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Abstract: LR parsing is a popular parsing strategy for variants of Context-Free Grammar (CFG).
It has also been used for mildly context-sensitive formalisms, such as Tree-Adjoining Grammar.
In this paper, we present the first LR-style parsing algorithm for Linear Context-Free Rewriting
Systems (LCFRS), a mildly context-sensitive extension of CFG which has received considerable
attention in the last years in the context of natural language processing.
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1. Introduction

In computational linguistics, the modeling of discontinuous structures in natural language, i.e.,
of structures that span two or more non-adjacent portions of the input string, is an important issue.
In recent years, Linear Context-Free Rewriting System (LCFRS) [1] has emerged as a formalism which
is useful for this task. LCFRS is a mildly context-sensitive [2] extension of CFG in which a single
non-terminal can cover k ∈ N continuous blocks of terminals. CFG is a special case of LCFRS where
k = 1. In CFG, only embedded structures can be modelled. In LCFRS, in contrast, yields can be
intertwined. The schematically depicted derivation trees in Figure 1 illustrate the different domains
of locality of CFG and LCFRS. As can be seen, in the schematic CFG derivation, X contributes a
continuous component β to the full yield. In the schematic LCFRS derivation, however, X contributes
three non-adjacent components to the full yield. Intuitively speaking, the difference between LCFRS
and CFG productions is that the former allow for arguments on their non-terminals. Each argument
spans a continuous part of the input string, i.e., an argument boundary denotes a discontinuity in
the yield of the non-terminal. The production itself specifies how the lefthand side non-terminal
yield is built from the yields of the righthand side non-terminals. In the example, the X node in the
schematic LCFRS tree would be derived from a production which, on its left hand side, has a terminal
X(x1, x2, x3). Note that CFG non-terminals can consequently be seen as LCFRS non-terminals with an
implicit single argument.

CFG:

•

X

α1 α2

β

LCFRS: •

X

• •

α1 α2 α3

β γ

Figure 1. Locality in CFG vs. LCFRS derivation.
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LCFRS has been employed in various subareas of computational linguistics. Among others, it has
been used for syntactic modeling. In syntax, discontinuous structures arise when a displacement
occurs within the sentence, such as, e.g., with topicalization. Constructions causing discontinuities
are frequent: In the German TiGer treebank [3], about a fourth of all sentences contains at least one
instance of discontinuity [4]; in the English Penn Treebank (PTB) [5], this holds for about a fifth of
all sentences [6]. Below, three examples for discontinuities are shown. In (1), the discontinuity is
due to the fact that a part of the VP is moved to the front. In (2), the discontinuity comes from
the topicalization of the pronoun Darüber. (3), finally, is an example for a discontinuity which has
several parts. It is due to a topicalization of the prepositional phrase Ohne internationalen Schaden,
and scrambling [7] of elements after the verb.

(1) Selbst
Personally

besucht
visited

hat
has

er
he

ihn
him

nie
never

“He has never visited him personally”

(2) Darüber
About it

muss
must

nachgedacht
thought

werden
be

“One must think about that”

(3) Ohne internationalen Schaden
Without international damage

könne
could

sich
itself

Bonn
Bonn

von dem Denkmal
from the monument

nicht
not

distanzieren
distance

“Bonn could not distance itself from the monument without international damage.”

The syntactic annotation in treebanks must account for discontinuity. In a constituency framework,
this can be done by allowing crossing branches and grouping all parts of a discontinuous constituent
under a single node. Similarly in dependency syntax [8], words must be connected such that edges
end up crossing. As an example, Figure 2 shows both the constituency and dependency annotations
of (2). While the discontinuous yields inhibit an interpretation of either structure as a CFG derivation
tree, both can immediately been modeled as the derivation of an LCFRS [4,9].

S

VP

VP

PROAV VMFIN VVPP VAINF

Darüber muss nachgedacht werden

root aux

pp aux

r PROAV VMFIN VVPP VAINF

Darüber muss nachgedacht werden

Figure 2. Discontinuity and non-projectivity in NeGra annotation (see (2)) [10].

In grammar engineering, LCFRS and related formalisms have been employed in two ways.
Grammatical Framework (GF) is actively used for multilingual grammar development and allows
for an easy treatment of discontinuities, see [11] for details. GF is an extension of Parallel Multiple
Context-Free Grammar, which itself is a generalization of LCFRS [12]. TuLiPA [13] is a multi-formalism
parser used in a development environment for variants of Tree Adjoining Grammar (TAG). It exploits
the fact that LCFRS is a mildly context-sensitive formalism with high expressivity. LCFRS acts as a
pivot formalism, i.e., instead of parsing directly with a TAG instance, TuLiPA parses with its equivalent
LCFRS, obtained through a suitable grammar transformation [14].

LCFRS has also been used for the modeling of non-concatenative morphology, i.e., for the
description of discontinuous phenomena below word level, such as stem derivation in Semitic
languages. In such languages, words are derived by combining a discontinuous root with a
discontinuous template. In Arabic, for instance, combining the root k-t-b with the template i-a results
in kitab (“book”), combining it with a-i results in katib (“writer”), and combining it with ma-∅-a results
in maktab (“desk”). Authors of [15,16] use LCFRS for the modeling of such processes. Finally, in
machine translation, suitable versions of LCFRS, resp. equivalent formalisms, have been proposed
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for the modeling of translational equivalence [17,18]. They offer the advantage that certain alignment
configurations that cannot be modeled with synchronous variants of CFG can be induced by LCFRS [19].
As an example, see Figure 3, which shows an English sentence with its French translation, along with a
grammar that models the alignment between both.
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grammar that models the alignment between both.

(4) Je ne veux plus jouer
I do not want to play anymore

〈X(jouer)→ ε, X(toplay)→ ε〉
〈X(veux)→ ε, X(do, want)→ ε〉
〈X(ne x1 plus x2)→ X 1 (x1)X 2 (x2),
X(x1 not x2x3 anymore)→ X 1 (x1, x2)X 2 (x3)〉
. . .

Figure 3. LCFRS for machine translation alignments.

Parsing is a key task since it serves as a backend in many practical applications such as the
ones mentioned above. The parsing of LCFRS has received attention both on the symbolic and
on the probabilistic side. Symbolic parsing strategies, such as CYK and Earley variants have been
presented [20–22], as well as automaton-based parsing [23] and data-driven probabilistic parsing
techniques [24–26]. To our knowledge, however, no LR strategy for LCFRS has so far been presented
in the literature. LR parsing is an incremental shift-reduce parsing strategy in which the transitions
between parser states are guided by an automaton which is compiled offline. LR parsers were
first introduced for deterministic context-free languages [27] and later generalized to context-free
languages [28,29] and tree-adjoining languages [30,31]. Also for conjunctive grammars and boolean
grammars, LR parsing algorithms exist [32–34]. In this paper, we present an LR-style parser for LCFRS,
extending our earlier work [35]. Our parsing strategy is based on the incremental parsing strategy
implemented by Thread Automata [23].

The remainder of the article is structured as follows. In the following section, we introduce LCFRS
and thread automata. Section 3 introduces LR parsing for the context-free case. Section 4 presents the
LR algorithm for LCFRS along with an example. In particular, Section 4.1 gives the intuition behind
the algorithm, Section 4.2 introduces the algorithms for automaton and parse table constructions,
and Section 4.3 presents the parsing algorithm. Section 5 concludes the article.

2. Preliminaries

2.1. Linear Context-Free Rewriting Systems

We now introduce Linear Context-Free Rewriting Systems (LCFRS). In LCFRS, a single
non-terminal can span k ≥ 1 continuous blocks of a string. A CFG is simply a special case of
an LCFRS in which k = 1. We notate LCFRS with the syntax of Simple Range Concatenation Grammars
(SRCG) [36], a formalism equivalent to LCFRS. Note that we restrict ourselves to the commonly used
string rewriting version of LCFRS and omit the more general definition of LCFRS of [37]. Furthermore,
we assume that our LCFRSs are monotone (see condition 3 below) and ε-free (we can make this
assumption without loss of generality see [20,38]).

Definition 1 (LCFRS). An Linear Context-Free Rewriting System (LCFRS) [1,20] is a tuple
G = (N, T, V, P, S) where

• N is a finite set of non-terminals with a function dim: N → N determining the fan-out of each A ∈ N;
• T and V are disjoint finite sets of terminals and variables;
• S ∈ N is the start symbol with dim(S) = 1; and
• P is a finite set of rewriting rules (or productions). For all γ ∈ P, the following holds.

1. γ has the form

A(α0, . . . , αdim(A)−1)→ A1(x(1)0 , . . . , x(1)dim(A1)−1) · · · Am(x(m)
0 , . . . , x(m)

dim(Am)−1)

Figure 3. LCFRS for machine translation alignments.

Parsing is a key task since it serves as a backend in many practical applications such as the
ones mentioned above. The parsing of LCFRS has received attention both on the symbolic and
on the probabilistic side. Symbolic parsing strategies, such as CYK and Earley variants have been
presented [20–22], as well as automaton-based parsing [23] and data-driven probabilistic parsing
techniques [24–26]. To our knowledge, however, no LR strategy for LCFRS has so far been presented
in the literature. LR parsing is an incremental shift-reduce parsing strategy in which the transitions
between parser states are guided by an automaton which is compiled offline. LR parsers were
first introduced for deterministic context-free languages [27] and later generalized to context-free
languages [28,29] and tree-adjoining languages [30,31]. Also for conjunctive grammars and boolean
grammars, LR parsing algorithms exist [32–34]. In this paper, we present an LR-style parser for LCFRS,
extending our earlier work [35]. Our parsing strategy is based on the incremental parsing strategy
implemented by Thread Automata [23].

The remainder of the article is structured as follows. In the following section, we introduce LCFRS
and thread automata. Section 3 introduces LR parsing for the context-free case. Section 4 presents the
LR algorithm for LCFRS along with an example. In particular, Section 4.1 gives the intuition behind
the algorithm, Section 4.2 introduces the algorithms for automaton and parse table constructions,
and Section 4.3 presents the parsing algorithm. Section 5 concludes the article.

2. Preliminaries

2.1. Linear Context-Free Rewriting Systems

We now introduce Linear Context-Free Rewriting Systems (LCFRS). In LCFRS, a single
non-terminal can span k ≥ 1 continuous blocks of a string. A CFG is simply a special case of
an LCFRS in which k = 1. We notate LCFRS with the syntax of Simple Range Concatenation Grammars
(SRCG) [36], a formalism equivalent to LCFRS. Note that we restrict ourselves to the commonly used
string rewriting version of LCFRS and omit the more general definition of LCFRS of [37]. Furthermore,
we assume that our LCFRSs are monotone (see condition 3 below) and ε-free (we can make this
assumption without loss of generality see [20,38]).

Definition 1 (LCFRS). An Linear Context-Free Rewriting System (LCFRS) [1,20] is a tuple
G = (N, T, V, P, S) where

• N is a finite set of non-terminals with a function dim: N → N determining the fan-out of each A ∈ N;
• T and V are disjoint finite sets of terminals and variables;
• S ∈ N is the start symbol with dim(S) = 1; and
• P is a finite set of rewriting rules (or productions). For all γ ∈ P, the following holds.

1. γ has the form

A(α0, . . . , αdim(A)−1)→ A1(x(1)0 , . . . , x(1)dim(A1)−1) · · · Am(x(m)
0 , . . . , x(m)

dim(Am)−1)
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where A, A1, . . . , Am ∈ N, m ≥ 0 being the rank of γ; x(l)j ∈ V for 1 ≤ l ≤ m, 0 ≤ j < dim(Ai);

and αi ∈ (V ∪ T)+ for 0 ≤ i < dim(A); all αi and x(l)j are called arguments or components. γ may
be abridged as A(~α)→ A1(~x1) · · · Am(~xm); and we define rank(γ) = m.

2. For all x ∈ V there is at most one unique occurrence of x on each lefthand side and righthand side of γ;
furthermore, there exists an lefthand side occurrence iff there exists a righthand side occurrence.

3. Variable occurrences in γ are ordered by a strict total order ≺ which is such that for all x1, x2 with
occurrences in γ, if x1 precedes x2 in any ~xi, 1 ≤ i ≤ m, then x1 also precedes x2 in α.

The rank of G is given by max({rank(γ) | γ ∈ P}) and written as rank(G). G is of fan-out k if
k ≥ max({dim(V) | V ∈ N}) and is written as dim(G). The set CG is defined as CG =

⋃
γ∈P Cγ (subscript

G can be omitted if clear from the context).

The LCFRS derivation is based on the instantiation of rules, the replacement of variable occurrences
by strings of terminals.

Definition 2 (Instantiation). An instantiation of a production γ ∈ P with γ = A(~α)→ A1(~α1) · · · Am(~αm)

is given by a function σγ : Vγ → T∗, where Vγ = {x | ∃ i, j such that rhs(γ, i, j) = x} the set of all x ∈ V
occurring in γ. γ is instantiated if all variable occurrences x have been replaced by σγ(x). A non-terminal in an
instantiated production is an instantiated non-terminal.

We now describe the LCFRS derivation process. A (partial) derivation is specified as a pair
[D : A(~α)] called item. Thereby, A(~α) specifies the yield and D is the derivation tree. We use a
bracketed representation of trees, e.g., γ0(γ1γ2) is a tree with a root node labeled γ0 that has two
daughters, a left daughter labeled γ1 and a right daughter labeled γ2.

Definition 3 (Derivation). Let G = (N, T, V, P, S) be an LCFRS. The set ∆G of derivable items with respect
to G contains all and only those items that can be deduced with the following deduction rules (the subscript G
on ∆G may be omitted if clear from the context).

