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Abstract: Support vector machines (SVM) are proposed in order to obtain a robust controller for
ship course-keeping. A cascaded system is constructed by combining the dynamics of the rudder
actuator with the dynamics of ship motion. Modeling errors and disturbances are taken into account
in the plant. A controller with a simple structure is produced by applying an SVM and L2-gain
design. The SVM is used to identify the complicated nonlinear functions and the modeling errors
in the plant. The Lagrangian factors in the SVM are obtained using on-line tuning algorithms.
L2-gain design is applied to suppress the disturbances. To obtain the optimal parameters in the SVM,
then particle swarm optimization (PSO) method is incorporated. The stability and robustness of the
close-loop system are confirmed by Lyapunov stability analysis. Numerical simulation is performed
to demonstrate the validity of the proposed hybrid controller and its superior performance over a
conventional PD controller.
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1. Introduction

Ship motion control plays an important role in guaranteeing the safety and economy of a ship
in navigation. Well-designed control systems allow ships to sail and perform tasks with adequate
reliability and economy in severe seas, which are usually due to uncertain environmental forces induced
by wind, waves, and current. Since the ship dynamics are nonlinear essentially and often affected by
uncertain environmental forces, it is challenging to achieve a robust and accurate control system for
ship motion, which refers to course-keeping, roll stabilization, path following, dynamic positioning,
vertical motion control, and station-keeping [1]. Conventional control strategies like PID control can
no longer satisfy the requirement of navigation, guidance and control of ships. During recent decades,
many advanced control schemes have been developed and successfully applied to ship motion control,
including sliding mode variable structure control [2,3]; parameter adaptive control [4,5]; H-infinity
robust control [6,7]; neural-network control [8,9]; fuzzy control [10,11]; neuro-fuzzy control [12,13];
line-of-sight based model control [14,15], etc.

To obtain a controller for ship motion, knowledge of the ship’s dynamic characteristics is necessary.
This knowledge can be obtained through the mathematical model of ship motion. In ship motion
control, usually two kinds of mathematical models are available, i.e., control-design models and
high-fidelity models [1]. A precise mathematical model of the plant allows one to design a satisfactory
controller by applying some conventional control strategies such as linearization feedback control [16],
PID control [17], and adaptive control [18]. However, the ship dynamics is inevitably affected by some
uncertainties, which might degrade the controller performance if the uncertainties are not properly
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compensated for or suppressed in the controller design. Such uncertainties include modeling errors
and disturbances. For modeling errors, they refer to parameter errors, ignored high-order modes
and unmodelled dynamics of ship motion. Examples of unmodelled dynamics are thrust and torque
losses, cross-coupling drag, varying wake, air suction and interaction between the thruster and the
hull [19]. For disturbances, they result from random noises in mechanical and electrical equipments,
or the environmental forces induced by wind, waves and current. Usually, neither modeling errors nor
disturbances can be described by precise mathematical expressions. Therefore, a robust and accurate
control scheme is required. H-infinity control is one of the main choices [20,21]. However, there are
two difficulties with this method. One is that prior knowledge about the bound of an uncertainty
is required, which is challenging sometimes. The other is the difficulty in guaranteeing the control
accuracy because of the absence of adaptation to the changing characteristics of uncertainties.

To deal with the uncertainties in a plant, an artificial intelligence (AI)-based controller provides
another interesting and effective option. Such an AI-based controller is characterized by nonlinear
mapping and on-line learning abilities, which make it possible to identify and compensate for the
uncertainties in the plant. Commonly employed AI computing approaches include neural networks
(NN), Bayesian probability, fuzzy logic, machine learning, evolutionary computation and genetic
algorithms. Combined with AI computation, the controller performance can be greatly improved [22].
In the field of ship motion control, during last decades there have been many NN applications
e.g., [8,9,23,24]. Comparatively, SVM is a novel technique of Artificial Intelligence. This kind of
learning machine aims to achieve structural risk minimization (SRM) [25] that makes it outperform
the algorithms based on empirical risk minimization (ERM) like NN. Better generalization ability
can be guaranteed because not only prediction error but also model complexity is considered when
performing SRM. Globally optimal solution can also be guaranteed in SVM since convex quadratic
programming is performed. Additionally, by applying the kernel trick, the curse of dimensionality can
be avoided in SVM, which is usually inevitable in NN. SVM has found wide applications in the field
of control engineering and in the past years, there have been some SVM applications to ship motion
control. For instance, Liu et al. applied fuzzy SVM to the course-keeping [26]. Jiang et al. proposed
SVM based general predictive control (GPC) for ship course-keeping [27]. Luo et al. presented a robust
SVM controller for the ship course-keeping [28].

