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Abstract: In this paper, we propose a local convergence analysis of an eighth order three-step
method to approximate a locally unique solution of a nonlinear equation in a Banach space setting.
Further, we also study the dynamic behaviour of that scheme. In an earlier study, Sharma and
Arora (2015) did not discuss these properties. Furthermore, the order of convergence was shown
using Taylor series expansions and hypotheses up to the fourth order derivative or even higher
of the function involved which restrict the applicability of the proposed scheme. However, only
the first order derivatives appear in the proposed scheme. To overcome this problem, we present
the hypotheses for the proposed scheme maximum up to first order derivative. In this way, we
not only expand the applicability of the methods but also suggest convergence domain. Finally, a
variety of concrete numerical examples are proposed where earlier studies can not be applied to
obtain the solutions of nonlinear equations on the other hand our study does not exhibit this type of
problem/restriction.

Keywords: Kung-Traub method; local convergence; divided difference; Banach space; Lipschitz
constant; radius of convergence

1. Introduction

Numerical analysis is a wide-ranging discipline having close connections with mathematics,
computer science, engineering and the applied sciences. One of the most basic and earliest problems
of numerical analysis are concerned with efficiently and accurately finding the approximate locally
unique solution x∗ of an equation of the form

F(x) = 0, (1)

where F is a Fréchet differentiable operator defined on a convex subset D of X with values in Y,
where X and Y are Banach spaces.

Analytical methods for solving such equations are almost non-existent for obtaining the exact
numerical values of the required roots. Therefore, it is only possible to obtain approximate
solutions and one has to be satisfied with approximate solutions up to any specified degree of
accuracy, by relying on numerical methods which are based on iterative procedures. Therefore,
worldwide, researchers resort to an iterative method and a plethora of iterative methods has been
proposed [1–15]. While using these iterative methods, researchers face the problems of slow
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convergence, non-convergence, divergence, inefficiency or failure (for detail please see Traub [14]
and Petkovíc et al. [11]).

The convergence analysis of iterative methods is usually divided into two categories: semi-local
and local convergence analysis. The semi-local convergence matter is, based on the information
around an initial point, to give criteria ensuring the convergence of iterative procedures. On the
other hand, the local convergence is based on the information around a solution, to find estimates
of the radii of convergence balls. A very important problem in the study of iterative procedures is
the convergence domain. Therefore, it is very important to propose the radius of convergence of the
iterative methods.

We study the local convergence analysis of a three step method defined for each
n = 0, 1, 2, . . . by

yn = xn − F′(xn)
−1F(xn),

zn = φ4(xn, yn),

xn+1 = φ8(xn, yn, zn)

= zn − (2[zn, yn; F]− [zn, xn; F])−1 (F′(xn)− [yn, xn, F] + [zn, yn; F]
)

F(xn)
−1F(zn),

(2)

where x0 ∈ D is an initial point, [·, ·; F] : D2 → L(X), φ4 is any two-point optimal fourth-order scheme
and φ8(x, y, z) := z− (2[z, y; F]− [z, x; F])−1 (F′(x)− [y, x; F] + [z, y; F])F′(x)−1F(z). The eighth order
of convergence of method Equation (2) was shown in [13] when X = Y = R and [x, y; F] = F(x)−F(y)

x−y
for x 6= y and [x, x; F] = F′(x). That is when [·, ·; F] is a divided difference of first order of operator
F [4,5]. The local convergence was shown using Taylor series expansions and hypotheses reaching up
to the fifth order derivative. The hypotheses on the derivatives of F limit the applicability of method
Equation (2). As a motivational example, define function F on X = Y = R, D = [− 1

π , 2
π ] by

F(x) =

 x3 log(π2x2) + x5 sin
(

1
x

)
, x 6= 0

0, x = 0
.

Then for x 6= 0,we have

F′(x) = 2x2 − x3 cos
(

1
x

)
+ 3x2 log(π2x2) + 5x4 sin

(
1
x

)
,

F′′(x) = −8x2 cos
(

1
x

)
+ 2x(5 + 3 log(π2x2)) + x(20x2 − 1) sin

(
1
x

)
and

F′′′(x) =
1
x

[
(1− 36x2) cos

(
1
x

)
+ x

(
22 + 6 log(π2x2) + (60x2 − 9) sin

(
1
x

))]
.

One can easily see that the function F′′′ is unbounded on D at the point x = 0. Hence,
the results in [13] cannot be applied to show the convergence of method Equation (2) or its special
cases requiring hypotheses on the fifth derivative of function F or higher. Notice that, in particular
there is a plethora of iterative methods for approximating solutions of nonlinear equations [1–15].
These results show that initial guesses should be close to the required root for the convergence of the
corresponding methods. However, how close should an initial guess should be for the convergence of
the corresponding method to be possible? These local results give no information on the radius of the
ball convergence for the corresponding method. The same technique can be used for other methods.