1.
[γ : A(~α)]

γ : A(~α)→ ε ∈ P and L(v) = γ

2.
[D1 : A1(~α1)] · · · [Dm : Am(~αm)]

[γ(D1 . . . Dm) : A(~α)]
A(~α)→ A1(~α1) · · · Am(~αm) is an instantiation of γ ∈ P

We can now define the string language of an LCFRS G on the basis of the yield of a non-terminal.

Definition 4 (Yield, String Language, and Tree Language). Let G = (N, T, V, P, S) be an LCFRS.

1. For every A ∈ N we define yield(A) = {~α | ∃D such that [D : A(~α)] ∈ ∆G}.
2. The string language of G is defined as LS(G) = {w | 〈w〉 ∈ yield(S)}.
3. The derivation tree language of G is defined as LD(G) = {D | ∃w such that [D : S(〈w〉)] ∈ ∆G}.

Note that this definition of a tree language captures the set of derivation trees, not the derived
trees with crossing branches along the lines of Figures 1 and 2.

Example 1 (LCFRS Derivation). Figure 4 shows an LCFRS that generates the language anbmanbman,
n, m ∈ N, together with a derivation of the string aabaabaa. The derivation works as follows. First, the leaf
nodes of the derivation tree are produced using the first deduction rule with the productions γ4 and γ5.
They introduce the first three as and the two bs. In order to insert three more as, we use the second deduction
rule with production γ2. This leads to a derivation tree with a root labeled γ2 that has the γ4 node as its single
daughter. Finally the as and the bs are combined with the second deduction rule and production γ1. This leads to
a derivation tree with root label γ1 that has two daughters, the first one is the γ2-derivation tree and the second
one the γ5 node. The order of the daughters reflects the order of elements in the righthand sides of productions.
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Grammar for anbmanbman

γ1 : S(XUYVZ)→ A(X, Y, Z)B(U, V),
γ2 : A(aX, aY, aZ)→ A(X, Y, Z),
γ3 : B(bX, bY)→ B(X, Y),
γ4 : A(a, a, a)→ ε, γ5 : B(b, b)→ ε

Derivation of aabaabaa
γ1

γ2

γ4

γ5

1 2

1

Deduction rules

γ4 : A(a, a, a) γ4 : A(a, a, a)→ ε ∈ P
γ5 : B(b, b) γ5 : B(b, b)→ ε ∈ P

γ4 : A(a, a, a)
γ2(γ4) : A(aa, aa, aa) A(aa, aa, aa)→ A(a, a, a) is inst. of γ2

γ2(γ4) : A(aa, aa, aa), γ5 : B(b, b)
γ1(γ2(γ4)γ5) : S(aabaabaa) S(aabaabaa)→ A(aa, aa, aa)B(b, b) is inst. of γ1

Figure 4. LCFRS example derivation of aabaabaa with grammar for anbmanbman.

Finally, we define some additional notation that we will need later:
Let γ = A(α0, . . . , αdim(A)−1)→ A1(x(1)0 , . . . , x(1)dim(A1)−1) · · · Am(x(m)

0 , . . . , x(m)
dim(Am)−1) be a production.

• lhs(γ) gives A, lhs(γ, i) gives αi and lhs(γ, i, j) the jth symbol of αi; rhs(γ, l) gives Al , and rhs(γ, l, k)
gives the kth component of the lth RHS element. Thereby, i, j and k start with index 0, and l starts
with index 1. These functions have value ⊥ whenever there is no such element.

• In the sense of dotted productions, we define a set of symbols Cγ denoting computation points of
γ as Cγ = {γi.j | 0 ≤ i < dimA, 0 ≤ j ≤ |αi|}.

2.2. Thread Automata

Thread automata TA [23] are a generic automaton model which can be parametrized to recognize
different mildly context-sensitive languages. The TA for LCFRS (LCFRS-TA) implements a prefix-valid
top-down incremental parsing strategy similar to the ones of [21,22]. In this paper, we restrict ourselves
to introducing this type of TA.

As an example, let us consider the derivation of the word aaba with the LCFRS from Figures 5 and 6
shows a sample run of a corresponding TA where only the successful configurations are given. We
have one thread for each rule instantiation that is used in a parse. In our case, the derivation is

S(aaba) α⇒ A(aa, ba)
β⇒ A(a, b)

γ⇒ ε, we therefore have one thread for the α-rule, one for β and one
for γ. The development of these threads is given in the three columns of Figure 6.

Each thread contains at each moment of the TA run only a single symbol, either a non-terminal or
a dotted production. The TA starts with the α-thread containing the start symbol. In a predict step,
this is replaced with the dotted production corresponding to starting the α-rule. Now the dot precedes
the first variable of the non-terminal A in the righthand side. We therefore start a new A-thread
(we “call” a new A). In this thread, rule β is predicted, and the dot is moved over the terminal a in a
scan step, leading to A(a • x, ya)→ A(x, y) as content of the thread. Now, since the dot again precedes
the first component of a righthand side non-terminal A, we call a new A-thread, which predicts γ

this time. A scan allows to complete the first component of the γ-rule (thread content A(a•, b)→ ε).
Here, since the dot is at the end of a component, i.e., precedes a gap, the γ-thread is supended and
its mother thread, i.e. the one that has called the γ-thread, becomes the active thread with the dot
now moved over the variable for the firsts γ-component (A(ax•, ya)→ A(x, y)). Similarly, a second
suspend operation leads to the α-thread becoming the active thread again with the dot moved over the
finished component of the righthand side A (S(x • y)→ A(x, y)). The dot now precedes the variable
of the second component of this A, therefore the β-thread is resumed with the dot moving on to the

Figure 4. LCFRS example derivation of aabaabaa with grammar for anbmanbman.

Finally, we define some additional notation that we will need later:
Let γ = A(α0, . . . , αdim(A)−1)→ A1(x(1)0 , . . . , x(1)dim(A1)−1) · · · Am(x(m)

0 , . . . , x(m)
dim(Am)−1) be a production.

• lhs(γ) gives A, lhs(γ, i) gives αi and lhs(γ, i, j) the jth symbol of αi; rhs(γ, l) gives Al , and rhs(γ, l, k)
gives the kth component of the lth RHS element. Thereby, i, j and k start with index 0, and l starts
with index 1. These functions have value ⊥ whenever there is no such element.

• In the sense of dotted productions, we define a set of symbols Cγ denoting computation points of
γ as Cγ = {γi.j | 0 ≤ i < dimA, 0 ≤ j ≤ |αi|}.

2.2. Thread Automata

Thread automata TA [23] are a generic automaton model which can be parametrized to recognize
different mildly context-sensitive languages. The TA for LCFRS (LCFRS-TA) implements a prefix-valid
top-down incremental parsing strategy similar to the ones of [21,22]. In this paper, we restrict ourselves
to introducing this type of TA.

As an example, let us consider the derivation of the word aaba with the LCFRS from Figures 5 and 6
shows a sample run of a corresponding TA where only the successful configurations are given. We
have one thread for each rule instantiation that is used in a parse. In our case, the derivation is

S(aaba) α⇒ A(aa, ba)
β⇒ A(a, b)

γ⇒ ε, we therefore have one thread for the α-rule, one for β and one
for γ. The development of these threads is given in the three columns of Figure 6.

Each thread contains at each moment of the TA run only a single symbol, either a non-terminal or
a dotted production. The TA starts with the α-thread containing the start symbol. In a predict step,
this is replaced with the dotted production corresponding to starting the α-rule. Now the dot precedes
the first variable of the non-terminal A in the righthand side. We therefore start a new A-thread
(we “call” a new A). In this thread, rule β is predicted, and the dot is moved over the terminal a in a
scan step, leading to A(a • x, ya)→ A(x, y) as content of the thread. Now, since the dot again precedes
the first component of a righthand side non-terminal A, we call a new A-thread, which predicts γ

this time. A scan allows to complete the first component of the γ-rule (thread content A(a•, b)→ ε).
Here, since the dot is at the end of a component, i.e., precedes a gap, the γ-thread is supended and
its mother thread, i.e. the one that has called the γ-thread, becomes the active thread with the dot
now moved over the variable for the firsts γ-component (A(ax•, ya)→ A(x, y)). Similarly, a second
suspend operation leads to the α-thread becoming the active thread again with the dot moved over the
finished component of the righthand side A (S(x • y)→ A(x, y)). The dot now precedes the variable
of the second component of this A, therefore the β-thread is resumed with the dot moving on to the
second component (A(ax, •ya)→ A(x, y)). Similarly, a second resume operation leads to the γ-thread
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becoming active with content A(a, •b) → ε. The subsequent scan yields a completed A-item that
can be published, which means that the mother thread becomes active with the dot moved over the
variable for the last righthand side component. After another scan, again, we have a completed item
and the α-thread becomes active with a content S(xy•)→ A(x, y) that signifies that we have found a
complete S-yield. Since the entire input has been processed, the TA run was successful and the input is
part of the language accepted by the TA.

α : S(xy)→ A(x, y) γ : A(a, b)→ ε
β : A(ax, ya)→ A(x, y)

Figure 5. LCFRS for {anaban | n ≥ 0}.

S

α-thread

S(•xy)→ A(x, y) (predict)

S(x • y)→ A(x, y)

S(xy•)→ A(x, y)

ret (publish)

A

β-thread

A(•ax, ya)→ A(x, y) (predict)

A(a • x, ya)→ A(x, y) (scan)

A(ax•, ya)→ A(x, y)

A(ax, •ya)→ A(x, y)

A(ax, y • a)→ A(x, y)

A(ax, ya•)→ A(x, y) (scan)

ret (publish)

A

γ-thread

A(•a, b)→ ε (predict)

A(a•, b)→ ε (scan)

A(a, •b)→ ε

A(a, b•)→ ε (scan)

ret (publish)

call
call

suspend

suspend

resume
resume

suspendsuspend

Figure 6. Sample TA-run for w = aaba.

More generally, an LCFRS-TA for some LCFRS G = (N, T, V, P, S) works as follows. As we have
seen, the processing of a single instantiated rule is handled by a single thread which will traverse the
lefthand side arguments of the rule. A thread is given by a pair p : X, where p ∈ {1, . . . , m}∗ with m
the rank of G is the address, and X ∈ N ∪ {ret} ∪ C where ret /∈ N is the content of the thread. In our
example in Figure 6, addresses were left aside. They are, however, crucial for determining the mother
thread to go back to in a suspend step. In Figure 6, the α-thread has address ε, the β-thread address 1
and the γ-thread address 11, i.e., the address of the mother thread is a prefix of the address of the child
thread, respectively. This is why a thread knows where to go back to in a suspend step. An automaton
state is given by a tuple 〈i, p, T 〉where T is a set of threads, the thread store, p is the address of the active
thread, and i ≥ 0 indicates that i tokens have been recognized. We use 〈0, ε, {ε : S}〉 as start state.

Definition 5 (LCFRS-TA). Let G = (N, T, V, P, S) be a LCFRS. The LCFRS thread automaton for G is a
tuple 〈N′, T, S, ret, δ, Θ〉 with

• N′ = N ∪ CG ∪ {ret};
• δ is a function from C to {1, . . . , m} ∪ {⊥} such that δ(γk,i) = j if there is a l such that lhs(γ, k, i) =

rhs(γ, j− 1, l), and δ(γk,i) = ⊥ if lhs(γ, k, i) ∈ T ∪ {⊥}; and
• Θ is a finite set of transitions as defined below.

Intuitively, a δ value j tells us that the next symbol to process is a variable that is an argument of
the j-th righthand side non-terminal.

Definition 6 (Transitions of a LCFRS-TA). The transition set Θ of a LCFRS-TA as in Definition 5 contains
the following transitions:

• Call: γk,i → [γk,i]A ∈ Θ if A = rhs(γ, j− 1) and lhs(γ, k, i) = rhs(γ, j− 1, 0) where j = δ(γk,i).



Algorithms 2016, 9, 58 7 of 28

• Predict: A→ γ0,0 ∈ Θ if A = lhs(γ).

• Scan: γk,i
lhs(γ,k,i)→ γk,i+1 ∈ Θ if lhs(γ, k, i) ∈ T.

• Publish: γk,j → ret ∈ Θ if dim(lhs(γ)) = k + 1 and j = |lhs(γ, k)|.
• Suspend:

(i) [γk,i]ret→ γk,i+1 ∈ Θ if lhs(γ, k, i) = rhs(γ, δ(γk,i)− 1, dim(rhs(δ(γk,i)− 1))− 1).
(ii) [γk,i]βl,j → γk,i+1[βl,j] ∈ Θ if dim(lhs(β)) > l + 1, |lhs(β, l)| = j, lhs(γ, k, i) = rhs(γ, δ(γk,i)−

1, l) and rhs(γ, δ(γk,i)− 1) = lhs(β).

• Resume: γk,i[βl,j] → [γk,i]βl+1,0 ∈ Θ if lhs(γ, k, i) = rhs(γ, δ(γk,i)− 1, l + 1), rhs(γ, δ(γk,i)− 1) =
lhs(β) and βl,j+1 /∈ CG.

These are all thransitions in Θ.

A transition α
a→ β roughly indicates that in the current thread store, α can be replaced with β

while scanning a. Square brackets in α and β indicate parts that do not belong to the active thread.
Call transitions start a new thread for a daughter non-terminal, i.e., a righthand side non-terminal.
They move down in the parse tree. Predict transitions predict a new rule for a non-terminal A.
Scan transitions read a lefthand side terminal while scanning the next input symbol. Publish marks
the completion of a production, i.e., its full recognition. Suspend transitions suspend a daughter thread
and resume the parent. i.e., move up in the parse tree. There are two cases: Either (i) the daughter
is completely recognized (thread content ret) or (ii) the daughter is not yet completely recognized,
we have only finished one of its components. Resume transitions resume an already present daughter
thread, i.e., move down into some daughter that has already been partly recognized.