This paper presents a robust controller for the ship course-keeping by using SVM identification
and L2-gain design. The investigated plant is composed of the ship dynamics and the dynamics of
rudder actuator. Uncertainties are taken account of in the cascaded system, which refer to modeling
errors and external disturbance. In the controller design, the modeling errors are identified by SVM
while the external disturbance is suppressed by using L2-gain design. To guarantee the robust stability
of the controller, a Lyapunov recursive function method is adopted. The main novelty of our approach
is the determination of the Lagrangian factors in SVM. Rather than calculate the Lagrangian factors
through a matrix equation, one can obtain these factors by solving differential equations proposed.
To improve the control accuracy, the parameters in SVM are optimized by incorporating particle swarm
optimization (PSO). The rest of the paper is organized as follows. In Section 2, the mathematical model
of ship steering, the methodologies of SVM and PSO are described; in Section 3, the details of the
controller design and the stability analysis are given; in Section 4, a simulation example is presented to
illustrate the validity of the controller designed; and the final section is the concluding remarks.

2. Problem Formulation

2.1. Mathematical Model of Ship Steering

A general six-degree-of-freedom (6DOF) model of ship motion can be described as [29]

.
η “ Jpηqv
MRB

.
v` CRBpvqv “ τ

+

(1)
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where η is the generalized position vector with η “ rx, y, z, φ, θ, ψsT, defined in the North-East-Down
geographical reference frame; v is the generalized velocity vector with v “ ru, v, w, p, q, rsT, defined in
the body-fixed reference frame; Jpηq is the kinematic transformation matrix between the body-fixed
reference frame and the North-East-Down geographical reference frame; MRB is the rigid-body mass
matrix; CRBpvq is the Coriolis-centripetal matrix; τ denotes a generalized force vector.

System (1) gives a general description of the motion of a marine vessel, a surface ship or an
underwater vehicle. In practical applications to ship motion control, this complicated model is often
simplified to a model with less than 6DOF. Such a simplified model can be called as a control-design
model in which the essential behavior of a dynamic system is captured [1]. More often than not, to
study the yaw dynamics and control, a 1DOF model can be adopted. This model is usually named
as the response model (sometimes named as Nomoto model or K-T model). Despite simplicity, this
model reflects the important response characteristics of the yaw dynamics, from the control input
(i.e., the rudder angle) to the system output (i.e., the yaw rate or the heading angle). Practically, this
kind of model is commonly preferred in the studies on ship motion control. A first-order nonlinear
response model has the form as

.
ψ “ r
T

.
r` r` αr3 “ Kδ

+

(2)

where K, T are manoeuvring indices; ψ the heading angle; r the yaw rate; α the coefficient of nonlinear
term; δ the rudder angle. If uncertainties are taken into account, the second subsystem of (2) can be
written as

T
..
ψ`

.
ψ` α

.
ψ

3
` ∆pψ,

.
ψq `w “ Kδ (3)

where ∆pψ,
.
ψq is the modeling error, w is the external disturbance.

In many researches on ship course-keeping control, the actuator dynamics were ignored. It should
be noted that if the time constant of the actuator is not much smaller than that of the ship, ignoring the
actuator dynamics would result in degradation of the controller performance. Generally, the rudder
actuator dynamics can be expressed as

TE
.
δ “ δc ´ δ (4)

where TE is the time constant of rudder; δc the demand or execution rudder angle. Combining (3)
and (4) through an integrator, a cascaded system is derived as follows, in which δc is the system
control input; while the rudder angle δ is an interim state variable and the heading angle ψ is the
system output.

