. In wireless communication systems, the MIMO technology can increase wireless channel capacity and bandwidth by using the multiple antennas without the need of additional power [5]. In computing system technology, the power consumption model for host servers can be identified using a MISO model, in which the system inputs have different forms, such as the rate of the change in the CPU frequency and the rate of the change in the CPU time share, and the system outputs are the changes in power consumption [6]. With the development of the industrial process, the identification of multivariable processes is in great demand. Researchers have studied the problem of identification for multichannel systems from different fields [7,8,9], and many methods have been proposed for multivariable cases [10,11].



Recursive algorithms and iterative algorithms have wide applications in system modeling and system identification [12,13,14]. For example, Wang et al. derived the hierarchical least squares based iterative algorithm for the Box-Jenkins system [15]; and Dehghan and Hajarian presented the iterative method for solving systems of linear matrix equations over reflexive and anti-reflexive matrices [16]. Compared with the recursive identification algorithm, the iterative identification algorithm uses all the measured data to refresh parameter estimation, so the parameter estimation accuracy can be greatly improved, and the iterative identification methods have been successfully applied to many different models [17,18,19].



In the field of system identification, the filtering technique is efficient to improve the computational efficiency [20,21,22], and it has been widely used in parameter estimation of different models [23,24]. Particularly, Basin et al. discussed the parameter estimation for linear stochastic time-delay systems based state filtering [25]; Scarpiniti et al. discussed the identification of Wiener-type nonlinear systems using the adaptive filter [26]; and Wang et al. presented a gradient based iterative algorithm for identification of a class nonlinear systems by filtering the input–output data [27].



This paper combines the filtering technique with the auxiliary model identification idea to estimate parameters of multi-input output error autoregressive (OEAR) systems. By using a linear filter to filter the input-output data, a multi-input OEAR system is transformed into two identification models, and the dimensions of the covariance matrices of the decomposed two models become smaller than that of the original OEAR model. The contributions of this paper are as follows:

	
By using the data filtering technique and the auxiliary model identification idea, a data filtering based recursive generalized least squares (F-RGLS) identification algorithm is derived for the multi-input OEAR system.



	
A data filtering based iterative least squares (F-LSI) identification algorithm is developed for the multi-input OEAR system.



	
The proposed F-LSI identification algorithm updates the parameter estimation by using all of the available data, and can produce highly accurate parameter estimates compared to the F-RGLS identification algorithm.








The rest of this paper is organized as follows: Section 2 gives a description for multi-input OEAR systems. Section 3 gives an F-RGLS algorithm for the multi-input OEAR system by using the data filtering technique. Section 4 derives an F-LSI algorithm by using the data filtering technique and the iterative identification method. Two examples to illustrate the effectiveness of the proposed algorithms are given in Section 5. Finally, Section 6 gives some concluding remarks.




2. The System Description


Consider the following multi-input OEAR system:


xj(t)+aj1xj(t−1)+aj2xj(t−2)+⋯+ajnjxj(t−nj)=bj1uj(t−1)+bj2uj(t−2)+⋯+bjnjuj(t−nj),



(1)






[image: there is no content]



(2)
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(3)
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(4)




where [image: there is no content], [image: there is no content] are the inputs, [image: there is no content] is the output, [image: there is no content] represents the noise-free output, [image: there is no content] is random white noise with zero mean, and [image: there is no content] is random colored noise. Assume that the orders [image: there is no content] and [image: there is no content] are known, [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content]. The parameters [image: there is no content], [image: there is no content] and [image: there is no content] are to be identified from input–output data [image: there is no content].



Define the parameter vectors:


θ:=[ϑT,cT]T∈Rn,n:=n0+nc,ϑ:=[ϑ1T,ϑ2T,⋯,ϑrT]T∈Rn0,n0:=2n1+2n2+⋯+2nr,c:=[c1,c2,⋯,cnc]T∈Rnc,ϑj:=[aj1,aj2,⋯,ajnj,bj1,bj2,⋯,bjnj]T∈R2nj,








and the information vectors as


[image: there is no content]











The information vector [image: there is no content] is unknown due to the unmeasured variables [image: there is no content] and [image: there is no content]. By means of the above definitions, Equations (2)–(4) can be expressed as


[image: there is no content]



(5)
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(6)






y(t)=∑j=1rϕjT(t)ϑj+ψT(t)c+v(t)=ϕT(t)ϑ+ψT(t)c+v(t)=φT(t)θ+v(t).