Figure 7 shows the transitions for our sample grammar. Let us explain the semantics of these rules
with these examples before moving to the general deduction rules for TA configurations. As already

mentioned, a rule X1
t→ X2 with X1, X2 ∈ N′ and t ∈ T ∪ {ε} expresses that with X1 being the content

of the active thread, we can replace X1 with X2 while scanning t. The predict, scan and publish rules are
instances of this rule type. X ∈ N′ in square brackets to the left characterize the content of the mother
of the active thread while X ∈ N′ in square brackets to the right characterize the content of a daughter
thread where the address of the daughter depends on the one of the active thread and the δ-value
of the content of the active thread. Consider for instance the last suspend rule. It signifies that if the
content of the active thread is γ0,1 and its mother thread has content β0,1, this mother thread becomes
the new active thread with its content changed to β0,2 while the daughter thread does not change
content. The resume rules, in contrast to this, move from the active thread to one of its daughters.
Take for instance the last rule. It expresses that, if the active thread has content β1,0 and if this thread
has a δ(β1,0)th daughter thread with content γ0,1, we make this daughter thread the active one and
change its content to γ1,0, i.e., move its dot over a gap.

Call: α0,0 → [α0,0]A β0,1 → [β0,1]A
Predict: S→ α0,0 A→ β0,0 A→ γ0,0

Scan: β0,0
a→ β0,1 β1,1

a→ β1,2 γ0,0
a→ γ0,1 γ1,0

b→ γ1,1
Publish: α0,2 → ret β1,2 → ret γ1,1 → ret
Suspend: [α0,1]ret→ α0,2 [α0,0]β0,2 → α0,1[β0,2] [β0,1]β0,2 → β0,2[β0,2]

[β1,0]ret→ β1,1 [α0,0]γ0,1 → α0,1[γ0,1] [β0,1]γ0,1 → β0,2[γ0,1]
Resume: α0,1[β0,2]→ [α0,1]β1,0 α0,1[γ0,1]→ [α0,1]γ1,0

β1,0[β0,2]→ [β1,0]β1,0 β1,0[γ0,1]→ [β1,0]γ1,0

(Rules: α : S(xy)→ A(x, y), β : A(ax, ya)→ A(x, y), γ : A(a, b)→ ε)

Figure 7. TA transitions for the LCFRS from Figure 5.

This is not exactly the TA for LCFRS proposed in [23] but rather the one from [39], which is close
to the Earley parser from [21].
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The set of configurations for a given input w ∈ T∗ is then defined by the deduction rules in
Figure 8 (the use of set union S1 ∪ S2 in these rules assumes that S1 ∩ S2 = ∅). The accepting state of
the automaton for some input w is 〈|w|, ε, {ε : ret}〉.
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The set of configurations for a given input w ∈ T∗ is then defined by the deduction rules in
Figure 8 (the use of set union S1 ∪ S2 in these rules assumes that S1 ∩ S2 = ∅). The accepting state of
the automaton for some input w is 〈|w|, ε, {ε : ret}〉.

Initial configuration: 〈0, ε, {ε : S}〉 Call:
〈i, p,S ∪ {p : γk,i}〉

〈i, pj,S ∪ {p : γk,i} ∪ {pj : A}〉
γk,i → [γk,i ]A ∈ Θ,
A ∈ N, δ(γk,i) = j + 1

Predict:
〈i, p,S ∪ {p : A}〉
〈i, p,S ∪ {p : γ0,0}〉

A ∈ N,
A→ γ1,0 ∈ Θ

Scan:
〈j, p,S ∪ {p : γk,i}〉

〈j + 1, p,S ∪ {p : γk,i+1}〉 γk,i

wj+1→ γk,i+1 ∈ Θ Publish:
〈i, p,S ∪ {p : γk,j}〉
〈i, p,S ∪ {p : ret}〉 γk,j → ret ∈ Θ

Suspend 1:
〈i, pj,S ∪ {p : γk,i, pj : ret}〉
〈i, p,S ∪ {p : γk,i+1}〉

[γk,i ]ret→ γk,i+1 ∈ Θ

Suspend 2:
〈i, pj,S ∪ {p : γk,i, pj : βl,m}〉
〈i, p,S ∪ {p : γk,i+1, pj : βl,m}〉

[γk,i ]βl,m → γk,i+1[βl,m ] ∈ Θ

Resume:
〈i, p,S ∪ {p : γk,i, pδ(γk,i) : βl,j}〉

〈i, pδ(γk,i),S ∪ {p : γk,i, pδ(γk,i) : βl+1,0}〉
γk,i [βl,j ]→ [γk,i ]βl+1,0 ∈ Θ

Goal item: 〈|w|, ε, {ε : ret}〉.

Figure 8. Deduction rules for TA configurations.

3. LR Parsing

In an LR parser (see [40] chapter 9), the parser actions are guided by an automaton, resp. a parse
table which is compiled offline. Consider the context-free case. An LR parser for CFG is a guided
shift-reduce parser, in which we first build the LR automaton. Its states are sets of dotted productions
closed under prediction, and its transitions correspond to having recognized a part of the input,
e.g., to moving the dot over a righthand side element after having scanned a terminal or recognized
a non-terminal.

Consider for instance the CFG G = 〈{S}, {a, b, c}, {S → aSb | c}, S〉. Its LR automaton
is given in Figure 9. The construction of this automaton starts from the prediction closure of
{S′ → •S}, which contains the two S-productions with the dot at the beginning of the righthand
side. The prediction closure of a set of dotted productions q is defined as follows: if A→ α • Bβ ∈ q,
then B → •γ ∈ q for all B-productions B → γ in the grammar. From a state q, a new state can be
obtained by computing all items that can be reached by moving the dot over a certain x ∈ N ∪ T in
any of the dotted productions in q and then, again, building the prediction closure. The new state can
be reached from the old one by an edge labeled with x. This process is repeated until all possible states
have been constructed. In our example, when being in q0, we can for instance reach q1 by moving the
dot over an a, and we can reach q5 (the acceptance state) by moving the dot over an S.

S′ → •S
S→ •aSb
S→ •c

q0

S→ a • Sb
S→ •aSb
S→ •c

q1

S→ c•q2 S→ aS • b

q3

S→ aSb• q4

S′ → S•

q5

a

S

a

c

c

S

b

Figure 9. Sample LR automaton for a CFG.
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3. LR Parsing

In an LR parser (see [40] chapter 9), the parser actions are guided by an automaton, resp. a parse
table which is compiled offline. Consider the context-free case. An LR parser for CFG is a guided
shift-reduce parser, in which we first build the LR automaton. Its states are sets of dotted productions
closed under prediction, and its transitions correspond to having recognized a part of the input,
e.g., to moving the dot over a righthand side element after having scanned a terminal or recognized
a non-terminal.

Consider for instance the CFG G = 〈{S}, {a, b, c}, {S → aSb | c}, S〉. Its LR automaton
is given in Figure 9. The construction of this automaton starts from the prediction closure of
{S′ → •S}, which contains the two S-productions with the dot at the beginning of the righthand
side. The prediction closure of a set of dotted productions q is defined as follows: if A→ α • Bβ ∈ q,
then B → •γ ∈ q for all B-productions B → γ in the grammar. From a state q, a new state can be
obtained by computing all items that can be reached by moving the dot over a certain x ∈ N ∪ T in
any of the dotted productions in q and then, again, building the prediction closure. The new state can
be reached from the old one by an edge labeled with x. This process is repeated until all possible states
have been constructed. In our example, when being in q0, we can for instance reach q1 by moving the
dot over an a, and we can reach q5 (the acceptance state) by moving the dot over an S.

S′ → •S
S→ •aSb
S→ •c

q0

S→ a • Sb
S→ •aSb
S→ •c

q1

S→ c•q2 S→ aS • b

q3

S→ aSb• q4

S′ → S•

q5

a

S

a

c

c

S

b

Figure 9. Sample LR automaton for a CFG.

This automaton guides the shift-reduce parsing in the following way: At every moment, the parser
is in one of the states. We can shift an a ∈ T if there is an outgoing a-transition. The state changes
according to the transition.We can reduce if the state contains a completed A → α•. We then reduce
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with A→ α. The new state is obtained by following the A-transition, starting from the state reached
before processing that rule.

The information about possible shift and reduce operations in a state is precompiled into a parse
table: Given an LR automaton with n states, we build a parse table with n rows. Each row i, 0 ≤ i < n,
describes the possible parser actions associated with the state qi, i.e., for each state and each possible
shift or reduce operation, it tells us in which state to go after the operation. The table has |T|+ |N|+ 1
columns where the first are indexed with the terminals, then follows a column for reduce operations
and then a column for each of the non-terminals. For every pair of states qi, qj that are linked by an
a-edge for some a ∈ T, the field of qi and a contains sj, which indicates that in qi, one can shift an
a and then move to qj. For every state qi that contains rule number j with a dot at the end of the
righthand side, we add rj to the reduce field of qi. Finally, for every pair of states qi, qj that are linked
by an A-edge for some A ∈ N, the field of qi and A contains j, which indicates that in qi, after having
completed an A, we can move to qj. On the left of Figure 10, we see the parse table resulting from the
automaton in Figure 9. The first |T|+ 1 columns are the so-called action-part of the table while the last
|N| columns form the goto-part.

a b c S
q0 s1 s2 5
q1 s1 s2 3
q2 r2
q3 s4
q4 r1
q5 acc

Stack remaining input operation
q0 acb initial configuration
q0aq1 cb s1 (shift and move to q1)
q0aq1cq2 b s2
q0aq1Sq3 b r2 (reduce with rule 2)
q0aq1Sq3bq4 ε s4
q0Sq5 ε r1

Figure 10. Parse table and sample parse (rule 1 = S→ aSb, rule 2 = S→ c).

The parse table determines the possible reductions and shifts we can do at every moment. We start
parsing with a stack containing only q0. In a shift, we push the new terminal followed by the state
indicated in the table on the stack. In a reduction, we use the production indicated in the table. We pop
its righthand side (in reverse order) and push its lefthand side onto the stack. The new state is the
state indicated in the parse table field for the state preceding the lefthand side of this production on
the stack and the lefthand side category of the production. On the right of Figure 10, we see a sample
trace of a parse according to our LR parse table. Note that this example allowed for deterministic LR
parsing, which is not the case in general. There might be shift-reduce or reduce-reduce conflicts.

4. LR for LCFRS

4.1. Intuition

We will now adapt the ideas underlying LR parsing for CFG to the case of LCFRS. The starting
point is the set of possible threads that can occur in a TA for a given LCFRS. Our LR automaton for
LCFRS precompiles predict, call and resume steps into single states, i.e., states are closed under these
three operations.

As an example, consider the TA from Section 2.2. Figure 11 sketches some of the states one obtains
for this TA.
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S, S(•xy)→ A(x, y),
A(•ax, ya)→ A(x, y),
A(•a, b)→ ε

q0
A(a • x, ya)→ A(x, y),
A(a•, b)→ ε,
A(•ax, ya)→ A(x, y),
A(•a, b)→ ε

q1
S(x • y)→ A(x, y),
A(ax, •ya)→ A(x, y),
A(a, •b)→ ε

q2

a
a

A1

Figure 11. Sample LR states for the TA in Figure 6.

As in the CFG case, we start with a state for the start symbol S and, in this state, add all predictions
of S-rules with the dot at the left of the lefthand side component. Furthermore, for every item in some
state q where the dot precedes a variable: If this variable is the ith component of a righthand side
non-terminal A, we add to q all A-rules with the dot at the beginning of the ith component in the
lefthand side. For i = 1, this is a call-and-predict operation, for i > 1 a resume operation.

Moving the dot over a terminal symbol a leads to a transition labeled with a that yields a new
state. And moving the dot over the variable that is the ith component of some righthand side symbol
A leads to a transition labeled with Ai.

Our parser then has shift operations and two kinds of reduce operations (the two types of suspend
operations in the TA). Either we reduce the ith component of some A where i < dim(A) or we reduce
the last component of some A. In the first case, we have to keep track of the components we have
already found, in particular of their derivation tree addresses. This is why we have to extend the states
sketched in Figure 11 to using dotted productions with addresses.

Our predict/resume closure operations then have to add the index of the daughter that gets
predicted/resumed to the address. A problem here is that this can lead to states containing infinitely
many items. An example is q2 in Figure 11. The dotted production A(ax, •ya)→ A(x, y) leads, via the
resume closure, to new instances of A(ax, •ya)→ A(x, y) and A(a, •b)→ ε, this time with a different
address since these are daughters of the first. Consequently, q2 would be the set {ε : S(x • y) →
A(x, y), 1 : A(ax, •ya) → A(x, y), 1 : A(a, •b) → ε, 11 : A(ax, •ya) → A(x, y), 11 : A(a, •b) → ε,
111 : A(ax, •ya) → A(x, y), 111 : A(a, •b) → ε, . . . }. Such a problem of an infinite loop of predict or
resume steps occurs whenever there is a left recursion in one of the components of a rule. We do not
want to exclude such recursions in general. Therefore, in order to keep the states finite nevertheless,
we allow the addresses to be regular expressions. Then q2 for instance becomes {ε : S(x • y)→ A(x, y),
1+ : A(ax, •ya) → A(x, y), 1+ : A(a, •b) → ε}. Concerning the transitions, here as well, we add the
addresses of the item(s) that have triggered that transition. See Figure 12 for an example. A new state
always starts with an item with address ε.