T
..
ψ`

.
ψ` α

.
ψ

3
` ∆pψ,

.
ψq `w “ Kδ

TE
.
δ “ δc ´ δ

+

(5)

2.2. Support Vector Regression

SVM is a kind of machine learning algorithm for classification and regression. Since it was
invented, it has been widely applied in scientific and engineering areas due to its powerful learning
abilities. For a MISO system, support vector machines for regression (SVR) have a general form as

f pxq “ wT ¨Φpxq ` b, w P Rn, b P R (6)

where Φp¨q is a nonlinear function vector. The above calculation is performed in a so-called
high-dimensional feature space to approximate the hidden mapping relationship contained in the
original training samples:

pxˆ y P Rn ˆR, q : px1, y1q, ¨ ¨ ¨ , pxi, yiq, ¨ ¨ ¨ , pxl , ylq, i “ 1, 2, ¨ ¨ ¨ l

where l is the number of samples.
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To improve feasibility, SVM has been developed during the last decade and some effective
modified SVM versions have been proposed, one of which is the Least Squares SVM (LS-SVM).
Rather than solve the problem of convex quadratic programming that is required in standard SVM,
LS-SVM provides a simpler solution by solving a linear matrix equation [30,31]

«

0 1T

1 Q` C´1I

ff«

b
α

ff

“

«

0
y

ff

(7)

where

1 “
”

1, ¨ ¨ ¨ , 1
ıT

1ˆl
;

I is a l-dimensional unit matrix;
Q “ pqijqlˆl is the kernel matrix with the element qij “ ΦTpxiqΦpxjq;
C is the so-called regularization factor, an important hyperparameter that controls the tradeoff between
empirical risk and generalization ability of SVM;
α “ pαiqlˆ1; y “ pyiqlˆ1.

After the constant b and Lagrangian factors αi are calculated through (7), the estimated function
in (6) can be determined by

f pxq “
Ns
ÿ

i“1

αiKpxi, xq ` b (8)

where Ns is the number of the support vectors associated with nonzero αi. Kpxi, xjq is the kernel
function defined by Kpxi, xjq “ pΦpxiq ¨Φpxjqq.

2.3. Particle Swarm Optimization

Besides SVM, another AI technique, particle swarm optimization (PSO) is also applied in this
paper. As a popular parameter optimization tool, PSO is introduced to obtain the optimal parameters in
SVM, which exert a vital influence on the performance of SVM. Model selection is an important issue in
machine learning, no matter for classifiers or regressors. For SVM, the main concern in model selection
is the selection of SVM parameters. Those parameters include insensitivity factor, regularization
factor, and kernel parameters. However, how to calculate their optimal values theoretically still
remains unsolved. One reason is that it is difficult to determine the VC dimension [32]. A simple
and commonly used way to obtain these parameters is the trial-and-error method despite some
proposals, for instance analytic parameter selection directly from the training data [33], in-sample and
out-of-sample method [34], dynamic particle filter [35], etc. To improve the performance of SVM, this
paper makes use of PSO to determine SVM parameters.

The main idea of PSO is to optimize a problem from a population of candidate solutions (so-called
particles). These particles are moved towards the optimal position (best solution) through iteration
of velocity and position [36]. This optimization method is easy to use since few or no assumptions
are required; for example the optimization problem is not required to be differentiable. Moreover, a
globally optimal solution can be guaranteed even if the capacity of candidate solutions is very large.
In practice, PSO has been proven an effective universal parameter optimizer. There have been some
PSO applications to the parameter optimization of SVM, e.g., [37–39].

A standard PSO algorithm adopts the following iteration formulae about the particle’s velocity
and position

Vidpk` 1q “ W ¨Vidpkq ` c1κppidpkq ´ Xidpkqq ` c2ηppgdpkq ´ Xidpkqq (9)

Xidpk` 1q “ Xidpkq `Vidpk` 1q, i “ 1, 2, . . . n; d “ 1, 2, . . . q (10)
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where Vidpkq is the velocity of a particle at the k-th step; n is the number of particles; q is the dimension
of particle; Xid is the position of a particle; W is the inertia weight; c1 and c2 are acceleration coefficients;
pid is the best position of a individual particle while pgd is the swarm or social best position; κ, η are
both random.