(7)







Equation (7) is the identification model of the multi-input OEAR system, and the parameter vector [image: there is no content] contains all the parameters to be estimated.




3. The Data Filtering Based Recursive Least Squares Algorithm


Define a unit backward shift operator [image: there is no content] as [image: there is no content] and a rational function [image: there is no content]. In this section, we use the linear filter [image: there is no content] to filter the input–output data and derive an F-RGLS algorithm.



For the multi-input OEAR system in Equations (1)–(4), we define the filtered input–output data [image: there is no content] and [image: there is no content] as


[image: there is no content]



(8)
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(9)







Multiplying both sides of Equations (1) and (4) by [image: there is no content], we can obtain the following filtered output-error model:


[image: there is no content]



(10)
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(11)







Define the filtered information vectors [image: there is no content] and [image: there is no content] as


[image: there is no content]











Equations (10) and (11) can be rewritten as


[image: there is no content]



(12)






=ϕfT(t)ϑ+v(t).



(13)







Taking advantage of the idea in [28] for the filtered identification model in Equation (13), we can get


[image: there is no content]



(14)







Since the information vector [image: there is no content] contains the unknown variables [image: there is no content] and [image: there is no content], the algorithm in Equation (14) cannot be applied to estimate [image: there is no content] directly. According to the idea in [29], the unknown variables [image: there is no content] are replaced with the outputs of relevant auxiliary model, and the unmeasurable terms [image: there is no content] and [image: there is no content] are replaced with their estimates [image: there is no content] and [image: there is no content], respectively. The derivation process is as follows.



Let [image: there is no content], [image: there is no content] and [image: there is no content] be the estimates of [image: there is no content], c and [image: there is no content] at time t, respectively. Use the estimates [image: there is no content], [image: there is no content] and [image: there is no content] to define the estimates of [image: there is no content] and [image: there is no content] as


[image: there is no content]








where the estimates [image: there is no content] and [image: there is no content] can be computed by


[image: there is no content]











Define the covariance matrix


[image: there is no content]



(15)




and the gain vector


[image: there is no content]











Equation (14) can be written as


ϑ^(t)=Pf(t)∑i=1tϕ^f(i)y^f(i)=Pf(t)∑i=1t−1ϕ^f(i)y^f(i)+ϕ^f(t)y^f(t)=Pf(t)[Pf−1(t−1)ϑ^(t−1)+ϕ^f(t)y^f(t)]=Pf(t)[Pf−1(t−1)−ϕ^f(t)ϕ^fT(t)]ϑ^(t−1)+Pf(t)ϕ^f(t)y^f(t)=ϑ^(t−1)+Pf(t)ϕ^f(t)[y^f(t)−ϕ^fT(t)ϑ^(t−1)].











Applying the matrix inversion formula [image: there is no content] to Equation (15), we can obtain the following recursive least squares algorithm for estimating [image: there is no content]:


[image: there is no content]



(16)
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(17)
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(18)







Applying the least squares principle to the noise model in Equation (6), we can obtain the following algorithm to estimate the parameter vector c:


[image: there is no content]



(19)
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(20)
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(21)







The noise information vector [image: there is no content] involves the unknown term [image: there is no content]. From Equations (6) and (7), once the estimate [image: there is no content] is obtained, the estimate [image: there is no content] can be computed by


[image: there is no content]











Replace the unmeasurable noise terms [image: there is no content] in [image: there is no content] with estimates [image: there is no content] and define the estimate of [image: there is no content] as


[image: there is no content]











Use the estimate [image: there is no content] to form the estimate of [image: there is no content] as follows:


[image: there is no content]











The estimates of the filtered input [image: there is no content] and the filtered output [image: there is no content] can be computed through


[image: there is no content]