S, ε : S(•xy)→ A(x, y),
1 : A(•ax, ya)→ A(x, y),
1 : A(•a, b)→ ε

q0
ε : A(a • x, ya)→ A(x, y),
ε : A(a•, b)→ ε,
1 : A(•ax, ya)→ A(x, y),
1 : A(•a, b)→ ε

q1
ε : S(x • y)→ A(x, y),
1+ : A(ax, •ya)→ A(x, y),
1+ : A(a, •b)→ ε

q2
ε : A(ax•, ya)→ A(x, y)q3

1 : a

1 : a

1 : A1

ε : A1

Figure 12. Sample LR states for the TA in Figure 6 including addresses.

Figure 11. Sample LR states for the TA in Figure 6.

As in the CFG case, we start with a state for the start symbol S and, in this state, add all predictions
of S-rules with the dot at the left of the lefthand side component. Furthermore, for every item in some
state q where the dot precedes a variable: If this variable is the ith component of a righthand side
non-terminal A, we add to q all A-rules with the dot at the beginning of the ith component in the
lefthand side. For i = 1, this is a call-and-predict operation, for i > 1 a resume operation.

Moving the dot over a terminal symbol a leads to a transition labeled with a that yields a new
state. And moving the dot over the variable that is the ith component of some righthand side symbol
A leads to a transition labeled with Ai.

Our parser then has shift operations and two kinds of reduce operations (the two types of suspend
operations in the TA). Either we reduce the ith component of some A where i < dim(A) or we reduce
the last component of some A. In the first case, we have to keep track of the components we have
already found, in particular of their derivation tree addresses. This is why we have to extend the states
sketched in Figure 11 to using dotted productions with addresses.

Our predict/resume closure operations then have to add the index of the daughter that gets
predicted/resumed to the address. A problem here is that this can lead to states containing infinitely
many items. An example is q2 in Figure 11. The dotted production A(ax, •ya)→ A(x, y) leads, via the
resume closure, to new instances of A(ax, •ya)→ A(x, y) and A(a, •b)→ ε, this time with a different
address since these are daughters of the first. Consequently, q2 would be the set {ε : S(x • y) →
A(x, y), 1 : A(ax, •ya) → A(x, y), 1 : A(a, •b) → ε, 11 : A(ax, •ya) → A(x, y), 11 : A(a, •b) → ε,
111 : A(ax, •ya) → A(x, y), 111 : A(a, •b) → ε, . . . }. Such a problem of an infinite loop of predict or
resume steps occurs whenever there is a left recursion in one of the components of a rule. We do not
want to exclude such recursions in general. Therefore, in order to keep the states finite nevertheless,
we allow the addresses to be regular expressions. Then q2 for instance becomes {ε : S(x • y)→ A(x, y),
1+ : A(ax, •ya) → A(x, y), 1+ : A(a, •b) → ε}. Concerning the transitions, here as well, we add the
addresses of the item(s) that have triggered that transition. See Figure 12 for an example. A new state
always starts with an item with address ε.
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As in the CFG case, we start with a state for the start symbol S and, in this state, add all predictions
of S-rules with the dot at the left of the lefthand side component. Furthermore, for every item in some
state q where the dot precedes a variable: If this variable is the ith component of a righthand side
non-terminal A, we add to q all A-rules with the dot at the beginning of the ith component in the
lefthand side. For i = 1, this is a call-and-predict operation, for i > 1 a resume operation.

Moving the dot over a terminal symbol a leads to a transition labeled with a that yields a new
state. And moving the dot over the variable that is the ith component of some righthand side symbol
A leads to a transition labeled with Ai.

Our parser then has shift operations and two kinds of reduce operations (the two types of suspend
operations in the TA). Either we reduce the ith component of some A where i < dim(A) or we reduce
the last component of some A. In the first case, we have to keep track of the components we have
already found, in particular of their derivation tree addresses. This is why we have to extend the states
sketched in Figure 11 to using dotted productions with addresses.

Our predict/resume closure operations then have to add the index of the daughter that gets
predicted/resumed to the address. A problem here is that this can lead to states containing infinitely
many items. An example is q2 in Figure 11. The dotted production A(ax, •ya)→ A(x, y) leads, via the
resume closure, to new instances of A(ax, •ya)→ A(x, y) and A(a, •b)→ ε, this time with a different
address since these are daughters of the first. Consequently, q2 would be the set {ε : S(x • y) →
A(x, y), 1 : A(ax, •ya) → A(x, y), 1 : A(a, •b) → ε, 11 : A(ax, •ya) → A(x, y), 11 : A(a, •b) → ε,
111 : A(ax, •ya) → A(x, y), 111 : A(a, •b) → ε, . . . }. Such a problem of an infinite loop of predict or
resume steps occurs whenever there is a left recursion in one of the components of a rule. We do not
want to exclude such recursions in general. Therefore, in order to keep the states finite nevertheless,
we allow the addresses to be regular expressions. Then q2 for instance becomes {ε : S(x • y)→ A(x, y),
1+ : A(ax, •ya) → A(x, y), 1+ : A(a, •b) → ε}. Concerning the transitions, here as well, we add the
addresses of the item(s) that have triggered that transition. See Figure 12 for an example. A new state
always starts with an item with address ε.
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1 : A(•ax, ya)→ A(x, y),
1 : A(•a, b)→ ε
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1 : a

1 : a

1 : A1

ε : A1
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Once the automaton is constructed, the shift-reduce parser proceeds as follows: A configuration of
the parser consists of a stack, a set of completed components and the remaining input. The completed
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components are of the form r k γi where r is a regular expression, k is a pointer to the derivation tree
node for this use of the rule γ : A(a, b) → ε and i is the component index. The stack has the form
Γ1x1Γ2 . . . xn−1Γn where Γi is a regular expression followed by a state and xi ∈ T ∪ { j

k | j points at a
derivation tree node for a rule γ with 1 ≤ k ≤ dim(lhs(γ))}.

For the input aaba for instance, we would start with a stack εq0 and then, following the
corresponding transition in the automaton, we can shift an a and move to q1. Since the shift transition
tells us that this shift refers to the daughter with address 1, this address is concatenated to the preceding
address. The new stack would be εq0 a 1q1 and, after a second shift, εq0 a 1q1 a 11q1. In q1 we can
not only shift as but we can also reduce since there is an item with the dot at the end of the first
A-component, A(a•, b) → ε. Such a reduce means that we remove this component (here a single
a) from the stack, then create a node 11 0 γ1 as part of the set of completed components, and then
push its pointer and index (here 0 1). The transition from the state preceding the a that is labeled
lhs(γ)1 gives the new state and address. The stack is then εq0 a 1q1 0 1 1q3, and the set of completed
components is {11 0 γ1}. q3 also tells us that a first component of a rule, this time A(ax, ya)→ A(x, y),
has been completed. It consists of a followed by a first A-component, therefore we have to remove
a and 0 1 (in reverse order) from the stack and then follow the A1 transition from q0. The result
is a stack εq0 1 1 1q2 and a completed components set {1 1 β1, 11 0 γ1}. The completed components
are, furthermore, equipped with an immediate dominance relation. In this example, 1 immediately
dominates 0 . Whenever a reduce state concerns a component that is not the first one, we check in
our set of completed components that we have already found a preceding component with the same
address or (if it is a regular expression denoting a set) a compatible address. In this case, we increment
the component index of the corresponding derivation tree node. In the end, in case of a successful
parse, we have a stack εq0 i 1εqacc and a component set giving the entire derivation tree with root
node i .

4.2. Automaton and Parse Table Construction

The states of the LR-automaton are sets of pairs r : X where r is a regular expression over
{1, . . . , rank(G)}, and X ∈ CG ∪ {S}. They represent predict and resume closures.

Definition 7. We define the predict/resume closure q of some set q ⊆ {ε : X |X ∈ CG ∪ {S}} by the
following deduction rules:

• Initial predict:
ε : S

ε : α0,0
lhs(α) = S

• Predict/resume:
p : γi,j

pk : γ′l,0
lhs(γ, i, j) = rhs(γ, k− 1, l), rhs(γ, k) = lhs(γ′)

This closure is not always finite. However, if it is not, we obtain a set of items that can be
represented by a finite set of pairs r : γi,j plus eventually ε : S such that r is a regular expression
denoting a set of possible addresses. As an example for such a case, see q2 in Figure 12. Let RegG be
the set of all regular expressions over {1, . . . , rank(G)}.

Lemma 8. For every q ⊆ {ε : X |X ∈ CG ∪ {S}}, it holds that if q is infinite, then there is a finite set
q′ ⊂ {r : X | r ∈ RegG, X ∈ CG ∪ {S}} such that q = {p : X | there is an r : X ∈ q′ with p ∈ L(r)}.

Proof. CG is finite. For each γi,j ∈ CG, the set of possible addresses it might be combined with in a
state that is the closure of {ε : X1, ε : X2, . . . , ε : Xn} is generated by the CFG 〈N, T, P, Snew〉 with

• N = CG ∪ {S} ∪ {Snew},
• T = {1, . . . , m}, and
• P contains the following rules:
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– Snew → Xi ∈ P for all 1 ≤ i ≤ n,
– X → Yk ∈ P for all instances p:X

pk:Y of deduction rules,
– and γi,j → ε.

This is a regular grammar, its string language can thus be characterized by a
regular expression.

The construction of the set of states starts with q0 = {ε : S}. From this state, follwing a-transitions
or Ai-transitions as sketched above, we generate new states. We first formalize these transitions:

Definition 9. Let G = (N, T, V, P, S) be a LCFRS. Let q ⊆ {ε : S} ∪ {r : X | r ∈ RegG, X ∈ CG}.

• For every A ∈ N, every 1 ≤ i ≤ dim(A) and every r ∈ RegG, we define

– read(q, Ai, r) = {ε : γj,k+1 | r : γj,k ∈ q and there is some l such that rhs(γ, l) = A and lhs(γ, j, k) =
rhs(γ, l, i− 1)} and

– read(q, Ai, r) = read(q, Ai, r).

• For every a ∈ T and every r ∈ RegG, we define

– read(q, a, r) = {ε : γj,k+1 | r : γj,k ∈ q and lhs(γ, j, k) = a} and
– read(q, a, r) = read(q, a, r).

The set of states of our automaton is then the closure of {q0} under the application of the
read-functions. The edges in our automaton correspond to read-transitions, where each edge is labeled
with the corresponding pair r : Ai or r : a respectively. Furthermore, we add a state {ε : S•} and an
edge labeled ε : S1 from the start state to this state, which is the acceptance state.

The complete automaton we obtain for the grammar in Figure 5 is shown in Figure 13. For the
sake of readability, we use dotted productions instead of the computation points γi,j.

ε : S,
ε : S(•xy)→ A(x, y),
1 : A(•ax, ya)→ A(x, y),
1 : A(•a, b)→ ε

q0

ε : A(a • x, ya)→ A(x, y),
ε : A(a•, b)→ ε
1 : A(•ax, ya)→ A(x, y),
1 : A(•a, b)→ ε

q1

ε : S(x • y)→ A(x, y),
1+ : A(ax, •ya)→ A(x, y),
1+ : A(a, •b)→ ε

q2

ε : A(ax, y • a)→ A(x, y) q4

ε : A(a, b•)→ ε

q6 ε : S(xy•)→ A(x, y)q7

ε : A(ax, ya•)→ A(x, y)q5

ε : A(ax•, ya)→ A(x, y)q3

ε : S• q8

ε : S1

1 : a

1 : a

ε : A1

1+ : A2

1+ : b
ε : A2

ε : a

ε : A1

Figure 13. The automaton for the LCFRS in Figure 5.

The number of possible states is necessarily finite since each state is the closure of some set
containing only items with address ε. There are only finitely many such sets.

In the parse table, our operations are s(p, q) for shifting some terminal a followed by the old
address concatenated with p and state q and r(α, i) for reducing the ith component of rule α. The two
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reduce operations can be distinguished by the component indices. These operations are entered into
the first |T|+ 1 columns of the table, the so-called action part. Furthermore, the goto-part of the table
tells where to go when traversing a component edge and which address to add then.

The parse table can be read off the automaton as follows:

Definition 10. Let G = 〈N, T, P, S〉 be a LCFRS, M its LR-automaton with state set Q. Then we define
the corresponding LR parse table as a pair 〈action, goto〉 with action a |Q| × (|T| + 1) table and goto a
|Q| × |{Ai | A ∈ N, 1 ≤ i ≤ dim(A)}| table. The content of these tables is as follows:

• s(p, q′) ∈ action(q, a) iff read(q, a, p) = q′;
• r(γ, i) ∈ action(q,−) iff there is some p : γi−1,k ∈ q such that k = |lhs(γ, i− 1)|.
• 〈p, q′〉 ∈ goto(q, Ai) iff read(q, Ai, p) = q′.
• Nothing else is in these tables.

Figure 14 shows the parse table for our example.

action goto
a b A1 A2 S1

0 s(1, 1) 〈ε, 2〉 〈ε, 8〉
1 s(1, 1) r(γ, 1) 〈ε, 3〉
2 s(1+, 6) 〈1+, 4〉, 〈ε, 7〉
3 r(β, 1)
4 s(ε, 5)
5 r(β, 2)
6 r(γ, 2)
7 r(α, 1)
8 acc

rules: α : S(xy)→ A(x, y), β : A(ax, ya)→ A(x, y), γ : A(a, b)→ ε

Figure 14. The parse table.