3. Controller Design and Stability Analysis

Usually, the problem of ship course-keeping control can be viewed as a tracking control
issue. Without loss of generality, two general assumptions with respect to the continuous cascaded
system described by (5) can be given as [A1]. The desired system output signal ψd is differentiable
and the cascaded system is controllable. [A2]. The external disturbance wptq is bounded with
|wptq| ď w, @t ě 0, Dw ą 0.

3.1. Controller Design

First of all, feedback control is applied to the certain terms in the System (3). A desired rudder
angle can be defined as

δd “
1
K
pT

..
ψd ` f pψ,

.
ψq

.
ψd ` u1q (11)

where f pψ,
.
ψq “ 1` α

.
ψ

2
, u1 is introduced as an auxiliary controller to deal with the uncertainties in (3).

Three error signals are defined as
e “ ψd ´ ψ (12)

ξ “ δd ´ δ (13)

ζ “
.
e` λe pλ ą 0q (14)

Incorporating (11)–(14) into (3), it follows

T
.
ζ “ pTλ´ f pψ,

.
ψqq

.
e´ u1 ` ∆pψ,

.
ψq `w` Kξ (15)

For the actuator dynamics described by (4), the controller can be designed as

δc “ δd ` u2 (16)

where u2 is another auxiliary controller. By analogy to (15), it holds

TE
.
ξ “ TE

.
δd ´ ξ ´ u2 (17)

Thus, based on (15) and (17), an error system can be obtained as

.
ζ “ pλ´

f pψ,
.
ψq

T q
.
e` ∆pψ,

.
ψq

T ` w
T `

K
T ξ ´ 1

T u1.
ξ “

.
δd ´

ξ
TE
´ 1

TE
u2

+

(18)

As can be seen, the above system is linear with respect to the error vector
´

e ζ ξ
¯T

.
Moreover, the convergence of the error system will depend on the design of two auxiliary controllers,
i.e., u1 and u2. Lyapunov function method is adopted to obtain proper u1 and u2. This method has been
widely used in control engineering since it provides an effective and systematic procedure to obtain a
stable controller. For the control of a nonlinear complicated system, this method is usually preferred.

For the System (18), a definitely positive Lyapunov function candidate w.r.t. the error vector
´

e ζ ξ
¯T

can be defined as
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V1 “
1
2

e2 `
1
2

Tζ2 `
1
2

TEξ2 (19)

Its derivative w.r.t. time is

.
V1 “ ´λe2 ` ζpTλ

.
e´ f pψ,

.
ψq

.
e´ u1 ` ∆pψ,

.
ψq ` e`w` Kξq ` ξpTE

.
δd ´ ξ ´ u2q (20)

As can be seen, to obtain the auxiliary controller u1, one has to deal with the uncertain terms,
i.e., ∆pψ,

.
ψq and w. For the disturbance w, L2-gain design is applied. This approach derives from

H-infinity control strategy and is considered as an effective way to suppress uncertain disturbance.
Using this method, an L2-gain performance index should be defined as

ż t

0
||z||2dτ ď µ2

1

ż t

0
w2dτ` µ2 (21)

where µ1, µ2 are small positive constants, z is introduced as an evaluation signal.
An identity w.r.t. the evaluation signal z and the disturbance w can be obtained as

||z||2 ´ µ2
1w2 ”

1
4µ2

1
ζ2 ´ p

1
2µ1

ζ ´ µ1wq2 ` ||z||2 ´ ζw (22)

Let z “ rr1e, r2
.
esTpr1, r2 ą 0q, the above identity becomes the following inequality

||z||2 ´ µ2
1w2 ď

1
4µ2

1
ζ2 ` r2

1e2 ` r2
2pζ

2 ` λ2e2 ´ 2λζeq ´ ζw (23)

Combining the above inequality with the derivative (20), one has

.
V1 ` ||z||2 ´ µ2

1w2 ď pr2
1 ` r2

2λ2 ´ λqe2 ` ζpTλ
.
e´ f pψ,

.
ψq

.
e` ∆pψ,

.
ψq ` e

` 1
4µ2

1
ζ ` r2

2ζ ´ 2r2
2λe´ u1q ` ξpTE

.
δd ` Kζ ´ ξ ´ u2q

(24)