Replacing [image: there is no content] and [image: there is no content] in Equations (16)–(18) with their estimates [image: there is no content] and [image: there is no content], and replacing [image: there is no content] and [image: there is no content] in Equations (19)–(21) with their estimates [image: there is no content] and [image: there is no content], we can summarize the data filtering based recursive generalized least squares (F-RGLS) algorithm for the multi-input OEAR systems:


[image: there is no content]
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The F-RGLS estimation algorithm involves two steps: the parameter identification of the system model—see Equations (22)–(29)—and the parameter identification of the noise model—see Equations (30)–(37). The F-RGLS algorithm can generate the parameter estimation of the multi-input OEAR system; however, the algorithm uses only the measured data [image: there is no content] up to time t, not including the data [image: there is no content]. Next, we will make full use of all the measured data to improve the parameter estimation accuracy by adopting the iterative identification approach.




4. The Data Filtering Based Iterative Least Squares Algorithm


Suppose that the data length [image: there is no content]. Based on the identification models in Equations (6) and (13), we define two quadratic criterion functions


[image: there is no content]











Minimizing the above two quadratic criterion functions, we can obtain the estimation algorithm of computing [image: there is no content] and [image: there is no content]:


[image: there is no content]



(41)
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(42)







Because the vectors [image: there is no content] and [image: there is no content] are unknown, the parameter estimates [image: there is no content] and [image: there is no content] cannot be computed directly. Here, we adopt the iterative estimation theory. Let [image: there is no content] be an iterative variable, [image: there is no content] and [image: there is no content] denote the iterative estimates of [image: there is no content] and c at iteration k. Let [image: there is no content] and [image: there is no content] be the estimates of [image: there is no content] and [image: there is no content] at iteration k. Replacing [image: there is no content] and [image: there is no content] in Equation (5) with their estimates [image: there is no content] and [image: there is no content] at iteration k, [image: there is no content] and [image: there is no content] in Equation (6) with their estimates [image: there is no content] at iteration k and the [image: there is no content] at iteration [image: there is no content], the estimate [image: there is no content] and [image: there is no content] can be calculated by


[image: there is no content]



(43)






[image: there is no content]



(44)







Replacing [image: there is no content] in [image: there is no content] with [image: there is no content], [image: there is no content] in [image: there is no content] with [image: there is no content], the estimates [image: there is no content], [image: there is no content] and [image: there is no content] can be obtained by


[image: there is no content]



(45)
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Using the parameter estimate [image: there is no content] to form the estimate of [image: there is no content] at iteration k:


[image: there is no content]











Filtering the input–output data [image: there is no content] and [image: there is no content] by [image: there is no content], we can obtain the estimates of [image: there is no content] and [image: there is no content]


[image: there is no content]



(48)
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(49)







Let [image: there is no content] be the estimate of [image: there is no content] at iteration k, replacing [image: there is no content] and [image: there is no content] in Equation (12) with their estimates [image: there is no content] and [image: there is no content] at iteration k, the estimate [image: there is no content] can be computed by


[image: there is no content]



(50)







Replacing [image: there is no content] and [image: there is no content] in [image: there is no content] with their estimates [image: there is no content] at iteration [image: there is no content] and [image: there is no content] at iteration k, we can obtain the estimates:


[image: there is no content]



(51)






[image: there is no content]
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Replacing [image: there is no content] and [image: there is no content] in Equation (41) with their estimates [image: there is no content] and [image: there is no content], and replacing [image: there is no content] and [image: there is no content] in Equation (42) with their estimates [image: there is no content] and [image: there is no content], we can obtain the data filtering based iterative least squares (F-LSI) algorithm of estimating the parameter vectors [image: there is no content] and c:


ϑ^k=∑t=1Lϕ^f,k(t)ϕ^f,kT(t)−1∑t=1Lϕ^f,k(t)y^f,k(t),k=1,2,3,⋯



(53)






[image: there is no content]



(54)







From Equations (43)–(54), we can summarize the F-LSI algorithm as follows:


ϑ^k=∑t=1Lϕ^f,k(t)ϕ^f,kT(t)−1∑t=1Lϕ^f,k(t)y^f,k(t),k=1,2,3,⋯



(55)






[image: there is no content]



(56)
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[image: there is no content]



(58)






[image: there is no content]



(59)






[image: there is no content]



(60)






[image: there is no content]



(61)






[image: there is no content]



(62)






[image: there is no content]



(63)






[image: there is no content]



(64)






[image: there is no content]



(65)






[image: there is no content]



(66)
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We list the steps for computing the estimates [image: there is no content] and [image: there is no content] as iteration k increases:

	
To initialize, let [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



	
Collect the input–output data [image: there is no content]: [image: there is no content].



	
Form [image: there is no content] by Equation (64), [image: there is no content] by Equation (63), and [image: there is no content] by Equation (62).



	
Compute [image: there is no content] by Equation (66), update the parameter estimate [image: there is no content] by Equation (61).



	
Read [image: there is no content] by Equation (69), compute [image: there is no content] and [image: there is no content] by Equations (58) and (59).



	
Form [image: there is no content] and [image: there is no content] by Equations (56) and (57), update the parameter estimate [image: there is no content] by Equation (55).



	
Read [image: there is no content] by Equation (68), compute [image: there is no content] and [image: there is no content] by Equations (60) and (65).



	
Give a small positive ε, compare [image: there is no content] with [image: there is no content], if [image: there is no content], obtain the iterative time k and the parameter estimate [image: there is no content], increase k by 1 and go to Step 2; otherwise, increase k by 1 and go to Step 3.








Remark: 

The computational complexity implies the computational amount of multiplications and adds in the algorithm, depending on the sizes and lengths.






5. Examples


Example 1: 

Consider the following multi-input OEAR system:


[image: there is no content]



(70)
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[image: there is no content]
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The parameter vector to be estimated is


θ=[a11,a12,b11,b12,a21,a22,b21,b22,c1]T=[0.15,0.25,0.99,−0.78,−0.10,0.35,−0.50,−0.80,0.20]T.











The inputs [image: there is no content] are taken as two persistent excitation signal sequences with zero mean and unit variance, and [image: there is no content] as a white noise sequence with zero mean and variance [image: there is no content] and [image: there is no content].



Applying the F-RGLS algorithm to estimate the parameters of this example system, the parameter estimates and their estimation errors [image: there is no content] are shown in Table 1. Applying the F-LSI algorithm to estimate the parameters of this example system, when the data length [image: there is no content] the parameter estimates and their estimation errors [image: there is no content] are shown in Table 2 with different noise variances. When the data length [image: there is no content], the parameter estimates and their errors δ are shown in Table 3 with different noise variances. Under different noise variances and different data lengths, the parameter estimates and their errors δ are shown in Table 4 when the iteration [image: there is no content]. Under different noise variances, the parameter estimation errors δ versus k are shown in Figure 1.


Figure 1. The estimation errors δ versus t.
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Table 1. The F-RGLS estimates and their errors for Example 1.







	
[image: there is no content]
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[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
δ(%)






	
[image: there is no content]

	
100

	
0.14240

	
0.23494

	
0.96900

	
−0.75613

	
−0.11071

	
0.35200

	
−0.51875

	
−0.80734

	
0.00302

	
12.18486




	

	
200

	
0.14579

	
0.25005

	
0.96382

	
−0.78341

	
−0.10189

	
0.35013

	
−0.49750

	
−0.78942

	
0.11045

	
5.68913




	

	
500

	
0.15222

	
0.26364

	
0.97647

	
−0.77308

	
−0.09060

	
0.35005

	
−0.48724

	
−0.78857

	
0.13262

	
4.41957




	

	
1000

	
0.15892

	
0.25970

	
0.98546

	
−0.76410

	
−0.10005

	
0.34897

	
−0.49297

	
−0.78559

	
0.15257

	
3.28600




	

	
2000

	
0.15443

	
0.25820

	
0.98663

	
−0.77005

	
−0.10214

	
0.34954

	
−0.49407

	
−0.79532

	
0.15569

	
2.85038




	