4.3. Parsing Algorithm

The parser has slightly more complex configurations than the CFG shift-reduce parser. Let Q be
the set of states of the LR automaton for a given LCFRS G, q0 the state containing ε : S and qacc the
accepting state containing ε : S•. Furthermore, let N = { 0 , 1 , 2 , . . . } be the set of possible pointers to
derivation tree nodes. The parser configurations are then triples 〈Γ, C, i〉 consisting of

• a stack Γ ∈ RegG ◦Q ◦ ((T ∪ { i k | i ∈ N , k ≤ maxA∈Ndim(A)}) ◦ RegG ◦Q)∗,
• a set of constraints C that are either of the form r i γj with r ∈ RegG, i ∈ N , γ ∈ P and 1 ≤ j ≤

dim(lhs(γ)) or of the form k Cd l with k , l ∈ N , 1 ≤ d ≤ rank(G).
• and the index j up to which the input w has been recognized, 0 ≤ j ≤ |w|.

Concerning the constraint set C, the first type of constraints describes nodes in the derivation
tree while the second describes immediate dominance relations between them, more precisely the fact
that one node is the dth daughter of another node. There is an immediate relation between the two:
if i1 Cd i2 , then the address of i2 must be the regular expression of i1 concatenated with the daughter
index d of i2 . Let NC be the set of indices from N occurring in C.

The initial configuration is 〈εq0, ∅, 0〉. From a current configuration, a new one can be obtained by
one of the following operations:

• Shift: Whenever we have pq on top of the stack, the next input symbol is a and in our parse table
we have action(q, a) = s(p′, q′), we push a followed by pp′q′ onto the stack and increment the
index j.
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• Reduce: Whenever the top of the stack is p1q and we have a parse table entry r(γ, i) ∈ action(q,−),
we can reduce the ith component of γ, i.e, suspend γ. Concretely, this means the following:

– Concerning the constraint set C, if i = 1, we add p1 k γ1 to C where k is a new pointer.
– If i ≥ 1, we check whether there is a p2 k γi−1 in C such that the intersection L(p1) ∩ L(p2) of

the languages denoted by p1 and p2, L(p1) and L(p2), is not empty. We then replace p2 k γi−1
in C with p k γi where p is a regular expression denoting L(p1) ∩ L(p2).

– Concerning the stack Γ, we remove 3|lhs(γ, i)| elements (i.e., terminals/component pointers
and their regular expressions and states) from Γ. Suppose the topmost state on the stack is
now p′q′. If goto(q′, lhs(γ)i) = 〈p′′, q′′〉, we push k i followed by p′p′′q′′ on the stack.

– Concerning the dominance relations, for every i j among the symbols we removed from the
stack, we add k Cd i where d is the corresponding daughter index.

– It can happen that, thanks to the new dominance relations, we can further restrict the regular
expressions characterizing the addresses in C. For instance, if we had 1+ i . . . , 1+ k . . . and
i C1 k in our set, we would replace the address of k with 1+1.

– The index j remains unchanged in reduce steps.

Note that the intersection of two deterministic finite state automata is quadratic in the size of the
two automata. In LCFRS without left recursion in any of the components, the intersection is trivial
since the regular expressions denote only a single path each.

As an example, we run the parser from Section 4.2 with an input w = aaba. The trace is shown
in Figure 15. In this example, the immediate dominance constraints in C are depicted as small trees.
We start in q0, and shift two as, which leads to q1. We have then fully recognized the first components
of γ and β: We suspend them and keep them in the set of completed components, which takes us to
q2. Shifting the b takes us to q6, from where we can reduce, which finally takes us to q4. From there,
we can shift the remaining a (to q5), with which we have fully recognized β. We can now reduce both
β and with that, α, which takes us to the accepting state q8.

Stack Constraints on Derivation Tree Remaining Input Operation

εq0 – aaba initial state
εq0 a 1q1 – aba shift a, 1
εq0 a 1q1 a 11q1 – ba shift a, 1
εq0 a 1q1 0 1 1q3 11 0 γ1 ba reduce γ1

εq0 1 1 εq2 1 1 β1

11 0 γ1

ba reduce β1

εq0 1 1 εq2 b 1+q6 1 1 β1

11 0 γ1

a shift b, 1+

εq0 1 1 εq2 0 2 1+q4 1 1 β1

11 0 γ2

a reduce γ2

εq0 1 1 εq2 0 2 1+q4 a 1+q5 1 1 β1

11 0 γ2

ε shift a, ε

εq0 1 1 εq2 1 2 εq7 1 1 β2 ε reduce β2

εq0 2 1 εq8 ε 2 α1 ε reduce α1

Figure 15. Sample LR parser run with w = aaba.

The way the different parsing operations can lead to new configurations can be described by
a corresponding parsing schema, i.e., a set of deduction rules and a goal item specification. This is
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given in the following definition (the use of set union C1 ∪ C2 in these rules assumes C1 ∩ C2 = ∅)
(comparing the configurations of a LCFRS-TA to the configurations of our parser, it becomes clear
that one problem of the TA is that, because of possible call-predict loops, we can have infinitely many
configurations in a TA. [23] avoids this problem by a dynamic programming implementation of TAs.
In our automata, this problem does not occur because of the regular expressions we use as addresses).

Definition 11 (LR Parsing: Deduction Rules). Let G = 〈N, T, P, S〉 be a LCFRS, 〈action, goto〉 its LR
parse table, and q0 and qacc as introduced above.

The set of possible configurations for the LR parser is then defined by the following deduction rules:

• Initial configuration: 〈εq0, ∅, 0〉
• Shift:

〈Γpq, C, j〉
〈Γpqwj+1 pp′q′, C, j + 1〉 action(q, wj+1) = s(p′, q′)

Reduce 1:
〈ΓpkqkXk . . . p1q1X1 pq, C, j〉

〈Γpkqk l 1 pk p′q′, fC(C ∪ {p l γ1} ∪ CC), j〉
r(γ, 1) ∈ action(q,−), k = |lhs(γ, 0)|,
goto(qk , lhs(γ)1) = 〈p′ , q′〉, l /∈ NC

Reduce 2:
〈ΓpkqkXk . . . p1q1X1 pq, C ∪ {p′′ l γi−1}, j〉
〈Γpk : qk l i pk p′q′, fC(C ∪ {pnew l γi} ∪ CC), j〉

r(γ, i) ∈ action(q,−), 1 < i, k = |lhs(γ, i− 1)|,
A = lhs(γ), goto(qk , Ai) = 〈p′ , q′〉,
L(pnew) = L(p′′) ∩ L(pk p′) 6= ∅

where in both reduce operations,

1. CC = { l Cd m | m n ∈ {X1, . . . , Xk} for some n ≥ 1, m n stands for the nth component of the dth
righthand side element of γ for some n ≥ 1, and l Cd m /∈ C}.

2. fC(C) is defined as the closure of C under application of the following rules:

(a) Compilation of address information:
C ∪ {p1 i x, p2 j y, i Cd

j }
C ∪ {p′1 i x, p′1d j y, i Cd

j } L(p′1d) = L(p1d) ∩ L(p2)

(b) Removal of daughters of completed rules:

C ∪ {p i1 γk, pd i2 x, i1 Cd i2 }
C ∪ {p i1 γk}

k = dim(lhs(γ)), 1 ≤ d ≤ |rhs(γ)|

• Goal items: 〈εq0 i 1 εqacc, {ε i α1}, |w|〉 for some i ∈ N and α ∈ P with lhs(α) = S.

4.4. An Example with Crossing Dependencies

The running example we have considered so far generates only a context-free language. It was
chosen for its simplicity and for the fact that it has a non-terminal with a fan-out > 1 and a left
recursion in one of the components, which requires the use of regular expressions. Let us now consider
the LCFRS in Figure 16, an LCFRS for a language that is not context-free with a cross-serial dependency
structure. We have again left recursions, this time in all components of the rules βa and βb. And the
rank of the grammar is 2, not 1 as in the running example we have considered so far. This gives us
more interesting derivation trees.

α : S(xyzu)→ A(x, z)B(y, u)
βa : A(xa, ya)→ A(x, y) γa : A(a, a)→ ε
βb : B(xb, yb)→ B(x, y) γb : B(b, b)→ ε

Figure 16. A LCFRS for {anbmanbm | n, m ≥ 1}.
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The LR automaton for this grammar is given in Figure 17. Since we have a left recursion in both
components of the β rules, the predict and resume closures of the items that start the traversal of
these components contain each an infinite number of addresses in the derivation tree, encoded in a
regular expression (1+ or 2+). This automaton leads then to the parse table in Figure 18. As can be
seen, the grammar does not allow for a deterministic parsing since, when being in q0 for instance and
having completed the first component of an A, this can lead to q1 or q5, consequently there are several
entries in the corresponding goto-field.

Figure 19 gives a sample parse (only successful configurations) for the input aabaab.
When reducing the components of the A yields (nodes 0 and 1 ) and of the components of the
B yields ( 2 ), we do not know the exact address of these elements in the derivation tree. Only in the
last reduce step, it becomes clear that the 1 and 2 nodes are immediate daughters of the root of the
derivation tree, and their addresses are resolved to 1 and 2 respectively.

ε : S,
ε : S(•xyzu)→ A(x, z)B(y, u),
1+ : A(•a, a)→ ε,
1+ : A(•xa, ya)→ A(x, y)

q0

ε : S• q4

ε : A(x • a, ya)→ A(x, y) q1

ε : A(xa•, ya)→ A(x, y) q2

ε : A(a•, a)→ ε q3

ε : S(x • yzu)→ A(x, z)B(y, u),
2+ : B(•b, b)→ ε,
2+ : B(•xb, yb)→ B(x, y)

q5

ε : B(x • b, yb)→ B(x, y) q6

ε : B(xb•, yb)→ B(x, y) q7

ε : B(b•, b)→ ε q8

ε : S(xy • zu)→ A(x, z)B(y, u),
1+ : A(a, •a)→ ε,
1+ : A(xa, •ya)→ A(x, y)

q9

ε : A(xa, y • a)→ A(x, y) q10

ε : A(xa, ya•)→ A(x, y) q11

ε : A(a, a•)→ ε q12

ε : S(xyz • u)→ A(x, z)B(y, u),
2+ : B(b, •b)→ ε,
2+ : B(xb, •yb)→ B(x, y)

q13

ε : B(xb, y • b)→ B(x, y) q14

ε : B(xb, yb•)→ B(x, y) q15

ε : B(b, b•)→ ε q16

ε : S(xyzu•)→ A(x, z)B(y, u)q17

ε : S1

1+ : A1
ε : a

1+ : a

ε : A1

2+ : B1
ε : b

2+ : b

ε : B1

1+ : A2
ε : a

1+ : a

ε : A2

2+ : B1
ε : b

2+ : b

ε : B2

Figure 17. LR automaton for {anbmanbm | n, m ≥ 1}.
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a b A1 A2 B1 B2 S1
0 s(1+, 3) 〈1+, 1〉, 〈ε, 5〉 〈ε, 4〉
1 s(ε, 2)
2 r(βa, 1)
3 r(γa, 1)
4 acc
5 s(2+, 8) 〈2+, 6〉, 〈ε, 9〉
6 s(ε, 7)
7 r(βb, 1)
8 r(γb, 1)
9 s(1+, 12) 〈1+, 10〉, 〈ε, 13〉
10 s(ε, 11)
11 r(βa, 2)
12 r(γa, 2)
13 s(2+, 16) 〈2+, 14〉, 〈ε, 17〉
14 s(ε, 15)
15 r(βb, 2)
16 r(γb, 2)
17 r(α1, 1)

Figure 18. Parse table obtained from the LR automaton for {anbmanbm | n, m ≥ 1}.

Stack Constraints on Remaining Operation
Derivation Tree Input

εq0 – aabaab initial state
εq0 a 1+q3 – abaab shift a, 1+

εq0 0 1 1+q1 1+ 0 γa1 abaab reduce γa1

εq0 0 1 1+q1 a 1+q2 1+ 0 γa1 baab shift a, ε

εq0 1 1 ε q5 1+ 1 βa1

1+1 0 γa1

baab reduce βa1

εq0 1 1 ε q5 b 2+q8 1+ 1 βa1

1+1 0 γa1

aab shift b, 2+

εq0 1 1 ε q5 2 1 ε q9 1+ 1 βa1

1+1 0 γa1

2+ 2 γb1 aab reduce γb1

εq0 1 1 ε q5 2 1 ε q9 a 1+q12 1+ 1 βa1

1+1 0 γa1

2+ 2 γb1 ab shift a, 1+

εq0 1 1 ε q5 2 1 ε q9 0 2 1+q10 1+ 1 βa1

1+1 0 γa2

2+ 2 γb1 ab reduce γa2

εq0 1 1 ε q5 2 1 ε q9 0 2 1+q10 a 1+q11 1+ 1 βa1

1+1 0 γa2

2+ 2 γb1 b shift a, ε

εq0 1 1 ε q5 2 1 ε q9 1 2 ε q13 1+ 1 βa2 2+ 2 γb1 b reduce βa2

εq0 1 1 ε q5 2 1 ε q9 1 2 ε q13 b 2+q16 1+ 1 βa2 2+ 2 γb1 ε shift b, 2+

εq0 1 1 ε q5 2 1 ε q9 1 2 ε q13 2 2 ε q17 1+ 1 βa2 2+ 2 γb2 ε reduce γb2

εq0 3 1 ε q4 ε 3 α1 ε reduce α1

Figure 19. Sample LR parser run with w = aabaab (only successful configurations).
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As mentioned, this grammar does not allow for a deterministic parsing. With one additional
lookahead, the grammar would become deterministic (the ε-possibility is to be taken when being at
the end of one of the an or bm substrings of the input).

4.5. Deterministic Parsing

As mentioned, with one lookahead, LR parsing of the LCFRS in the previous example would
become deterministic.

In general, when doing natural language processing, the grammars will always be ambiguous and
a deterministic parsing is not possible. Instead, some way to share structure in the style of generalized
LR [29] parsing has to be found. In other applications, however, we might have LCFRSs that allow for
a deterministic parsing, similar to LR(k) parsing as in [27].