To obtain u1, one has to account for another uncertainty, i.e., ∆pψ,
.
ψq. Different from the way

used to deal with the disturbance w, the modeling error ∆pψ,
.
ψqwill be identified and compensated

instead of being suppressed by using L2-gain design. This is because although both modeling error and
disturbance are uncertainties, the modeling error is usually a continuous signal while the disturbance w
might be instantaneous. In this paper SVM is proposed to approximate such a continuous uncertainty.
Besides, the term TE

.
δd in (24) is also dealt with by SVM. As seen from (24), to obtain u2, it is necessary

to calculate the derivative of δd. According to the Equation (11), one has

.
δd “

1
K
pT ;ψd ` f pψ,

.
ψq

..
ψd ` 2α

.
ψ

..
ψ

.
ψd `

.
u1q (25)

The main difficulty is to calculate the derivative of u1. Therefore, SVM is used to identify this
complicated nonlinear function. One can define the two nonlinear functions in (24) and their SVM
approximations as

f1 “ Tλ
.
e´ f pψ,

.
ψq

.
e` ∆pψ,

.
ψq ` e`

1
4µ2

1
ζ ` r2

2ζ ´ 2r2
2λe “

l1
ÿ

i“1

αiK pxi, xq ` η1 (26)

f2 “ TE
.
δd ` Kζ ´ ξ “

l2
ÿ

j“1

β jK
`

xj, x
˘

` η2 (27)
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where ηipi “ 1, 2q is the approximation error and contains the constant b that is defined in (6).
Moreover, it is assumed that |η1| ď η1N , |η2| ď η2Npη1N ą 0, η2N ą 0q. αi and β j are Lagrangian
factors. If the SVM approximates the nonlinear functions f 1 and f 2 very well, the prediction errors
η1,2 should be small enough. In that case, the Lagrangian factors, αi and β j, can be called “ideal”
Lagrangian factors. However, these “ideal” factors are actually unable to be obtained in controller
design because ∆pψ,

.
ψq and

.
δd in (26) and (27) are unknown uncertainties. Suppose α1i and β1j are the

updated approximations of their “ideal” values with high accuracy, the two nonlinear functions f 1 and
f 2 can be approximated by

f1 «

l1
ÿ

i“1

α1iK pxi, xq (28)

f2 «

l2
ÿ

j“1

β1jKpxj, xq (29)

Thus, the two auxiliary controllers u1 and u2 in (24) can be designed as

u1 “
l1
ř

i“1
α1iK pxi, xq ` λ1Tζ

u2 “
l2
ř

j“1
β1jKpxj, xq ` λ2TEξ

,

/

/

/

.

/

/

/

-

(30)

where λ1 and λ2 are positive control gains.
Combining the auxiliary controllers with (11) and (16), the command rudder angle to the cascaded

System (5) can be expressed as

δc “
1
K
pT

..
ψd ` f

.
ψd `

l1
ÿ

i“1

α1iK pxi, xq ` λ1Tζq `

l2
ÿ

j“1

β1jKpxj, xq ` λ2TEξ (31)

Figure 1 shows the control framework.
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3.2. Stability Analysis

Based on (26), (27) and (30), the inequality (24) becomes

.
V1 ` ||z||2 ´ µ2

1w2 ď pr2
1 ` r2

2λ2 ´ λqe2 ` ζη1 ` ζ rH
T
1ϕ1pxq ´ λ1Tζ2 ` ξη2 ` ξ rH

T
2ϕ2pxq ´ λ2TEξ2 (32)

in which
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rHi “ Hi ´H1i, pi “ 1, 2q,

H1 “

„

α1, α2, . . . αl1

T
; H11 “

„

α11, α12, . . . α1l1

T
;

H2 “

„

β1, β2, . . . βl2

T
; H12 “

„

β11, β12, . . . β1l2

T
;

ϕ1pxq “
„

K px1, xq , K px2, xq , . . . K
`

xl1 , x
˘

,
T

; ϕ2pxq “
„

K px1, xq , K px2, xq , . . . K
`

xl2 , x
˘

,
T

.