	
3000

	
0.15318

	
0.25979

	
0.99026

	
−0.77528

	
−0.10025

	
0.35272

	
−0.49559

	
−0.79963

	
0.15830

	
2.63155




	
[image: there is no content]

	
100

	
0.16661

	
0.22088

	
0.97687

	
−0.76637

	
−0.04796

	
0.28133

	
−0.58256

	
−0.92613

	
−0.01077

	
16.67281




	

	
200

	
0.14230

	
0.24704

	
0.95213

	
−0.83607

	
−0.06133

	
0.30376

	
−0.51120

	
−0.82406

	
0.10977

	
7.91161




	

	
500

	
0.15181

	
0.28154

	
0.96971

	
−0.78348

	
−0.06034

	
0.33148

	
−0.46893

	
−0.78559

	
0.14472

	
5.25893




	

	
1000

	
0.17142

	
0.27161

	
0.98894

	
−0.74692

	
−0.09093

	
0.33498

	
−0.48227

	
−0.76910

	
0.15722

	
4.45410




	

	
2000

	
0.16154

	
0.27069

	
0.98704

	
−0.75643

	
−0.10049

	
0.34152

	
−0.48438

	
−0.79306

	
0.16109

	
3.31329




	

	
3000

	
0.15847

	
0.27633

	
0.99597

	
−0.76992

	
−0.09664

	
0.35335

	
−0.48844

	
−0.80372

	
0.16376

	
2.95257




	
True values

	
0.15000

	
0.25000

	
0.99000

	
−0.78000

	
−0.10000

	
0.35000

	
−0.50000

	
−0.80000

	
0.20000

	










Table 2. The F-LSI parameter estimates and errors for Example 1 ([image: there is no content]).
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k
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[image: there is no content]

	
δ(%)






	
[image: there is no content]

	
1

	
−0.02217

	
−0.02741

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
−0.04161

	
100.72791




	

	
2

	
0.00000

	
0.00000

	
0.97952

	
−0.91091

	
0.00000

	
0.00000

	
−0.49792

	
−0.86478

	
0.15858

	
29.65842




	

	
5

	
0.15601

	
0.25797

	
0.98928

	
−0.77078

	
−0.09937

	
0.34653

	
−0.49427

	
−0.79873

	
0.19811

	
0.92811




	

	
10

	
0.15519

	
0.25727

	
0.98927

	
−0.77191

	
−0.09993

	
0.34719

	
−0.49479

	
−0.79810

	
0.20207

	
0.83049
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1

	
−0.02217

	
−0.02741

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
−0.04161

	
100.72791




	

	
2

	
0.00000

	
0.00000

	
0.97808

	
−0.90354

	
0.00000

	
0.00000

	
−0.48514

	
−0.86083

	
0.16440

	
29.49952




	

	
5

	
0.16653

	
0.27248

	
0.98778

	
−0.75450

	
−0.09914

	
0.34084

	
−0.48385

	
−0.79505

	
0.20121

	
2.56878




	

	
10

	
0.16596

	
0.27194

	
0.98782

	
−0.75539

	
−0.09986

	
0.34146

	
−0.48438

	
−0.79426

	
0.20209

	
2.49317




	
True values

	
0.15000

	
0.25000

	
0.99000

	
−0.78000

	
−0.10000

	
0.35000

	
−0.50000

	
−0.80000

	
0.20000

	










Table 3. The F-LSI parameter estimates and errors for Example 1 ([image: there is no content]).
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k
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δ(%)






	
[image: there is no content]

	
1

	
−0.00166

	
−0.02686

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
−0.04216

	
100.60660




	

	
2

	
0.00000

	
0.00000

	
0.98621

	
−0.91856

	
0.00000

	
0.00000

	
−0.50246

	
−0.86196

	
0.16056

	
29.74749




	

	
5

	
0.15307

	
0.25903

	
0.99062

	
−0.77955

	
−0.09866

	
0.34570

	
−0.49802

	
−0.80145

	
0.18988

	
0.89726




	