In the present study, we expand the applicability of method given by Equation (2) using only
hypotheses on the first order derivative of function F. We also propose the computable radii of
convergence and error bounds based on the Lipschitz constants. We further present the range of initial
guesses x∗ that tell us how close the initial guesses should be required to guarantee the convergence
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of the method Equation (2). This problem was not addressed in [13]. The advantages of our approach
are similar to the ones already mentioned for the method described by Equation (2).

The rest of the paper is organised as follows: in Section 2, we present the local convergence
analysis of scheme Equation (2). Section 3 is devoted to the numerical examples which demonstrate
our theoretical results. Finally, the conclusion is given in Section 4.

2. Local Convergence: One Dimensional Case

In this section, we define some scalar functions and parameters to study the local convergence
of method Equation (2).

Let K0 > 0, K1 > 0, K > 0, L0 > 0, L > 0, M ≥ 1, λ > 1 be given constants. Let us also
assume g2 :

[
0, 1

L0

)
→ R, be a nondecreasing and continuous function. Define functions g1 and p in

the interval
[
0, 1

L0

)
by

g1(t) =
Lt

2(1− L0t)
, p(t) = (K0g2(t)tλ−1 + K1)t

and parameter r1 by

r1 =
2

2L0 + L
.

Notice that the function g1 is a monotonically increasing function on the interval [0, 1). We have
g1(r1) = 1 and for each t ∈ [0, r1) : 0 ≤ g1(t) < 1. Further, define function h2 :

[
0, 1

L0

)
→ R

by h2(t) = g2(t)tλ−1 − 1.
Suppose that

g2(t)tλ−1 < 1, for each [0, r1) ,

h2(l) > 0,

as t→ l < r1 for some l > 0.

(3)

Then, we have h2(0) = −1 < 0. By Equation (3) and the intermediate value theorem, function
h2 has zeros in the interval (0, l). Further, let r2 be the smallest such zero. Further, define functions q
and hq on the interval

[
0, 1

L0

)
by q(t) = p(t) + 2

[
K0g2(t)tλ + K1g1(t)t

]
and hq(t) = q(t)− 1.

Using hq(0) = −1 < 0 and Equation (3), we deduce that function hq has a smallest zero denoted
by rq.

Finally, define functions g3 and h3 on the interval [0, rq) by

g3(t) =

(
1 +

(
K + (L0 + K1)t + K0g1(t)t

)
M(

1− L0t
)(

1− q(t)
) )

g2(t)tλ−1

and
h3(t) = g3(t)− 1.

Then, we get h3(0) = −1 and h3(t)→ +∞ as t→ r−q . Denote by r3 the smallest zero of function
h3 on the interval (0, r−q ). Define

r = min{r1, r2, r3}. (4)

Then, we have that

0 < r ≤ r1 <
1
L0

(5)

and for each t ∈ [0, r)
0 ≤ g1(t), (6)
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0 ≤ p(t), (7)

0 ≤ q(t) < 1, (8)

0 ≤ g2(t) < 1 (9)

and
0 ≤ g3(t) < 1. (10)

U(γ, s) and Ū(γ, s) stand, respectively for the open and closed balls in X with center γ ∈ X and
radius s > 0.

Next, we present the local convergence analysis of scheme Equation (2) using the
preceding notations.

Theorem 1. Let us consider F : D ⊂ X → Y be a Fréchet differentiable operator. Let us also assume
[·, · ; F] : D2 → L(X) be a divided difference of order one. Suppose there exist x∗ ∈ D, a neighborhood D0 of
D, L0 > 0, λ > 1 such that Equation (3) holds and for each x ∈ D0

F(x∗) = 0, F′(x)−1 ∈ L(Y, X) (11)

‖z(x)− x∗‖ ≤ g2(‖x− x∗‖)‖x− x∗‖λ (12)

and ∥∥∥F′(x∗)−1 (F′(x)− F′(x∗)
)∥∥∥ ≤ L0‖x− x∗‖, (13)

where z(x) = φ4
(

x, x− F′(x)−1F(x)
)
.