To make sure the right hand side of (32) be negative, the estimates α1i and β1i are designed by
adopting the following on-line tuning algorithms

.
H
1

1ptq “ ε1ϕ1pxqζptq ´ ε2|ζ|H11ptq.
H
1

2ptq “ ε1ϕ2pxqξptq ´ ε2||ς||H12ptq

+

(33)

where ε1 and ε2 are positive constants. In addition, an augmented error signal is defined as

ς “
”

ζ ξ
ıT

(34)

Based on (19), another Lyapunov function candidate that involves the error vector rHi can be
defined as

V2 “ V1 `
1

2ε1
ptrtrH

T
1
rH1u ` trtrH

T
2
rH2uq (35)

where trt¨u represents the trace of a matrix. Combined with the definition given by (33), the following
derivative can be obtained

d
dt

´

1
2ε1
ptrtrH

T
1
rH1u ` trtrH

T
2
rH2uq

¯

“ ´ζ rH
T
1ϕ1 ´ ξ rH

T
2ϕ2 `

ε2
ε1
|ζ|trtrH

T
1 pH1 ´ rH1qu `

ε2
ε1
||ς||trtrH

T
2 pH2 ´ rH2qu

(36)

Let 0 ď λ3 ď 1 and

λ0 “ min
!

´r2
1 ´ r2

2λ2 ` λ, p1´ λ3qλ1, p1´ λ3qλ2, p1´ λ3qε2|ζ|, p1´ λ3qε2||ς||
)

the following inequality w.r.t. (35) holds

.
V2 ` ||z||2 ´ µ2

1w2 ď ´2λ0V2 ´ λ3λ1ζ2 ` ζη1 ´ λ3λ2ξ2 ` ξη2

`
ε2
ε1
|ζ|trtrH

T
1 pH1 ´ λ3rH1qu `

ε2
ε1
||ς||trtrH

T
2 pH2 ´ λ3rH2qu

(37)

Without loss of generality, the Lagrangian factor vectors H1 and H2 can be assumed bounded
by ||H1||F ď H1M, ||H2||F ď H2MpH1M, H2M ą 0q where || ¨ ||F represents the Frobenius norm with the

definition ||A||F “

d

m
ř

i“1

n
ř

j“1
a2

ij,@A “ paijqmˆn. Thus, the inequality (37) evolves to

.
V2 ` ||z||2 ´ µ2

1w2 ď ´2λ0V2 ` ||ς||pτ1 `
ε2

4λ3ε1
pH2

1M ` H2
2Mq

´τ2||ς|| ´
λ3ε2

ε1
p||rH1||F ´

1
2λ3

H1Mq
2
´

λ3ε2
ε1
p||rH2||F ´

1
2λ3

H2Mq
2
q, pDτ1,2 ą 0q

(38)

Given a compact set Uς “
 

ς | ||ς|| ď bς, bς P R`
(

, if the tracking error ςptq falls within the
compact set at any time, the above inequality can be reduced to

.
V2 ` ||z||2 ´ µ2

1w2 ď ´2λ0V2 ` bςpτ1 `
ε2

4λ3ε1
pH2

1M ` H2
2Mqq (39)
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Let ε “ bςpτ1 `
ε2

4λ3ε1
pW2

1M `W2
2Mqq, in the case when the disturbance w “ 0, the above inequality

can be simplified to
.

V2 ď ´2λ0V2 ` ε (40)

The uniformly ultimately bounded (UUB) stability can be proven [40].
Back to (39), in the case when disturbance exists, i.e., w ‰ 0, one has

.
V2 ` ||z||2 ´ µ2

1w2 ď ε (41)

Integrating the above inequality yields

ż t

0
||z||2dτ ď µ2

1

ż t

0
w2dτ` ε0 (42)

where ε0 is a small positive constant. Compared with the L2-gain performance index given by (21) it
can be said that the disturbance w is suppressed. In other words, the robustness is guaranteed.

If the tracking error ςptq falls outside the compact set, i.e., ||ς|| ą bς, the following inequality can
be obtained .