	
10

	
0.15239

	
0.25845

	
0.99072

	
−0.78046

	
−0.09964

	
0.34658

	
−0.49821

	
−0.80051

	
0.19238

	
0.74333
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1

	
−0.00166

	
−0.02686

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
−0.04216

	
100.60660




	

	
2

	
0.00000

	
0.00000

	
0.98710

	
−0.92316

	
0.00000

	
0.00000

	
−0.49770

	
−0.86426

	
0.16301

	
29.83299




	

	
5

	
0.15776

	
0.27565

	
0.99202

	
−0.78054

	
−0.09757

	
0.33874

	
−0.49436

	
−0.80278

	
0.19163

	
1.87793




	

	
10

	
0.15708

	
0.27501

	
0.99217

	
−0.78149

	
−0.09882

	
0.33965

	
−0.49462

	
−0.80160

	
0.19240

	
1.79377




	
True values

	
0.15000

	
0.25000

	
0.99000

	
−0.78000

	
−0.10000

	
0.35000

	
−0.50000

	
−0.80000

	
0.20000

	










Table 4. The F-LSI parameter estimates and errors for Example 1 ([image: there is no content]).







	
[image: there is no content]

	
L

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
δ(%)






	
[image: there is no content]

	
2000

	
0.15519

	
0.25727

	
0.98927

	
−0.77191

	
−0.09993

	
0.34719

	
−0.49479

	
−0.79810

	
0.20207

	
0.83049




	

	
4000

	
0.15239

	
0.25845

	
0.99072

	
−0.78046

	
−0.09964

	
0.34658

	
−0.49821

	
−0.80051

	
0.19238

	
0.74333




	
[image: there is no content]

	
2000

	
0.16596

	
0.27194

	
0.98782

	
−0.75539

	
−0.09986

	
0.34146

	
−0.48438

	
−0.79426

	
0.20209

	
2.49317




	

	
4000

	
0.15708

	
0.27501

	
0.99217

	
−0.78149

	
−0.09882

	
0.33965

	
−0.49462

	
−0.80160

	
0.19240

	
1.79377




	
True values

	
0.15000

	
0.25000

	
0.99000

	
−0.78000

	
−0.10000

	
0.35000

	
−0.50000

	
−0.80000

	
0.20000

	










From Table 1, Table 2, Table 3 and Table 4 and Figure 1, we can draw the following conclusions:

	
Increasing the data length L can improve the parameter estimation accuracy of the F-RGLS algorithm and the F-LSI algorithm, and as the data length L increases, the parameter estimates are getting more stationary.



	
Under the same data length, the estimation accuracy of the F-RGLS algorithm and the F-LSI algorithm increases as the noise variance decreases.



	
Under the same data length and noise variance, the estimation errors of the F-LSI algorithm are smaller than the F-RGLS algorithm.



	
The F-LSI algorithm has fast convergence speed, and the parameter estimates only need several iterations close to their true values.








Example 2: 

Consider the industrial process with colored noise, which has two inputs and one output as shown in Figure 2 and described as


y(t)=G1(z)u1(t)+G2(z)u2(t)+H(z)v(t)=∑i=12[−a1ix1(t−i)+b1iu1(t−i)]+∑i=12[−a2ix2(t−i)+b2iu2(t−i)]−c1w(t−1)+v(t),








where [image: there is no content], [image: there is no content] and [image: there is no content].


Figure 2. The diagram of a multi-input OEAR system.
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The parameters to be estimated are
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The simulation conditions are the same as those of Example 1, and the noise variance [image: there is no content]. Applying the F-RGLS and the F-LSI algorithms to estimate the parameters of the system, the parameter estimates and their errors are presented in Table 5 and Table 6.