Moreover, suppose that there exist K0 > 0, K1 > 0, K > 0, L > 0 and M ≥ 1 such that for each
x, y ∈ U

(
x∗, 1

L0

)
∩D0∥∥∥F′(x∗)−1 ([x, y; F]− F′(x∗)

)∥∥∥ ≤ K0‖x− x∗‖+ K1‖y− x∗‖, (14)

∥∥∥F′(x∗)−1[x, y; F]
∥∥∥ ≤ K, (15)∥∥∥F′(x∗)−1 (F′(x)− F′(y)
)∥∥∥ ≤ L‖x− y‖, (16)∥∥∥F′(x∗)−1F′(x)
∥∥∥ ≤ M, (17)

and
Ū (x∗, r) ⊆ D0, (18)

where the radius of convergence r is defined by Equation (4). Then, the sequence {xn} generated by method
Equation (2) for x0 ∈ U(x∗, r) − {x∗} is well defined, remains in U(x∗, r) for each n = 0, 1, 2, . . . and
converges to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (19)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (20)

and
‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (21)

where the “g” functions are defined by previously. Furthermore, for T ∈
[
r, 2

L0

)
, the limit point x∗ is the only

solution of equation F(x) = 0 in Ū(x∗, T) ∩D0.
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Proof of Theorem 1. We shall show that estimates Equations (19)–(21) with the help of mathematical
induction. By hypotheses x0 ∈ U(x∗, r)− {x∗}, Equations (5) and (13), we get that∥∥∥F′(x∗)−1 (F′(x0)− F′(x∗)

)∥∥∥ ≤ L0‖x0 − x∗‖ < L0r < 1. (22)

It follows from Equation (22) and the Banach Lemma on invertible operators [4,12] that
F′(x0)

−1 ∈ L(Y, X), y0 is well defined and∥∥∥F′(x0)
−1F′(x∗)

∥∥∥ ≤ 1
1− L0‖x0 − x∗‖ . (23)

Using the first substep of method Equation (2) for n = 0, Equations (4), (6), (11), (16) and (23),
we get in turn

‖y0 − x∗‖ =
∥∥∥x0 − x∗ − F′(x0)

−1F(x0)
∥∥∥

≤
∥∥∥F′(x0)

−1F′(x∗)
∥∥∥ ∥∥∥∥∫ 1

0
F′(x∗)−1 (F′(x∗ + θ(x0 − x∗))− F′(x0)

)
(x0 − x∗)dθ

∥∥∥∥
≤ L‖x0 − x∗‖2

1− L0‖x0 − x∗‖ = g1(‖x0 − x∗‖)‖x0 − x∗‖

≤ ‖x0 − x∗‖ < r,

(24)

which shows Equation (19) and y0 ∈ U(x∗, r). Then, from Equations (3) and (12), we see that (20)
follows for n = 0. Hence, z0 ∈ U(x∗, r). Next, we shall show that (2[z0, y0; F]− [z0, x0; F])−1 ∈
L(Y, X). Using Equations (12), (14) and the strict monotonicity of q, we obtain in turn that∥∥∥F′(x∗)−1 [2 ([z0, y0; F]− F′(x∗)

)
−
(
[z0, x0; F]− F′(x∗)

)]∥∥∥
≤ 2

∥∥∥F′(x∗)−1 ([z0, y0; F]− F′(x∗)
)∥∥∥+ ∥∥∥F′(x∗)−1 ([z0, x0; F]− F′(x∗)

)∥∥∥
≤ 2 (K0‖z0 − x∗‖+ K1‖y0 − x∗‖) + p(‖x0 − x∗‖)

≤ 2
(

K0g2(‖x0 − x∗‖)‖x0 − x∗‖λ + K1g1(‖x0 − x∗‖)‖x0 − x∗‖
)
+ p(‖x0 − x∗‖)

= q(‖x0 − x∗‖) < q(r) < 1.

(25)

That is ∥∥∥(2[z0, y0; F]− [z0, x0; F])−1 F′(x∗)
∥∥∥ ≤ 1

1− q(‖x0 − x∗‖) . (26)

Hence, x1 is well defined by the third substep of method Equation (2) for n = 0. We can write by
Equation (11)

F(x0) = F(x0)− F(x∗) =
∫ 1

0
F′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (27)

Notice that ‖x∗ + θ(x0 − x∗)− x∗‖ = θ‖x0 − x∗‖ < r, for all θ ∈ (0, 1). Hence, we have that
x∗ + θ(x0 − x∗) ∈ U(x∗, r). Then, by Equations (17) and (27) we get that∥∥∥F′(x∗)−1F(x0)

∥∥∥ =

∥∥∥∥∫ 1

0
F′(x∗)−1F′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ

∥∥∥∥ ≤ M‖x0 − x∗‖. (28)

We also have that by replacing x0 by z0 in Equation (28) that∥∥∥F′(x∗)−1F(z0)
∥∥∥ ≤ M‖z0 − x∗‖, (29)

since z0 ∈ U(x∗, r).
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Then, using the last substep of method Equation (2) for n = 0, Equations (4), (10), (13)–(15), (19),
(20) (for n = 0), (23), (26) and (29), we obtain that

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+
∥∥∥F′(x0)

−1F′(x∗)
∥∥∥ [ ∥∥∥F′(x∗)−1([y0, x0; F]− F′(x∗)