Non-determinism with LCFRS can arise not only from shift-reduce or reduce-reduce conflicts
as in CFGs but also from a conflict between different goto transitions that have the same component
non-terminal but different node addresses (see the multiple entries in the goto table of our example).
We therefore need lookaheads not only for reduce (and, if k > 1, shift) but also for the goto entries.

We now define, similar to the CFG case [27], sets of First symbols for dotted productions, which
contain all terminals that are reachable as first element of the yield, starting from the dotted production.
For every γi,j, let us define First(γ, i, j) as follows. (Remember that lhs(γ, i, j) gives the jth symbol of
the ith component in the lefthand side of γ, i.e., the element following the dot.)

1. ε ∈ First(γ, i, j) if lhs(γ, i, j) is not defined (i.e, the dot is at the end of the ith component);
2. a ∈ First(γ, i, j) if lhs(γ, i, j) = a (i.e., the dot precedes a);
3. a ∈ First(γ, i, j) if lhs(γ, i, j) = x ∈ V, x is the lth component in a righthand side element of γ

with non-terminal B, and there is a γB ∈ P with lhs(γB) = B such that a ∈ First(γB, l, 0).
4. Nothing else is in First(γ, i, j).

Besides this, we also need the notion of Follow. Follow sets are defined for all component
nonterminals Ai (A ∈ N, 1 ≤ i ≤ dim(A)) of our LCFRS. They contain the terminals that can
immediately follow the yield of such a component nonterminal.

1. $ ∈ Follow(S1) where S is the start symbol and $ /∈ T is a new symbol marking the end of
the input.

2. For every production γ with x ∈ V being the jth element of the ith lefthand side component
(indices start with i = 0 and j = 0) and x being the lth element of the yield of a nonterminal B
in the righthand side (also starting with l = 0), we have First(γi,j+1) ⊆ Follow(Bl+1), provided
First(γi,j+1) is defined.

3. For every production γ with lhs(γ) = A and with x ∈ V being the last element of the ith lefthand
side component (indices start with i = 0) and the lth element of the yield of a nonterminal B in
the righthand side (also starting with l = 0), we have Follow(Ai+1) ⊆ Follow(Bl+1).

4. Nothing else is in the sets Follow(Ai) of our component nonterminals.

For LR(1) parsing, i.e., LR parsing with 1 lookahead, we replace the items in our states with
triples consisting of the adress (regular expression), the dotted production γi,j and the possible next
terminal symbols. To this end, we define sets Next(γ, i, j) that are the First sets for dots that are not at
the end of components and otherwise the Follow-sets of the component non-terminal:

Next(γ, i, j) = First(γ, i, j) if γi,j+1 exists and Next(γ, i, j) = Follow(lhs(γ)i+1) otherwise.
A simple way to extend our automaton to LR(1) is by extending the items in the states as follows:

Every item with dotted production γi,j is equipped with the lookahead set Next(γ, i, j). Furthermore,
transitions are also labeled with triples where the new third element that is added is the terminal in
case of a shift transition and, in case of a transition that moves the dot over a non-terminal, the Next
set of the result of moving the dot according to the transition.
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Consider the sample automaton in Figure 17. q0 has two outgoing A1 edges with different
addresses. One (derivation tree node address ε) arises from moving the dot over the variable x in
S(•xyzu) → A(x, z)B(y, u). We have Next(S(x • yzu) → A(x, z)B(y, u)) = First(B(•b, b) → ε) ∪
First(B(•xb, yb)→ B(x, y)) = {b}, therefore this transition would be relabeled ε : A1 : {b}. The other
transition (address 1+) leads to A(x • a, ya)→ A(x, y), the First set is {a} and therefore this transition
would be relabeled 1+ : A1 : {a}.

Consequently, the goto part of the parse table, that would now have entries for every combination
of component non-terminal and lookahead symbol, would have at most one entry per field. Hence,
LR(1) parsing of our sample grammar is deterministic.

Concerning the reduce steps in the parse table, we would also have a lookahead. Here we can use
the elements from the Follow set of the reduced components as lookaheads. The r(βa, 1) reduce entry
for state q2 for instance would have the lookaheads from Follow(A1) = {a, b}.

Instead of this simple LR technique one can also compute the lookahead sets while constructing
the automaton, in the style of canonical LR parsing for CFGs. This would allow for more precise
predictions of next moves.

There are LCFRSs that do not allow for a deterministic LR parsing, no matter how long the length
k of the lookahead strings (the non-deterministic CFGs, which are 1-LCFRSs are such grammars).
But a precise characterization of the class of deterministic LCFRSs and an investigation of whether,
for every LR(k) LCFRS, we can find a weakly equivalent LR(0) LCFRS (as is the case for CFG), is left
for further research.

4.6. Soundness and Completeness of the LR Algorithm

In order to show soundness and completeness of the LR algorithm, we will relate it to the
LCFRS-TA for the same grammar. We will slightly modify the deduction rules for TA by assuming that
(1) call and predict steps are combined and the initial configuration is omitted, i.e., we start with the
result of the first predict steps; (2) we omit the publish steps; and (3) we don’t delete threads of finished
rules. The modified rules are given Figure 20. Concerning the LR automaton, we replace the regular
expressions in our parsing configurations with concrete addresses. In principal we can then have
infinitely many configurations in cases of left recursions (just like in the TA case), i.e., in cases where a
shift or goto transition comes with a regular expression denoting an infinite language. Furthermore,
we do not delete daughters of completed rules in the constraint set either, i.e., we assume that the
rule 2(b) in Definition 11 concerning the application of fC to the constraint set does not apply. Clearly,
this does not change the languages recognized by these automata, it just increases the set of possible
configurations. Since we use no longer regular expressions but single addresses, the deduction rules of
the LR parser get simpler. Immediate dominance constraints are no longer needed since they follow
from the addresses. The relevant deduction rules are given in Figure 21.
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Consider the sample automaton in Figure 17. q0 has two outgoing A1 edges with different
addresses. One (derivation tree node address ε) arises from moving the dot over the variable x in
S(•xyzu) → A(x, z)B(y, u). We have Next(S(x • yzu) → A(x, z)B(y, u)) = First(B(•b, b) → ε) ∪
First(B(•xb, yb)→ B(x, y)) = {b}, therefore this transition would be relabeled ε : A1 : {b}. The other
transition (address 1+) leads to A(x • a, ya)→ A(x, y), the First set is {a} and therefore this transition
would be relabeled 1+ : A1 : {a}.

Consequently, the goto part of the parse table, that would now have entries for every combination
of component non-terminal and lookahead symbol, would have at most one entry per field. Hence,
LR(1) parsing of our sample grammar is deterministic.

Concerning the reduce steps in the parse table, we would also have a lookahead. Here we can use
the elements from the Follow set of the reduced components as lookaheads. The r(βa, 1) reduce entry
for state q2 for instance would have the lookaheads from Follow(A1) = {a, b}.

Instead of this simple LR technique one can also compute the lookahead sets while constructing
the automaton, in the style of canonical LR parsing for CFGs. This would allow for more precise
predictions of next moves.

There are LCFRSs that do not allow for a deterministic LR parsing, no matter how long the length
k of the lookahead strings (the non-deterministic CFGs, which are 1-LCFRSs are such grammars).
But a precise characterization of the class of deterministic LCFRSs and an investigation of whether,
for every LR(k) LCFRS, we can find a weakly equivalent LR(0) LCFRS (as is the case for CFG), is left
for further research.

4.6. Soundness and Completeness of the LR Algorithm

In order to show soundness and completeness of the LR algorithm, we will relate it to the
LCFRS-TA for the same grammar. We will slightly modify the deduction rules for TA by assuming that
(1) call and predict steps are combined and the initial configuration is omitted, i.e., we start with the
result of the first predict steps; (2) we omit the publish steps; and (3) we don’t delete threads of finished
rules. The modified rules are given Figure 20. Concerning the LR automaton, we replace the regular
expressions in our parsing configurations with concrete addresses. In principal we can then have
infinitely many configurations in cases of left recursions (just like in the TA case), i.e., in cases where a
shift or goto transition comes with a regular expression denoting an infinite language. Furthermore,
we do not delete daughters of completed rules in the constraint set either, i.e., we assume that the
rule 2(b) in Definition 11 concerning the application of fC to the constraint set does not apply. Clearly,
this does not change the languages recognized by these automata, it just increases the set of possible
configurations. Since we use no longer regular expressions but single addresses, the deduction rules of
the LR parser get simpler. Immediate dominance constraints are no longer needed since they follow
from the addresses. The relevant deduction rules are given in Figure 21.

Initial configurations: 〈0, ε, {ε : α0,0}〉
lhs(α) = S

Predict:
〈l, p,S ∪ {p : γk,i}〉

〈l, pj,S ∪ {p : γk,i} ∪ {pj : γ′0,0}〉
γk,i → [γk,i]A ∈ Θ, A ∈ N, δ(γk,i) = j + 1, A→ γ′1,0 ∈ Θ

Scan:
〈j, p,S ∪ {p : γk,i}〉

〈j + 1, p,S ∪ {p : γk,i+1}〉
γk,i

wj+1→ γk,i+1 ∈ Θ

Suspend:
〈i, pj,S ∪ {p : γk,i, pj : βl,m}〉
〈i, p,S ∪ {p : γk,i+1, pj : βl,m}〉

[γk,i ]βl,m → γk,i+1[βl,m ] ∈ Θ or
βl,m → ret, [γk,i ]ret→ γk,i+1 ∈ Θ

Resume:
〈i, p,S ∪ {p : γk,i, pδ(γk,i) : βl,j}〉

〈i, pδ(γk,i),S ∪ {p : γk,i, pδ(γk,i) : βl+1,0}〉
γk,i[βl,j]→ [γk,i]βl+1,0 ∈ Θ

Goal item: 〈|w|, ε, {ε : α0,|lhs(α,1)|〉 with lhs(α) = S.

Figure 20. Revised deduction rules for TA configurations.Figure 20. Revised deduction rules for TA configurations.
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Initial configuration: 〈εq0, ∅, 0〉 Shift:
〈Γpq, C, j〉

〈Γpqwj+1 pp′q′, C, j + 1〉
action(q, wj+1)
= s(r, q′), p′ ∈ L(r)

Reduce 1:
〈ΓpkqkXk . . . p1q1X1 pq, C, j〉
〈Γpkqk l 1 pk p′q′, C ∪ {p l γ1}, j〉

r(γ, 1) ∈ action(q,−), k = |lhs(γ, 0)|,
goto(qk , lhs(γ)1) = 〈r, q′〉, p′ ∈ L(r), l /∈ NC

Reduce 2:
〈ΓpkqkXk . . . p1q1X1 pq, C ∪ {p l γi−1}, j〉

〈Γpkqk l i pk p′q′, C ∪ {p l γi}, j〉
r(γ, i) ∈ action(q,−),
1 < i, k = |lhs(γ, i− 1)|,
goto(qk , lhs(γ)i) = 〈r, q′〉, p′ ∈ L(r)

where for both reduce steps, any component pointer i m among the X1, . . . , Xk has an address pj for some
j ∈ {1, . . . , |rhs(γ)|}.
Goal items: 〈εq0 i 1 εqacc, {ε i α1}, |w|〉 for some i ∈ N and α ∈ P with lhs(α) = S.

Figure 21. LR deduction rules without regular expressions.

Figure 22 shows the correspondence between TA configurations and LR configurations for our
sample derivation of aaba.

TA Configurations LR Configurations

〈0, ε, {ε : α0,0}〉
〈εq0, ∅, 0〉〈0, 1, {ε : α0,0, 1 : β0,0}〉

〈0, 1, {ε : α0,0, 1 : γ0,0}〉
〈1, 1, {ε : α0,0, 1 : β0,1}〉

〈εq0 a 1q1, ∅, 1〉〈1, 1, {ε : α0,0, 1 : γ0,1}〉
〈1, 11, {ε : α0,0, 1 : β0,1, 11 : β0,0}〉
〈1, 11, {ε : α0,0, 1 : β0,1, 11 : γ0,0}〉
〈2, 11, {ε : α0,0, 1 : β0,1, 11 : β0,1}〉

〈εq0 a 1q1 a 11q1, ∅, 2〉〈2, 11, {ε : α0,0, 1 : β0,1, 11 : γ0,1}〉
〈2, 111, {ε : α0,0, 1 : β0,1, 11 : β0,1, 111 : β0,0}〉
〈2, 111, {ε : α0,0, 1 : β0,1, 11 : β0,1, 111 : γ0,0}〉
〈2, 1, {ε : α0,0, 1 : β0,2, 11 : γ0,1}〉 〈εq0 a 1q1 0 1 1q3, {11 0 γ1}, 2〉
〈2, ε, {ε : α0,1, 1 : β0,2, 11 : γ0,1}〉

〈εq0 1 1 εq2, {11 0 γ1, 1 1 β1}, 2〉〈2, 1, {ε : α0,1, 1 : β1,0, 11 : γ0,1}〉
〈2, 11, {ε : α0,1, 1 : β1,0, 11 : γ1,0}〉
〈3, 11, {ε : α0,1, 1 : β1,0, 11 : γ1,1}〉 〈εq0 1 1 εq2 b 11q6, {11 0 γ1, 1 1 β1}, 3〉
〈3, 1, {ε : α0,1, 1 : β1,1, 11 : γ1,1}〉 〈εq0 1 1 εq2 0 2 1q4, {11 0 γ2, 1 1 β1}, 3〉
〈4, 1, {ε : α0,1, 1 : β1,2, 11 : γ1,1}〉 〈εq0 1 1 εq2 0 2 1q4 a 1q5, {11 0 γ2, 1 1 β1}, 4〉
〈4, ε, {ε : α0,2, 1 : β1,2, 11 : γ1,1}〉 〈εq0 1 1 εq2 1 2 εq7, {11 0 γ2, 1 1 β2}, 4〉

〈εq0 2 1 εq8, {11 0 γ2, 1 1 β2, ε 2 α1}, 4〉

Figure 22. TA configurations and corresponding LR configurations for our sample parse of w = aaba.