Table 5. The F-RGLS parameter estimates and errors for Example 2.







	
t
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δ(%)






	
100

	
0.31044

	
0.27323

	
0.47823

	
0.79593

	
−0.16988

	
0.31233

	
0.34733

	
0.79082

	
−0.35990

	
11.48781




	
200

	
0.35712

	
0.26107

	
0.47534

	
0.80554

	
−0.20188

	
0.32807

	
0.38468

	
0.77922

	
−0.30469

	
7.07660




	
500

	
0.37558

	
0.30333

	
0.48485

	
0.83653

	
−0.22143

	
0.30058

	
0.41246

	
0.78396

	
−0.28669

	
4.56000




	
1000

	
0.36022

	
0.29164

	
0.49690

	
0.84216

	
−0.23072

	
0.29199

	
0.40519

	
0.76406

	
−0.27138

	
2.49100




	
2000

	
0.36115

	
0.29540

	
0.49771

	
0.84667

	
−0.24094

	
0.30037

	
0.39938

	
0.74612

	
−0.27434

	
2.05076




	
3000

	
0.36636

	
0.30139

	
0.50263

	
0.84719

	
−0.24389

	
0.30650

	
0.39658

	
0.74012

	
−0.26554

	
1.89797




	
True values

	
0.35000

	
0.30000

	
0.50000

	
0.84000

	
−0.25000

	
0.30000

	
0.40000

	
0.75000

	
−0.25000

	










Table 6. The F-LSI parameter estimates and errors for Example 2.







	
k
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δ(%)






	
1

	
−0.00611

	
0.03601

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00000

	
0.00165

	
99.63926




	
2

	
0.00000

	
0.00000

	
0.49960

	
0.67716

	
0.00000

	
0.00000

	
0.41014

	
0.84617

	
−0.26452

	
43.64422




	
3

	
0.48512

	
0.14379

	
0.50775

	
0.90619

	
−0.22359

	
0.25926

	
0.39984

	
0.75210

	
−0.26452

	
15.35917




	
4

	
0.35231

	
0.33645

	
0.50464

	
0.84218

	
−0.25181

	
0.31725

	
0.39804

	
0.73802

	
−0.10385

	
10.48969




	
5

	
0.35968

	
0.29443

	
0.50270

	
0.84889

	
−0.24823

	
0.31243

	
0.39831

	
0.73841

	
−0.04162

	
14.44370




	
6

	
0.36474

	
0.29771

	
0.50305

	
0.84987

	
−0.24911

	
0.31358

	
0.39819

	
0.73823

	
−0.24951

	
1.76580




	
7

	
0.36336

	
0.29924

	
0.50326

	
0.84956

	
−0.24869

	
0.31289

	
0.39808

	
0.73850

	
−0.25696

	
1.73424




	
8

	
0.36328

	
0.29861

	
0.50327

	
0.84966

	
−0.24868

	
0.31286

	
0.39809

	
0.73855

	
−0.25698

	
1.73382




	
9

	
0.36336

	
0.29862

	
0.50327

	
0.84967

	
−0.24865

	
0.31286

	
0.39808

	
0.73856

	
−0.25703

	
1.73724




	
10

	
0.36335

	
0.29864

	
0.50327

	
0.84966

	
−0.24865

	
0.31285

	
0.39808

	
0.73856

	
−0.25702

	
1.73638




	
True values

	
0.35000

	
0.30000

	
0.50000

	
0.84000

	
−0.25000

	
0.30000

	
0.40000

	
0.75000

	
−0.25000

	










From Table 5 and Table 6, we can see that the estimation errors become smaller with the increase of t and the F-LSI algorithm can get accurate parameter estimates by only several iterations, which shows the effectiveness of the proposed algorithms.



The power consumption in host servers can be concerned by the model of Example 2. The two inputs are the changes in CPU frequency of the host server and the changes in the guest server’s time share to use the physical CPU of the host server, and the power consumption is the system output. The configuration and the allocation of memory, storage and network bandwidth for the guest server are the random disturbances of the system.




6. Conclusions


This paper discusses the parameter estimation problem for multi-input OEAR systems. Based on the data filtering technique, an F-RGLS algorithm and an F-LSI algorithm are developed. The proposed methods are effective for estimating the parameters of multi-input OEAR systems. The simulation results indicate that the proposed F-LSI algorithm achieves higher estimation accuracies than the F-RGLS algorithm, and the convergence rate of the proposed methods can be improved by increasing the data length. The methods used in this paper can be extended to study the identification of other linear systems, nonlinear systems, state space systems and time delay systems.
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