)∥∥∥
+
∥∥∥F′(x∗)−1(F′(x0)− F′(x∗)

)∥∥∥+ ∥∥∥F′(x∗)−1[z0, x0; F]
∥∥∥ ]

×
∥∥∥(2[z0, y0; F]− [z0, x0; F])−1 F′(x∗)

∥∥∥ ∥∥∥F′(x∗)−1F(z0)
∥∥∥

≤ ‖z0 − x∗‖+
(
K + L0‖x0 − x∗‖+ K0‖y0 − x∗‖+ K1‖x0 − x∗‖

)
M‖z0 − x∗‖

(1− L0‖x0 − x∗‖) (1− q(‖x0 − x∗‖))

≤
(

1 +

(
K + (L0 + K1)‖x0 − x∗‖+ K0g1(‖x0 − x∗‖)‖x0 − x∗‖

)
M

(1− L0‖x0 − x∗‖) (1− q(‖x0 − x∗‖))

)
‖z0 − x∗‖

≤ g3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(30)

which shows Equation (21) for n = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, z0 by
xn, yn, zn in the preceding estimates we arrive at Equations (19)–(21) for all n = 0, 1, 2, . . . .
Using the monotonicity of g3 on the interval [0, r], x0 ∈ U(x∗, r) and (21), we have with
c = g3(‖x0 − x∗‖) ∈ [0, 1)

‖xn+1 − x∗‖ ≤ c‖xn − x∗‖ ≤ · · · ≤ cn‖x0 − x∗‖, (31)

where r < 1. This yields lim
n→∞

xn = x∗ and xn+1 ∈ U(x∗, r).

Finally, to show the uniqueness part, let y∗ ∈ Ū(x∗, T) be such that F(y∗) = 0. Set Q =∫ 1
0 F′ (x∗ + θ(y∗ − x∗)) dθ. Then, using Equation (13), we get that

∥∥∥F′(x∗)−1(Q− F′(x∗))
∥∥∥ ≤ L0

∫ 1

0
θ‖x∗ − y∗‖dθ ≤ L0

2
T < 1. (32)

Hence, Q−1 ∈ L(Y, X). Then, in view of the identity F(y∗)− F(x∗) = Q(y∗ − x∗), we conclude
that x∗ = y∗. It is worth noticing that in view of Equations (12), (21), (31) and the definition of
functions gi, i = 1, 2, 3 the convergence order of method Equation (2) is at least λ.

Remark 1

(a) In view of Equation (13) and the estimate∥∥F′(x∗)−1F′(x)
∥∥ =

∥∥F′(x∗)−1(F′(x)− F′(x∗)) + F′(x∗)
∥∥

≤ 1 +
∥∥F′(x∗)−1(F′(x)− F′(x∗))

∥∥
≤ 1 + L0‖x− x∗‖

condition Equation (17) can be dropped and M can be replaced by

M = M(t) = 1 + L0t

or M = 2, since t ∈ [0, 1
L0
).

(b) The results obtained here can be used for operators F satisfying the autonomous differential
equation [4,5] of the form

F′(x) = P(F(x)),
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where P is a known continuous operator. Since F′(x∗) = P(F(x∗)) = P(0), we can apply
the results without actually knowing the solution x∗. As an example, let F(x) = ex + 2. Then,
we can choose P(x) = x− 2.

(c) The radius r1 was shown in [4,5] to be the convergence radius for Newton’s method under
conditions (11) and (12). It follows from Equation (4) and the definition of r1 that the
convergence radius r of the method Equation (2) cannot be larger than the convergence radius
r1 of the second order Newton’s method. As already noted in [4,5] r1 is at least the convergence
radius given by Rheinboldt [12]

rR =
2

3L
.

In particular, for L0 < L we have that
rR < r1

and
rR
r1
→ 1

3
as

L0

L
→ 0.

That is our convergence radius r is at most three times larger than Rheinboldt’s. The same value
for rR given by Traub [14].

(d) We shall show how to define function g2 and l appearing in condition Equation (3) for
the method

yn = xn − F′(xn)
−1F(xn)

zn = φ4(xn, yn) := yn − [yn, xn; F]−1F′(xn)[yn, xn; F]−1F(yn)

xn+1 = φ8(xn, yn, zn).