V2 ` ||z||2 ´ µ2
1w2 ď ´2λ0V2 (43)

by appropriately selecting parameters so that

bς ě pτ1 `
ε2

4λ3ε1
pH2

1M ` H2
2Mqq{τ2 (44)

holds. By analogy to the analysis of (39), in cases either w “ 0 or w ‰ 0, the stability and robustness
of (43) can be guaranteed.

From the above analysis, it can be concluded that the controller designed by (31) and the SVM
algorithms given by (33) can guarantee the stability and robustness of the tracking system. It is
noted that although only UUB stability can be guaranteed, the control accuracy can be improved by
appropriate selection of the parameters in controller, including the control gains and the parameters in
SVM. In the study, PSO is incorporated into SVM to obtain optimal SVM parameters.

4. Example Study

To confirm the validity of the controller designed, a numerical simulation is performed combined
with a surface ship. Firstly, the state space equation form of (5) can be obtained as

.
X “ gpXq ` hpXqδc (45)

where X “ rψ
.
ψ δs

T
, gpXq “ rg1 g2 g3s

T, hpXq “ r0 0 1{TEs
T

g1 “
.
ψ, g2 “ ´

.
ψ´ α

.
ψ

3
´ ∆pψ,

.
ψq ´w` Kδ, g3 “ ´δ{TE

The model parameters are [41]

T “ 10.31 psq, α “ 81.75 ps{rad2
q

K “ ´0.95 p1{sq, TE “ 0.72 psq

From the point of view of ship manoeuvrability, this ship is unstable because K is negative.
Therefore, an appropriate robust controller is required for the purpose of course-keeping. The controller
gains in (31) are selected as λ1 “ λ2 “ 2. The constant in (14) is selected as λ “ 0.1.
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For the SVM identification, a Gaussian kernel is adopted as

Kpxipjq, xq “ exp

˜

´||xipjq ´ x||2

2σ2

¸

(46)

where σ is the kernel width that has an impressive effect on SVM learning ability. The input variable is
defined as

x “ xptq “
”

eptq,
.
e ptq

ıT
(47)

For the support vectors xi and xj, both of them are selected as two successive former input variables
which means that l1 “ l2 “ 2 for identifiers in (30). Denote xptq “ xpkq, the support vectors can be
expressed as

x1 “
”

epk´ 1q,
.
e pk´ 1q

ıT

x2 “
”

epk´ 2q,
.
e pk´ 2q

ıT

,

/

.

/

-

(48)

where k is the sampling time.
To obtain a optimized SVM, PSO is incorporated to obtain the optimal σ in (46). Moreover, the

parameters ε1 and ε2 in the tuning algorithms of Lagrangian factors given by (33) are also determined
by PSO. The fitness in PSO algorithm adopts the root of mean square error (RSME) as

RMSE “

g

f

f

e

1
n

n
ÿ

i“1

p
.
ψdi ´

.
ψiq

2
(49)

The number of particles in PSO is set to 20, as is the number of iteration. The initial particle’s positions
and velocities are assumed randomly distributed within a given range. Figure 2 presents the results of
RMSE, σ, ε1 and ε2. As can be seen from the results, the fitness and the parameters converge to stable
values, obtained as RSME “ 0.0117, σ “ 0.4356, ε1 “ ε2 “ 0.1. The three parameters, i.e., σ, ε1 and ε2,
are used in the SVM based controller.Algorithms 2016, 9, 52  11 of 16 
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In the study, the control objective is to track a desired heading angle. Without loss of generality,
the desired heading angle ψd is assumed as a harmonic signal. To verify the stability and robustness
of the controller designed, deviation of the heading angle is assumed at the start, which indicates
that ψpt “ 0q ‰ ψdpt “ 0q. For uncertainties, the modeling error is assumed ∆pψ,

.
ψq “ ζ and the

external disturbance is assumed as an instantaneous impulse with the amplitude of 1.5 (˝/s) at the
time 50s ď t ď 51s. Figure 3 presents the tracking results, including the histories of heading angle ψ,
yaw rate r, demand rudder angle δC, actual rudder angle δ, and Lagrangian factors pα1, β1q as well.
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From the simulation results, it can be seen that both stability and robustness of the tracking system
are achieved. The tracking accuracy is satisfactory as well. Moreover, the control inputs are reasonable
and applicable from the point of view of operation.