We now define a function fTA that gives for every LR configuration the set of corresponding TA
configurations. The idea is the following: An LR configuration describes a path in our LR automaton.
This path yields several possible thread contents.

Before giving the formal definition, let us consider two examples from Figure 22 for illustration.
Take as a first example the LR configuration 〈εq0 a 1q1 a 11q1, ∅, 2〉. The corresponding path in our
automaton is

ε : S, ε : α0,0,
1 : β0,0, 1 : γ0,0

ε : q0
ε : β0,1, ε : γ0,1

1 : β0,0, 1 : γ0,0

1 : q1

ε : β0,1, ε : γ0,1

1 : β0,0, 1 : γ0,0

11 : q1

1 : a 1 : a

Figure 21. LR deduction rules without regular expressions.

Figure 22 shows the correspondence between TA configurations and LR configurations for our
sample derivation of aaba.

TA Configurations LR Configurations

〈0, ε, {ε : α0,0}〉
〈εq0, ∅, 0〉〈0, 1, {ε : α0,0, 1 : β0,0}〉

〈0, 1, {ε : α0,0, 1 : γ0,0}〉
〈1, 1, {ε : α0,0, 1 : β0,1}〉

〈εq0 a 1q1, ∅, 1〉〈1, 1, {ε : α0,0, 1 : γ0,1}〉
〈1, 11, {ε : α0,0, 1 : β0,1, 11 : β0,0}〉
〈1, 11, {ε : α0,0, 1 : β0,1, 11 : γ0,0}〉
〈2, 11, {ε : α0,0, 1 : β0,1, 11 : β0,1}〉

〈εq0 a 1q1 a 11q1, ∅, 2〉〈2, 11, {ε : α0,0, 1 : β0,1, 11 : γ0,1}〉
〈2, 111, {ε : α0,0, 1 : β0,1, 11 : β0,1, 111 : β0,0}〉
〈2, 111, {ε : α0,0, 1 : β0,1, 11 : β0,1, 111 : γ0,0}〉
〈2, 1, {ε : α0,0, 1 : β0,2, 11 : γ0,1}〉 〈εq0 a 1q1 0 1 1q3, {11 0 γ1}, 2〉
〈2, ε, {ε : α0,1, 1 : β0,2, 11 : γ0,1}〉

〈εq0 1 1 εq2, {11 0 γ1, 1 1 β1}, 2〉〈2, 1, {ε : α0,1, 1 : β1,0, 11 : γ0,1}〉
〈2, 11, {ε : α0,1, 1 : β1,0, 11 : γ1,0}〉
〈3, 11, {ε : α0,1, 1 : β1,0, 11 : γ1,1}〉 〈εq0 1 1 εq2 b 11q6, {11 0 γ1, 1 1 β1}, 3〉
〈3, 1, {ε : α0,1, 1 : β1,1, 11 : γ1,1}〉 〈εq0 1 1 εq2 0 2 1q4, {11 0 γ2, 1 1 β1}, 3〉
〈4, 1, {ε : α0,1, 1 : β1,2, 11 : γ1,1}〉 〈εq0 1 1 εq2 0 2 1q4 a 1q5, {11 0 γ2, 1 1 β1}, 4〉
〈4, ε, {ε : α0,2, 1 : β1,2, 11 : γ1,1}〉 〈εq0 1 1 εq2 1 2 εq7, {11 0 γ2, 1 1 β2}, 4〉

〈εq0 2 1 εq8, {11 0 γ2, 1 1 β2, ε 2 α1}, 4〉

Figure 22. TA configurations and corresponding LR configurations for our sample parse of w = aaba.

We now define a function fTA that gives for every LR configuration the set of corresponding TA
configurations. The idea is the following: An LR configuration describes a path in our LR automaton.
This path yields several possible thread contents.

Before giving the formal definition, let us consider two examples from Figure 22 for illustration.
Take as a first example the LR configuration 〈εq0 a 1q1 a 11q1, ∅, 2〉. The corresponding path in our
automaton is

ε : S, ε : α0,0,
1 : β0,0, 1 : γ0,0

ε : q0
ε : β0,1, ε : γ0,1

1 : β0,0, 1 : γ0,0

1 : q1

ε : β0,1, ε : γ0,1

1 : β0,0, 1 : γ0,0

11 : q1

1 : a 1 : a
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Each thread store in the corresponding TA configuration corresponds to a possible path through
these states.

• For every ε-element in the last state of this path (here ε : β0,1 or ε : γ0,1), we compute the TA
configurations 〈2, 11,Sβ〉 and 〈2, 11,Sγ〉 respectively for these elements:

Let us consider first the case of Sβ. We first define a set S ′β, starting with S ′β = {11 : β0,1}:

– Since 11 : β0,1 was obtained via the a-transition, from 1 : β0,0 in 1 : q1, we add 11 : β0,0 to S ′β.
– 11 : β0,0 in turn is in the second state on the path since we obtained it via prediction from

1 : β0,1, which is added to S ′β as well.
– Again, 1 : β0,1 arose out of a shift of a from 1 : β0,0, which is added as well and then, because

of predict in q0, we add ε : α0,0. This gives S ′β = {11 : β0,1, 11 : β0,0, 1 : β0,1, 1 : β0,0, ε : α0,0}.
– We then remove all items where there is an item with the same address and rule in the set but

with a lefthand side index that is more advanced. This yields S ′β = {11 : β0,1, 1 : β0,1, ε : α0,0},
which is the thread set Sβ we were looking for.

– In a similar way, for the γ case, we obtain Sγ = {11 : γ0,1, 1 : β0,1, ε : α0,0}
• In addition, we add all configurations that we can reach from the ones constructed so far via

predict or resume. These are reflected in corresponding items in the last state of our path. In our
sample case, 1 : β0,0 and 1 : γ0,0 are both elements of the last state and arose directly out of ε : β0,1

via predict. Therefore, we add these to the thread store with 11 : β0,1 being the active thread,
which leads to 〈2, 111, {ε : α0,0, 1 : β0,1, 11 : β0,1, 111 : β0,0}〉 and 〈2, 111, {ε : α0,0, 1 : β0,1, 11 : β0,1,
111 : γ0,0}〉.

• These are all configurations in fTA(〈εq0 a 1q1 a 11q1, ∅, 2〉).

Now consider as a second example 〈ε : q0 1 1 ε : q2 b 11 : q6, {11 0 γ1, 1 1 β1}, 3〉, corresponding to
the following path:

ε : S, ε : α0,0,
1 : β0,0, 1 : γ0,0

ε : q0
ε : α0,1

1+ : β1,0, 1+ : γ1,0

ε : q2

ε : γ1,1

1+ : q6
ε : A1 1+ : b

Again, we have to go back from the ε-element in the last state in order to construct the thread
store. The last element gives us 11 : γ1,1.

Consequently, the configuration is 〈3, 11,S〉 and we construct S starting with S ′ = {11 : γ1,1}.
Following the shift transition back adds 11 : γ1,0 to S ′. 11 : γ1,0, in turn, arose from a resume applied
to 1 : β1,0, which is therefore added as well. 1 : β1,0 was predicted from ε : α0,1, which is added as
well. Now we follow the A1-transition backwards and therefore add ε : α0,0. Finally, since for a specific
address and rule, we keep only the most advanced position, we obtain 〈3, 11, {ε : α0,1, 1 : β1,0, 11 : γ1,1}〉.

In order to define the corresponding TA-sets, we annotate the LR automaton with pointers that
show for each element c in any of the states, which other element c′ has lead to c, either because
of moving the dot over a terminal or a component variable or because of a predict/resume closure
operation. In the latter case, the pointer is labeled with the daughter index of the predict/resume
operation. For this annotation, we assume that instead of pairs r : c of regular expression and
comutation point, we use onyl pairs p : c of address and computation point. This means of course,
that we have potentially infinite states and potentially infinite predecessor paths through a state and
from one state to another.

Definition 12 (Predecessor Annotation). Let M be an LR-automaton with state set Q constructed from an
LCFRS G. Q = {〈x, q〉 | q ∈ Q, x ∈ q}.

We define the predecessor annotation of M as a labeled relation Predec ⊂ Q × Q ×
({1, . . . , rank(G)}∗ ∪ {−}) such that for every q ∈ Q and every p : c ∈ q:
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• If there is a p′ : c′ ∈ q such that p = p′i and pi : c can be deduced from p : c′ by the predict/resume rule
from Definition 7, 〈〈p : c, q〉, 〈p′ : c′, q〉, i〉 ∈ Predec.

• If p = ε and there is a q′ ∈ Q and a p′ : c′ ∈ q′ such that ε : c ∈ read({p′ : c′}, x, p′) for some
x ∈ T ∪ {Ai | A ∈ N, 1 ≤ i ≤ dim(A)}, then 〈〈p : c, q〉, 〈p′ : c′, q′〉,−〉 ∈ Predec.

Nothing else is in Predec.

Now we can define the set of possible TA stores for a given LR-configuration.
For every set of constraints C, we define Nodes(C) as the set of pointers in C. Furthermore, for

every pointer i ∈ Nodes(C), we define addr( i , C) as the address associated with i , and label( i , C) as
its label β j.

For a given LR configuration, we compute the corresponding TA configurations via deduction
rules. The items in these rules have the form [S , 〈Γ, C〉, i, p, p2 : c] with S a thread store, 〈Γ, C〉 a LR
configuration, i the index in the input, p an address and p2 : c an element of the topmost state in
Γ. We start with an empty thread store and our LR configuration. The deduction rules then either
move backwards inside the topmost Γ state or remove elements from Γ while adding corresponding
threads to the thread store. In the end, we will have an empty stack Γ and then, the thread store S
together with the index i and the address p of the current thread gives us one of the TA configurations
corresponding to the LR configuration we started with. p stays constant throughout the entire
computation. p1 represents the address of the daughter that has lead to moving into the current state.

Definition 13. Let G be an LCFRS, MG its LR automaton. For every input w ∈ T∗ and every configuration
〈Γ, C, i〉 that can be deduced via MG for the input w, we define fTA(〈Γ, C, i〉) = {〈i, p,S〉 | [S , 〈ε, ∅〉, i, p,−,−]
can be deduced from [∅, Γ, C, i,−,−,−] via the following deduction rules}.

• Current thread:
[∅, 〈Γp1q, C〉, i,−,−]

[{p1 p2 : c}, 〈Γp1q, C〉, i, p1 p2, p2 : c]
p2 : c ∈ q

• Predict/resume backwards:
[S , 〈Γp1q, C〉, i, p, p2 j : c]

[S ∪ {p1 p2 : c′}, 〈Γp1q, C〉, i, p, p2 : c′]
〈〈p2 j : c, q〉, 〈p2 : c′ , q〉, j〉
∈ Predec

• Shift backwards:
[S , 〈Γp1q′ a p1 p2q, C〉, i, p, ε : c]

[S , 〈Γp1q′, C〉, i, p, p2 : c′]
a ∈ T
and 〈〈ε : c, q〉, 〈p2 : c′ , q′〉,−〉 ∈ Predec

• Shift non-terminal backwards:
[S , 〈Γp1q′ k j p1 p2q, C〉, i, p, ε : c]

[S , 〈Γp1q′, C〉, i, p, p2 : c′]
∃n such that p1 p2n = addr( k , C) and
〈〈ε : c, q〉, 〈p2 : c′ , q′〉,−〉 ∈ Predec

• Empty stack:
[S , 〈εq0, C〉, i, p, ε : c]
[S , 〈ε, C〉, i, p,−]

• Add completed components:
[S , 〈ε, C〉, i, p,−]

[S ∪ {p′ : βi−1,|lhs(β,i)|}, 〈ε, C〉, i, p,−]
p′ k βi ∈ C,
p′ does not occur in S

Current thread picks one element p2 : c from the topmost state q in Γ as the starting element.
The address of the corresponding thread is a concatenation of the address p1 preceding q on the stack
and the address p2 of the chosen state element. Predict/resume backwards applies whenever the
address of the current state element is not ε, we then follow the Predec link and add a corresponding
new thread to our thread store. Shift backwards follows a Predec link that corresonds to a reversed
edge in the automaton labeled with a terminal. In this case, we do not change the thread store since
we already have a thread for the rule application in question with a more advanced index. We only
remove the shifted terminal and state from the LR stack and we split the address of the state and
the element within it according to the Predec link. Shift non-terminal backwards is a similar move
following a Predec link that corresonds to a reversed edge in the automaton labeled with a component
non-terminal. These four rules serve to reduce the LR stack while constructing threads out of it.
This process terminates with a single application of Empty stack. Once the stack is empty, we have to
take care of the components described in C. For all of these, if no corresponding thread exists, wee add
it by applying Add completed component.
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Lemma 14. Let G = (N, T, V, P, S) be a LCFRS of rank m. Let 〈N′, T, S, ret, δ, Θ〉 be the LCFRS-TA of G,
and let M be the LR-automaton constructed for G with 〈action, goto〉 being the LR parse table one can read
off M.