(33)

Clearly method Equation (33) is a special case of method Equation (2). If X = Y = R,
then method Equation (33) reduces to Kung-Traub method [14]. We shall follow the proof of
Theorem 1 but first we need to show that [yn, xn; F]−1 ∈ L(Y, X). By assuming the hypotheses
of Theorem 1, we get that∥∥∥F′(x∗)−1 ([yn, xn; F]− F′(x∗)

)∥∥∥ ≤ K0‖yn − x∗‖+ K1‖xn − x∗‖

≤ (K0g1(‖xn − x∗‖) + K1) ‖xn − x∗‖
= p0(‖xn − x∗‖),

The function hp0(t) = p0(t) − 1, where p0(t) = (K0g1(t) + K1)t, has a smallest zero denoted

by rp0 in the interval
(

0, 1
L0

)
. Set l = rp0 . Then, we have from the last substep of method

Equation (33) that

‖zn − x∗‖ ≤‖yn − x∗‖+
∥∥∥[yn, xn; F]−1F′(x∗)

∥∥∥ ∥∥∥F′(x∗)−1F′(x∗)
∥∥∥

×
∥∥∥[yn, xn; F]−1F′(x∗)

∥∥∥ ∥∥∥F′(x∗)−1F(yn)
∥∥∥

≤ ‖yn − x∗‖+ M2

(1− p0(‖xn − x∗‖))2 ‖yn − x∗‖

≤
(

1 +
M2

(1− p0(‖xn − x∗‖))2

)
g1(‖xn − x∗‖)‖xn − x∗‖

=
1
2

(
1 +

M2

(1− p0(‖xn − x∗‖))2

)
L‖xn − x∗‖2

1− L0‖xn − x∗‖ .

(34)
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It follows from Equation (34) that λ = 2 and

g2(t) =
1
2

L
1− L0t

(
1 +

M2

(1− p0(t))
2

)
. (35)

Then, the convergence radius is given by

r = min{r1, r2, rp0 , r3}. (36)

3. Numerical Example and Applications

In this section, we will verify the validity and effectiveness of our theoretical results which
we have proposed in Section 2 based on the scheme proposed by Sharma et al. [13]. For this
purpose, we shall choose a variety of nonlinear equations and systems of nonlinear equations which
are mentioned in the following examples including motivational example. At this point, we will
chose the following methods

yn = xn − F′(xn)
−1F(xn),

zn = yn −
(
2[yn, xn; F]− F′(xn)

)−1 F(yn),

xn+1 = φ8(xn, yn, zn),

(37)


yn = xn − F′(xn)

−1F(xn),

zn = yn −
(

2[yn, xn; F]−1 − F′(xn)
−1
)

F(yn),

xn+1 = φ8(xn, yn, zn)

(38)

and 
yn = xn − F′(xn)

−1F(xn),

zn = yn −
(
3I − 2F′(xn)

−1[yn, xn, F]
)

F′(xn)
−1F(yn),

xn+1 = φ8(xn, yn, zn)

(39)

denoted by M1, M2 and M3, respectively.
First of all, we require the initial guesses x0 which gives the guarantee for convergence of

the iterative methods. Therefore, we shall calculate the values of rR, r1, r2, rq, r3, rp0 and r to
find the range of convergence domain, which are displayed in the Tables 1–4 up to 5 significant
digits. However, we have the values of these constants up to several number of significant digits.
Then, we will also verify the theoretical order of convergence of these methods for scalar equations
on the basis of the results obtained from computational order of convergence and

∣∣∣ en+1
ep

n

∣∣∣. In the

Tables 5 and 6, we display the number of iteration indexes (n), approximated zeros (xn), residual
errors of the corresponding function (|F(xn)|), errors |en| (where en = xn − x∗),

∣∣∣ en+1
ep

n

∣∣∣ and the

asymptotic errors constant η = lim
n→∞

∣∣∣∣ en+1

ep
n

∣∣∣∣. In addition, We will use the formulas proposed by

Sánchez et al. in [7] to calculate the computational order of convergence (COC), which is given by

ρ =
ln ‖xn+2−x∗‖
‖xn+1−x∗‖

ln ‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0, 1, 2, . . . (40)

or the approximate computational order of convergence (ACOC) [7]

ρ∗ =
ln ‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1, 2, . . . (41)
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Table 1. Different values of parameters which satisfy Theorem 1.

rR r1 r2 r3 rq rp0 r

0.017098 0.017098 0.0061188 0.0077833 0.0080573 0.019592 0.0061188

Table 2. Different values of parameters which satisfy Theorem 1.

rR r1 r2 r3 rq rp0 r

0.22856 0.22856 0.089459 0.086166 0.11255 0.26191 0.086166

Table 3. Different values of parameters which satisfy Theorem 1.

rR r1 r2 r3 rq rp0 r

0.37258 0.38269 0.15120 0.13166 0.19038 0.44149 0.13166

Table 4. Different values of parameters which satisfy Theorem 1.

rR r1 r2 r3 rq rp0 r

0.0075648 0.0075648 0.0027072 0.0035090 0.0035649 0.0086685 0.0027072

Table 5. Convergence behavior of different cases on Example 1.