As a comparison, a conventional PD controller is designed as follows,

δc “ k1e` k2
.
e (50)

where k1,2 are control gains, selected as k1 = 5, k2 = 50. Figure 4 presents the simulation results using
the PD controller designed. Compared with the performance of the SVM based controller as shown
in Figure 3, it can be seen that obvious oscillation happens to the command rudder angle for a PD
controller, which implies a limitation for the PD controller from an operational point of view despite
the simple structure of the PD controller.

Further comparison is carried out by combining the SVM identification and inverse dynamic
compensation that is commonly employed to obtain a feedback controller for a certain system
(without uncertainties). By observing the inequality (24), the auxiliary controllers u1 and u2 can
be designed as

u1 “ Tλ
.
e´ f pψ,

.
ψq

.
e` e` 1

4µ2
1
ζ ` r2

2ζ ´ 2r2
2λe`

2
ř

i“1
α1iK pxi, xq ` λ1Tζ, pλ1 ą 0q

u2 “ Kζ ´ ξ `
2
ř

i“1
β1iK pxi, xq ` λ2TEξ, pλ2 ą 0q

,

/

/

.

/

/

-

(51)



Algorithms 2016, 9, 52 12 of 15

which indicates that only the modeling errors ∆pψ,
.
ψq and the derivative of desired rudder angle δd in

the inequality (20) are approximated by SVM, i.e.,

∆pψ,
.
ψq “

l1
ÿ

i“1

αiK pxi, xq ` η1 (52)

TE
.
δd “

l2
ÿ

i“1

βiK pxi, xq ` η2 (53)

The terminal control input can be defined as

δc “ pT
..
ψd ` f

.
ψd ` Tλ

.
e´ f pψ,

.
ψq

.
e` e` 1

4µ2
1
ζ ` r2

2ζ ´ 2r2
2λe`

2
ř

i“1
α1iK pxi, xq ` λ1Tζq{K

`Kζ ´ ξ `
2
ř

i“1
β1iK pxi, xq ` λ2TEξ

(54)
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Comparing controller (54) with (31), one can find that the controller with inverse dynamic
compensation in combination with SVM identification (given by (54)) is more complicated than the
controller in which the complicated nonlinear function are indentified by SVM (given by (31)). Figure 5
presents the simulation results using controller (54). The parameters are selected as µ1 “ 0.25, r2 “ 1.
In comparison with the results shown in Figure 3, it can be seen that oscillation of the command
rudder angle happens at the initial stage and at the time of instantaneous external disturbance despite
rapid convergence. Further remarks can be made as follows: (i) no matter whether inverse dynamic
compensation is incorporated, the stability and robustness of the control system can be guaranteed
due to the use of Lyapunov theory and L2-gain design; (ii) although the response rate of the controller
in the case of inverse dynamic compensation (as described by (54)) is better than the case without
compensation (as described by (31)), a moderate helming as shown in Figure 3, which can be achieved
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by using the controller (31), is preferable from the practical point of view. Moreover, as can be seen, the
structure of the controller (31) is simpler than the controller (54), which makes sense in practice.
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5. Conclusions

In this paper, SVM is applied to the control of a cascaded system with uncertainties with regard to
ship course-keeping. The dynamics of the rudder actuator are considered in the plant. To guarantee the
real-time performance of the controller, the Lagrangian factors in SVM are determined by on-line tuning
algorithms. There are two advantages of the on-line SVM proposed in this paper over conventional
on-line SVM. First, no supervised signal is required; second, the capacity of the training samples
can be small, which improves the efficiency of the learning machine. Nonlinear functions and an
uncertainty (modeling error) in the plant can be effectively identified by the proposed SVM, which
helps obtain a controller with simple structure. Another method, L2-gain design, is applied to suppress
the disturbance to the plant. The validity of the hybrid controller based on SVM and L2-gain design is
confirmed by numerical simulation.

PSO is used to obtain the parameters in SVM. It should be noted that the optimal parameters
are actually obtained in off-line way instead of on-line way, which limits its practical application
to real-time control. In the next work, an on-line approach to the selection of SVM parameters will
be studied.
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