For every input word w ∈ T∗, with CTA being the set of TA configurations, CLR the set of LR configurations
arising from parsing w with the TA or the LR parser:

CTA =
⋃

cLR∈CLR

fTA(cLR)

Proof. Proof by induction over the deduction rules of the TA automaton and the LR parser:

• Initial configurations: c0 = 〈εq0, ∅, 0〉 ∈ CLR can be added as initial configuration in the LR
parser iff 〈0, ε, {ε : α0,0}〉 for every α ∈ P with lhs(α) = S are initial configurations in the TA and,
furthermore, for any configuration one can obtain from one of these initial TA configurations via
applications of Predict it holds that there is a corresponding element in q0. Conversely, except for
〈ε : S〉 ∈ q0, for every element in q0, there is a corresponding configuration in the TA containing
this element and all its predecessors as threads.

Predict in the TA starting from any of the 〈0, ε, {ε : α0,0}〉:
〈0, p,S ∪ {p : γ0,0}〉

〈0, pj,S ∪ {p : γ0,0} ∪ {pj : γ′0,0}〉
γ0,0 → [γ0,0]A ∈ Θ, A ∈ N, δ(γ0,0) = j + 1,
A→ γ′1,0 ∈ Θ, i.e., A = lhs(γ′)

Elements in q0 are obtained by

– Initial predict:
ε : S

ε : α0,0
lhs(α) = S

– Predict closure on q0 in the LR automaton:
p : γ0,0

pj : γ′0,0

lhs(γ, 0, 0) = rhs(γ, j− 1, 0),
rhs(γ, j) = lhs(γ′)

with a Predec link labeled j from the consequent item to the antecedent item.

Consequently, we obtain that the set of TA configurations we get by using only the initial rule and
Predict is exactly fTA(c0), i.e., the union of all fTA(c) for LR configurations we can obtain by the
initial rule.

• Scan and Shift: We now assume that we have sets CTA of TA configurations and CLR of LR
configurations such that CTA =

⋃
cLR∈CLR

fTA(cLR).

To show: For any pair cLR, fTA(cLR) contained in the two sets and for any terminal a and any
address p: cTA,1, . . . , cTA,k are all the configurations in fTA(cLR) with current thread address p that
allow for an application of Scan with a, the new configurations being c′TA,1, . . . , c′TA,k iff cLR allows
to derive a new configuration c′LR via an application of Shift with the terminal a and address
p, such that the following holds: fTA(c′LR) =

⋃k
i=1 c′TA,i where c′TA is the closure of {c′TA} under

applications of Predict and Resume.

Let us repeat the operations Scan and Shift:

Scan in the TA:
〈j, p,S ∪ {p : γk,i}〉

〈j + 1, p,S ∪ {p : γk,i+1}〉
γk,i

wj+1→ γk,i+1 ∈ Θ

Shift in the LR automaton:
〈Γp1q, C, j〉

〈Γp1qwj+1 p1 p2q′, C, j + 1〉
action(q, wj+1)
= s(r, q′), p2 ∈ L(r)

Let cTA,i = 〈j, p,S ∪ {p : γi
mi ,ni
}〉 for 1 ≤ i ≤ k. According to our induction assumption,

cLR has a form 〈Γp1q, C, j〉 such that there exist a p2 : γi
mi ,ni
∈ q with p = p1 p2 for all 1 ≤ i ≤ k.

Furthermore, the dot in γi
mi ,ni

precedes a terminal a = wj+1, we consequently can perform scans on
cTA,1, . . . , cTA,k and there is a shift transition action(q, a) = s(r, q′), p2 ∈ L(r). Consequently, we can
obtain new TA configurations c′TA,i = 〈j + 1, p,S ∪ {p : γi

mi ,ni+1}〉 and a new LR configuration
〈Γp1qwj+1 p1 p2q′, C, j + 1〉 in the LR automaton.
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According to the LR automaton construction, {ε : γ1
m1,n1+1, . . . , ε : γk

mk ,nk+1} = q′ with ε : γi
mi ,ni+1

having a predecessor link pointing to p2 : γi
mi ,ni

in q. Further elements in q′ are obtained by predict
and resume and are linked to the elements with address ε by a predecessor chain. The same predict
and resume operations can be applied to the corresponding TA configurations c′TA,1, . . . , c′TA,k as
well. Therefore our induction assumption holds.

• Suspend and Reduce: We assume again that we have sets CTA of TA configurations and CLR of
LR configurations such that CTA =

⋃
cLR∈CLR

fTA(cLR).

To show: For any pair cLR, fTA(cLR) contained in the two sets: there is a cTA ∈ fTA(cLR) that allows
to derive a new configuration c′TA via an application of suspend iff cLR allows to derive a new
configuration c′LR via an application of reduce 1/2 such that fTA(c′LR) = c′TA.

Let cTA = 〈i, pj,S ∪ {p : γk,n, pj : βl,m}〉 such that a suspend can be applied resulting in 〈i, p,S ∪
{p : γk,n+1, pj : βl,m}〉. According to our induction assumption, cLR has a form 〈Γpjq, C, i〉 such
that there exists a ε : βl,m ∈ q (without loss of generality, we assume our grammars to be ε-free.
Consequently, computation points with the dot at the end of a component cannot arise from
predict or resume operations and therefore always have address ε). Furthermore, since in βl,m, the
dot is at the end of the (l + 1)th component, we have r(β, l + 1) ∈ action(q,−).
Let us remind the suspend and reduce operations:

TA Suspend:
〈i, pj,S ∪ {p : γk,n, pj : βl,m}〉
〈i, p,S ∪ {p : γk,n+1, pj : βl,m}〉

[γk,i ]βl,m → γk,n+1[βl,m ] ∈ Θ or
βl,m → ret, [γk,n ]ret→ γk,n+1 ∈ Θ

LR Reduce 1:
〈ΓpkqkXk . . . p1q1X1 pjq, C, i〉
〈Γpkqk l 1 pk p′q′, C ∪ {pj l β1}, i〉

r(β, 1) ∈ action(q,−), k = |lhs(γ, 0)|,
goto(qk , lhs(γ)1) = 〈r, q′〉, p′ ∈ L(r), l /∈ NC

LR Reduce 2:
〈ΓpkqkXk . . . p1q1X1 pjq, C ∪ {pj l βl−1}, i〉

〈Γpkqk l l pk p′q′, C ∪ {pj l βl}, i〉
r(β, l) ∈ action(q,−),
1 < l, k = |lhs(β, l − 1)|,
goto(qk , lhs(β)l) = 〈r, q′〉, p′ ∈ L(r)

where for both reduce steps, any component pointer i m among the X1, . . . , Xk has an address pjm
for some m ∈ {1, . . . , |rhs(β)|}.
The only difference between the two reduce steps is that in the first, a first component is found
and therefore a new pointer added to C, while in the second, only the component index of an
already present pointer in C is incremented.

In our case, there must be elements p′ : γk,n, p′ j : βl,0 ∈ qk such that pk p′ = p and ε : γk,n+1 ∈ q′.
This means that for the resulting LR configuration, we obtain exactly the TA thread store plus
eventually additional store entries obtained from predict or resume operations.

4.7. Comparison to TAG Parsing

As mentioned in the beginning, LR parsing has also been proposed for TAG [31,41]. The LR states
in this case contain dotted productions that correspond to small subtrees (a node and its daughters)
in the TAG elementary trees. They are closed under moving up and down in these trees, predicting
adjunctions and predicting subtrees below foot nodes. There are two different transitions labeled with
non-terminal symbols in the LR automata constructed for TAG: Transitions that correspond to having
finished a subtree and moving the dot over the corresponding non-terminal node and transitions
that correspond to having finished the part below a foot node and moving back into the adjoined
auxiliary tree. The latter transitions are labeled with the adjunction site. In the parser, when following
such a transition, the adjunction site is stored on the stack of the parser. Adjunctions can be nested,
consequently, we can have a list (actually a stack) of such adjunction sites that we have to go back
to later. This way to keep track of where to go back to once the adjoined tree is entirely processed
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corresponds to the derivation node addresses we have in the thread automata and the LCFRS LR parser
since both mechanisms capture the derivation structure. The difference is that with TAG, we have a
simple nested structure without any interference of nested adjunctions in different places. And the
contribution of auxiliary trees in the string contains only a single gap, consequently only a single
element in the daughter list of a node contains such information about where to go back to when
having finished the auxiliary tree. Therefore each of these chains of adjunctions can be kept track of
locally on the parser stack.

Restricting our LR parser to well-nested 2-LCFRS amounts to restricting it to TAG. This restriction
means that our LCFRS rules have the following form: Assume that γ = A(α0, . . . , αdim(A)−1) →
A1(x(1)0 , . . . , x(1)dim(A1)−1) · · · Am(x(m)

0 , . . . , x(m)
dim(Am)−1) is a rule in such an LCFRS. Then we can partition

the righthand side into minimal subsequences A1 . . . Ai1 , . . . , Aik . . . Am such that a) the yields of these
subsequences do not cross; b) every subsequence either (i) contains only a single non-terminal or
(ii) has a first element of fan-out 2 that wraps around the yields of the other non-terminals. In this latter
case, the yield of the second to last non-terminals can again be partitioned in the same way. Consider as
an example a rule A(x1x2x3x4x5x6x7)→ B(x1)C(x2, x6)D(x3, x5)E(x4)F(x7). Here, we can partition
the righthand side into the daughter sequences B and C, D, E and F that can be parsed one after the
other without having to jump back and forth between them. Concering C, D, E, the C wraps around
D, E and, concerning this shorter sequence, D wraps around E. This means that during parsing, when
processing the yield of one of these subsequences, we have to keep track of the last first component of
some non-terminal that we have completed since this will be the first one for which we have to find
a second component. We can push this information on a stack and have to access only the top-most
element. There is no need to search through the entire partial derivation structure that has already
been built in order to find a matching first component when reducing a second one. On the parse stack,
it is enough to push the rule names for which we have completed a first component and still need
to find a second. Pointers to the derivation structure are no longer needed. And node addresses are
not needed either. Besides nestings between sisters as in this example, we can also have embedded
nestings in the sense that a first comoponent is part of some other component. In this case, we have to
finish the lower non-terminal before finishing the higher. In reductions of first components, we keep
can keep track of embedded first components by removing them from the stack and popping them
again after having added the new element. This makes sure that the second component of the most
deeply embedded first component inside the rightmost first component of what we have processed so
far must be completed next.

The LR automaton does not need node addresses any longer. Besides this, it looks exactly like the
automata we have built so far. As an example consider the LR automaton in Figure 23.

Whenever we reduce a first component of a rule with fan-out 2, we push the rule name on the
component stack and any stack symbols corresponding to daughters of this component (i.e., the first
component non-terminals are part of the reduced yield but not the corresponding second one) are
taken from this stack and then pushed on an extra stack attached to the new rule symbol, such that the
rightmost daughter is the highest element on this embedded stack. Whenever we reduce a second
component, we must have the corresponding rule name as the top stack element and then we can delete
it. The top is defined as follows: If the top is an element without attached stack, it is itself the top of the
entire stack. If not, the top of its attached stack is the top of the entire stack structure. An example
is given in Figure 24. This example involves two reduce steps with first components, the first in
state q9 where the rule name γ is pushed on the stack. In the second reduce step, we reduce the first
component of β. This contains a non-terminal A1 for which we have not seen the corresponding A2 yet.
Therefore, one symbol is popped from the stack (for A1), and the new β is pushed with an attached
stack containing the removed γ. Whenever we reduce a second component of a rule, the top-most
stack element must be the name of that rule.
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S,
S(•xy)→ A(x, y),
A(•axb, cy)→ A(x, y),
A(•ab, c)→ ε

q0

A(a • xb, cy)→ A(x, y),
A(a • b, c)→ ε
A(•axb, cy)→ A(x, y),
A(•ab, c)→ ε

q1

S(x • y)→ A(x, y),
A(axb, •cy)→ A(x, y),
A(ab, •c)→ ε

q2 A(ab•, c)→ A(x, y)q3

A(ax • b, cy)→ A(x, y)q9

A(axb, c • y)→ A(x, y)
A(ab, c•)→ ε
A(axb, •cy)→ A(x, y),
A(ab, •c)→ ε

q4

S(xy•)→ A(x, y)q7

A(axb, cy•)→ A(x, y)q5

S• q8

A(axb•, cy)→ A(x, y) q6

b

S1

a

a

c

A1

c

A2

A2

b A1

Figure 23. LR automaton for an LCFRS with rules α : S(xy) → A(x, y), γ : A(ab, c) → ε, β :
A(axb, cy)→ A(x, y).

parsing stack rem. input component stack operation
q0 aabbcc –
q0 a q1 abbcc – shift
q0 a q1 a q1 bbcc – shift
q0 a q1 a q1 b q3 bcc – shift
q0 a q1 A1 q9 bcc γ reduce γ1
q0 a q1 A1 q9 b q6 cc γ shift
q0 A1 q2 cc β[γ] reduce β1 (γ1 is a daughter)
q0 A1 q2 c q4 c β[γ] shift
q0 A1 q2 c q4 c q4 – β[γ] shift
q0 A1 q2 c q4 A2 q5 – β reduce γ2
q0 A1 q2 A2 q7 – – reduce β2
q0 S1 q8 – – reduce α1

Figure 24. Parsing trace for aabbcc (only successful configurations), well-nested 2-LCFRS parsing.

5. Conclusions

This paper presents the first LR style algorithm for LCFRS parsing. It extends the well-known
LR parsing techniques from CFG to the case of LCFRS where a single non-terminal can span several
non-adjacent strings in the input. Even though the derivation structure needs to be kept track
off during parsing in order to make sure that the correct components are related to each other,
the proposed algorithm constructs only a finite automaton, by capturing derivation tree addresses in
regular expressions whenever left recursions occur in some component.

The resulting parsing algorithm extends previous work on incremental Earley-style LCFRS
parsing and on Thread Automata, an automaton model for LCFRS that proceeds in an incremental way
but that does not precompile predict and resume steps the way it is proposed for the LR construction
in this paper.
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