Methods n ‖F(xn)‖ ‖en‖ ξ

∥∥∥∥ en
ep

n−1

∥∥∥∥ η

M1

0 6.1e−2 5.6e−3

1 1.6e−17 1.8e−18 0.00006065014094 2.153729894e+49

2 1.0e−93 9.1e−95 4.9289 2.314984786e+12

3 1.4e−514 1.3e−515 5.5155 2.153729894e+49

M2

0 6.1e−2 5.6e−3

1 2.3e−13 2.1e−14 0.00002153200773 4.146304252e−6

2 2.3e−59 2.1e−60 4.0264 0.00001076045277

3 8.6e−244 7.9e−245 4.0090 4.146304252e−6

M3

0 6.1e−2 5.6e−3

1 3.6e−13 3.3e−14 0.00003395540062 9.787194795e−6

2 2.2e−58 2.0e−59 4.0278 0.00001654426326

3 1.7e−239 1.5e−240 4.0050 9.787194795e−6

Table 6. Convergence behavior of different cases on Example 2.

Methods n xn |F(xn)| |en| ξ

∣∣∣∣ en
ep

n−1

∣∣∣∣ η

M1

0 0.65 2.3e−1 6.5e−2
1 0.714805912187027 6.5e−10 1.8e−10 0.5649113510 0.3156709071
2 0.714805912362778 1.1e−78 2.9e−79 8.0295 0.3156709076
3 0.714805912362778 1.1e−629 1.5e−629 8.0000 0.3156709071

M2

0 0.65 2.3e−1 6.5e−2
1 0.714805910701679 6.1e−9 1.7e−9 5.339230124 2.311637753
2 0.714805912362778 4.9e−70 1.3e−70 8.0479 2.311637800
3 0.714805912362778 8.8e−559 2.4e−559 8.0000 2.311637753

M3

0 0.65 2.3e−1 6.5e−2
1 0.714805907218054 1.9e−8 5.1e−9 16.53656565 6.144786331
2 0.714805912362778 1.1e−65 3.0e−66 8.0606 6.144786786
3 0.714805912362778 1.5e−523 4.2e−524 8.0000 6.144786331
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We calculate the computational order of convergence, asymptotic errors constant and other
constants up to several numbers of significant digits (minimum 1000 significant digits) to minimise
the round off errors.

In the context of systems of nonlinear equations, we also consider a nonlinear systems
in Example 3 to check the proposed theoretical results for nonlinear systems. In this regard,
we displayed the number of iteration indexes (n), residual errors of the corresponding function

(‖F(xn)‖), errors ‖en‖ (where en = xn − x∗),
∥∥∥∥ en

ep
n−1

∥∥∥∥ and the asymptotic errors constant

η = lim
n→∞

∥∥∥∥∥ en

ep
n−1

∥∥∥∥∥ in the Tables 7 and 8.

Table 7. Convergence behavior of different cases on Example 3.

Methods n ‖F(xn)‖ ‖en‖ ξ

∥∥∥∥ en
ep

n−1

∥∥∥∥ η

M1

0 1.7e−1 1.6e−1
1 7.2e−12 7.2 e−12 0.00001412834175 0.001157325063
2 3.0e−93 3.0e−93 7.8569 0.0004283379739
3 7.9e−744 7.9e−744 7.9947 0.001157325063

M2

0 1.7e−1 1.6e−1
1 1.9e−5 1.9e−5 0.02642235158 0.2812313492
2 2.8e−20 2.8e−20 3.7651 0.2223712525
3 1.7e−79 1.7e−79 3.9931 0.2812313492

M3

0 1.7e−1 1.6e−1
1 2.8e−5 2.5e−5 0.03967215686 0.4999499551
2 2.5e−19 2.5e−19 3.7373 0.3860243040
3 1.9e−75 1.9e−75 3.9920 0.4999499551

Table 8. Convergence behavior of different cases on Example 4.

Methods n xn |F(xn)| |en| ξ

∣∣∣∣ en
ep

n−1

∣∣∣∣ η

M1

0 0.317 3.0e−4 1.3e−3
1 0.318309886183791 3.8e−18 1.6e−17 1.881774410e+6 1.746669349e+6
2 0.318309886183791 2.1e−129 8.7e−129 8.0023 1.746669349e+6
3 0.318309886183791 1.4e−1019 6.0e−1019 8.0000 1.746669349e+6

M2

0 0.317 3.0e−4 1.3e−3
1 0.318309886183790 5.5e−17 2.3e−16 2.711175817e+7 2.406103772e+7
2 0.318309886183791 5.3e−119 2.2e−118 8.0041 2.406103772e+7
3 0.318309886183791 3.5e−935 1.5e−934 8.0000 2.406103772e+7

M3

0 0.317 3.0e−4 1.3e−3
1 0.318309886183790 1.7e−16 7.2 e−16 8.333410395e+7 7.204280059e+7
2 0.318309886183791 1.3e−114 5.3e−114 8.0052 7.204280059e+7
3 0.318309886183791 1.1e−899 4.7e−899 8.0000 7.204280059e+7

As we mentioned in the earlier paragraph, we calculate the values of all the constants and
functional residuals up to several numbers of significant digits but, due to the limited paper space,
we display the values of xn up to 15 significant digits. Further, the values of other constants, namely,

ξ(COC) up to 5 significant digits and the values
∣∣∣∣ en

ep
n−1

∣∣∣∣ , η and
∥∥∥∥ en

ep
n−1

∥∥∥∥ are up to 10 significant digits.

Furthermore, the residual errors in the function/systems of nonlinear functions (|F(xn)| or ‖F(xn)‖)
and the errors |en| or ‖en‖ are displayed up to 2 significant digits with exponent power which are
mentioned in the following tables corresponding to the test function. However, a minimum of 1000
significant digits are available with us for every value.

Furthermore, we consider the approximated zero of test functions when the exact zero is not
available, which is corrected up to 1000 significant digits to calculate ‖xn − x∗‖. During the current
numerical experiments with programming language Mathematica (Version 9), all computations have
been done with multiple precision arithmetic, which minimises round-off errors.
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Further, we use λ = 2 and function g2 defined by Equation (35) in all the examples.

Example 1. Let X = Y = R3, D = Ū(0, 1). Define F on D for v = (x, y, z)T by

F(v) = (10x + sin(x + y)− 1, 8y− cos2(z− y)− 1, 12z + sin z− 1)T . (42)

Then the Fréchet-derivative is given by

F′(v) =

10 + cos(x + y) cos(x + y) 0
0 8 + sin 2(z− y) sin 2(z− y)
0 0 12 + cos z

 .

Then, for x∗ = (0.068978 . . . , 0.246442 . . . , 0.076929 . . . ), we get L = L0 = 38.9911,
K = M = 168.962 and K0 = K1 = L0

2 . We calculate the radius of convergence, the residual errors
of the corresponding function (‖F(xn)‖) (by considering initial approximation (0.072, 0.25, 0.080) in the

methods M1, M2 and M3), errors ‖en‖ (where en = xn − x∗),
∥∥∥∥ en

ep
n−1

∥∥∥∥ and the asymptotic errors constant

η = lim
n→∞

∥∥∥∥∥ en

ep
n−1

∥∥∥∥∥, which are displayed in the Tables 1 and 5.

Example 2. Let X = Y = R, D = [−1, 1] and define function F on D by

F(x) = ex − 4x2. (43)

Then, for x∗ = 0.714806 . . . , we obtain that L0 = L = 2.91681, M = K = 1.82827 and K0 = K1 = L0
2 .

Hence, we obtain all the values of constants and residual errors in the functions, etc., which we have described
earlier in the Tables 2 and 6.

Example 3. Let X = Y = R3, D = Ū(0, 1). Define F on D for v = (x, y, z)T by

F(v) =
(

ex − 1,
e− 1

2
y2 + y, z

)T
. (44)

Then the Fréchet-derivative is given by

F′(v) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .

Notice that x∗ = (0, 0, 0), F′(x∗) = F′(x∗)−1 = diag{1, 1, 1}, L0 = e − 1 <

L = 1.78957239, K0 = K1 = e−1
2 and K = M = 1.7896. Hence, we calculate the radius of

convergence, the residual errors of the corresponding function (‖F(xn)‖) (by considering initial approximation
(0.094, 0.094, 0.095) in the methods M1, M2 and M3), errors ‖en‖ (where en = xn − x∗) and other
constants, which are given in the Tables 3 and 7.

Example 4. Returning back to the motivational example in the introduction of this paper, we have L = L0 =
2

2π+1 (80 + 16π + (11 + 12 log 2)π2), M = K = 2 an K0 = K1 = L0
2 . We display all the values of constants

and residual errors in the functions which we have described earlier in the Tables 4 and 8.

3.1. Results and Discussion

Sharma and Arora’s study was only valid for simple roots of the scalar equation. The order
of convergence was shown using Taylor series expansions, and hypotheses up to the fourth



Algorithms 2016, 9, 65 12 of 14

order derivative (or even higher) of the function involved, which restricts the applicability of
the proposed scheme. However, only the first order derivatives appear in the proposed scheme.
In order to overcome this problem, we propose the hypotheses only up to the first order derivative.
the applicability of the proposed scheme can be seen in the Examples 1, 3 and motivational example,
where earlier studies were not successful. We also provide the radius of convergence for the
considered test problem which gives the guarantee for the convergence.

In addition, we have also calculated residual error in the each corresponding test function and
the difference between the exact zero and approximated zero. It is straightforward to say from the
Tables 5–8 that the mentioned methods have smaller residual error in each corresponding test
function and a smaller difference error between the exact and approximated zero. So, we can say that
these methods converge faster towards the exact root. Moreover, the mentioned methods also have
simple asymptotic error constant in most of the test functions which can be seen in the Tables 5–8.
The dynamic study of iterative methods via basins of attraction also confirm the faster convergence.
However, one can find different behaviour of our methods when he/she considers some different
nonlinear equations. The behaviour of the iterative methods mainly depends on the body structure
of the iterative method, considered test function, initial guess and programming software, etc.

4. Basin of Attractions

In this section, we further investigate some dynamical properties of the attained simple root
finders in the complex plane by analysing the structure of their basins of attraction. It is known
that the corresponding fractal of an iterative root-finding method is a boundary set in the complex
plane, which is characterised by the iterative method applied to a fixed polynomial p(z) ∈ C,
see, e.g., [6,16,17]. The aim herein is to use the basin of attraction as another way for comparing
the iterative methods.

From the dynamical point of view, we consider a rectangle A = [−3, 3] × [−3, 3] ∈ C with
a 400× 400 grid, and we assign a color to each point z0 ∈ A according to the simple root at which
the corresponding iterative method starting from z0 converges, and we mark the point as black if
the method does not converge. In this section, we consider the stopping criterion for convergence to
be less than 10−4 wherein the maximum number of full cycles for each method is considered to be
100. In this way, we distinguish the attraction basins by their colours for different iterative methods.

Test Problem 1. Let p1(z) = (z4 + 1), having simple zeros {−0.707107 − 0.707107i, −0.707107 +

0.707107i, 0.707107 − 0.707107i, 0.707107 + 0.707107i}. It is straightforward to see from Figure 1
that the method M1 is the best method in terms of less chaotic behaviour to obtain the solutions.
Further, M1 also has the largest basins for the solution and is faster in comparison to all the mentioned
methods namely, M2 and M3.

Figure 1. The methods M1, M2 and M3, respectively for test problem 1.
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Test Problem 2. Let p2(z) = (z3 + 2z− 1), having simple zeros {−0.0992186− 2.24266i,−0.0992186+
2.24266i, 0.198437}. Based on Figure 2, it is observed that all the methods, namely, M1, M2 and M3

have almost zero non convergent points. However, method M1 has a larger and brighter basin of
attraction as compared to the methods M2 and M3. Further, the dynamics behavior of the method M1

on the boundary points is less chaotic than other methods M2 and M3.

Figure 2. The methods M1, M2 and M3, respectively for test problem 2.

Test Problem 3. Let p3(z) = (z6 + z), having simple zeros {−0.809017 − 0.587785i, −0.809017 +

0.587785i, 0, 0.309017− 0.951057i, 0.309017 + 0.951057i, 1}. It is concluded on the basis of Figure 3,
that the method M1 has a much lower number of non convergent points as compared to M2 and
M3 (in fact we can say that method M1 has almost zero non convergent points in this region).
Further, the dynamics behaviors of the methods M2 and M3 are shown to be very chaotic on the
boundary points.

Figure 3. The methods M1, M2 and M3, respectively for test problem 3.

5. Conclusions

Commonly, researchers have mentioned that the initial guess should be close to the required root
for the granted convergence of their proposed schemes for solving nonlinear equations. However,
how close should the initial guess be if it is required to guarantee the convergence of the proposed
method? We propose the computable radius of convergence and errors bound by using Lipschitz
conditions in this paper. Further, we also reduce the hypotheses from fourth order derivative
of the involved function to only first order derivative. It is worth noting that the method in
Equation (2) does not change if we use the conditions of Theorem 1 instead of the stronger conditions
proposed by Sharma and Arora (2015). Moreover, to obtain the errors bound in practice and order
of convergence, we can use the computational order of convergence which is defined in numerical
Section 3. Therefore, we obtain in practice the order of convergence in a way that avoids the bounds
involving estimates higher than the first Fréchet derivative.

In an earlier study, Sharma and Arora mentioned that their work is valid only for R. However,
in our study we have shown that this scheme will work in any space. The order of convergence
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for the proposed scheme may be unaltered or reduce in another space because it depends upon the
space and function (for details please see the numerical section). Finally, on account of the results
obtained in Section 3, it can be concluded that the proposed study not only expands the applicability
but also gives the computable radius of convergence and errors bound by the scheme given by
Sharma and Arora (2015), for obtaining simple roots of nonlinear equations as well as systems of
nonlinear equations.

Author Contributions: Selection of the proposed scheme and the local convergence analysis (pages 1–8) given
by Ioannis K. Argyros. Numerical examples and applications, results and discussion, Basin of attraction and
concluding remarks presented by Ramandeep Behl and Sandile S. Motsa.
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