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Abstract: Linear system solving is a main workhorse in applied mathematics. Recently, theoretical
computer scientists contributed sophisticated algorithms for solving linear systems with symmetric
diagonally-dominant (SDD) matrices in provably nearly-linear time. These algorithms are very
interesting from a theoretical perspective, but their practical performance was unclear. Here, we
address this gap. We provide the first implementation of the combinatorial solver by Kelner et al.
(STOC 2013), which is appealing for implementation due to its conceptual simplicity. The algorithm
exploits that a Laplacian matrix (which is SDD) corresponds to a graph; solving symmetric Laplacian
linear systems amounts to finding an electrical flow in this graph with the help of cycles induced by a
spanning tree with the low-stretch property. The results of our experiments are ambivalent. While
they confirm the predicted nearly-linear running time, the constant factors make the solver much
slower for reasonable inputs than basic methods with higher asymptotic complexity. We were also
not able to use the solver effectively as a smoother or preconditioner. Moreover, while spanning
trees with lower stretch indeed reduce the solver’s running time, we experience again a discrepancy
in practice: in our experiments, simple spanning tree algorithms perform better than those with
a guaranteed low stretch. We expect that our results provide insights for future improvements of
combinatorial linear solvers.

Keywords: Laplacian linear systems; graph algorithms; low-stretch spanning trees; electrical graph
flows; algorithm engineering

1. Introduction

Solving square linear systems Ax = b, where A ∈ Rn×n and x, b ∈ Rn, is one of the most
important problems in applied mathematics. It has widespread applications in science and engineering
since it is at the heart of numerical simulations, which are in widespread use in academia and in
industry, e.g., in tools like OpenFOAM [1]. In practice, system matrices are often sparse, i.e., they
contain O(n) nonzeros. Ideally, the required time for solving sparse systems would grow linearly
with the number of nonzeros 2m. Most direct solvers, however, show cubic running times and do not
exploit sparsity. Furthermore, approximate solutions usually suffice due to the imprecision of floating
point arithmetic. Exploiting this fact with sparse iterative solvers, such as conjugate gradient (CG),
still yields a running time that is clearly superlinear in n.

Spielman and Teng [2], following an approach proposed by Vaidya [3], achieved a major
breakthrough in this direction by devising a nearly-linear time algorithm for solving linear systems
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in symmetric diagonally-dominant matrices. Nearly-linear means O
(
m · polylog(n) · log(1/ϵ)

)
here,

where polylog(n) is the set of real polynomials in log(n) and ϵ is the relative error ∥x− xopt∥A/∥xopt∥A

we want for the solution x ∈ Rn. Here, ∥ · ∥A is the norm ∥x∥A :=
√

xT Ax given by A, and xopt := A+b
is an exact solution (where A+ refers to the pseudoinverse of A). A matrix A = (aij)i,j∈[n] ∈ Rn×n is
diagonally dominant if |aii| ≥ ∑j ̸=i |aij| for all i ∈ [n].

Symmetric matrices that are diagonally dominant (SDD matrices) have many applications,
not only in applied mathematics, such as elliptic PDEs [4] and numerical simulations. They also
play a major role in graph-based problems from (theoretical) computer science, such as, e.g., maximum
flows [5], graph drawing [6] and graph sparsification [7]; also see Kelner and Madry [8]. Thus,
the problem INV-SDD of solving linear systems Ax = b for x on SDD matrices A is of significant
importance. We focus here on Laplacian matrices (which are SDD) due to their rich applications in
algorithms for undirected graphs, e.g., load balancing [9,10] and image segmentation [11], but this is
no major limitation [12].

1.1. Related Work

Spielman and Teng’s seminal paper [2] requires much sophisticated machinery: a multilevel
approach [3,13] using recursive preconditioning, preconditioners based on low-stretch spanning
trees [14] and spectral graph sparsifiers [7,15]. Later papers extended and improved upon this
approach, both by making it simpler and by reducing the exponents of the polylogarithmic time
factors, e.g., [16]. Spielman provides a comprehensive overview of later work online [17]. We focus
on an algorithm by Kelner et al. [12] that reinterprets the problem of solving an SDD linear system as
finding an electrical flow in a graph. It only needs low-stretch spanning trees and achieves in its best
variant O

(
m log2n log log n log(1/ϵ)

)
time. Another interesting nearly-linear time SDD solver is the

recursive sparsification approach by Peng and Spielman [18]. With a parallel sparsification algorithm
(e.g., [19]), it yields nearly-linear work in parallel.

Spielman and Teng’s algorithm crucially uses the low-stretch spanning trees first introduced
by Alon et al. [20] (for a definition of stretch, see Section 2). Elkin et al. [21] provide an algorithm
for computing spanning trees with polynomial stretch in nearly-linear time. Specifically, they get
a spanning tree with O(m log2n log log n) stretch in O(m log2n) time. Abraham et al. [22,23] later
showed how to get rid of some of the logarithmic factors in both stretch and time. Papp [24] tested
these algorithms in practice and showed that they do not usually result in spanning trees with lower
stretch than a simple minimum-weight spanning tree computed with Kruskal’s algorithm and that the
original algorithm of Elkin et al. [21] achieves the best results among the provably good approaches.
We use these low-stretch spanning trees in our implementation of the algorithm of Kelner et al. [12]
and compare their effectiveness for the solver.

It should also be noted that there are a few methods available for the problem with fast
empirical running times; but with no equivalent guarantee on the theoretical worst-case running
time: combinatorial multigrid (CMG) [25] and lean algebraic multigrid (LAMG) [26] are, as the names
suggest, multigrid schemes; the work by Dell’Acqua et al. [27,28] has evolved into a multi-iterative
scheme combining multigrid and graph-based preconditioners (among others using spanning trees).

1.2. Motivation, Outline and Contribution

Although several extensions and simplifications to the Spielman–Teng nearly-linear time solver [2]
have been proposed, there is a lack of results for how they all perform in practice. We seek to
fill this gap by implementing and evaluating an algorithm proposed by Kelner et al. [12] that is
fascinating due to its simple description and easier to implement (and thus, more promising in
practice) than the original Spielman–Teng algorithm. Recently, Boman et al. [29] have presented an
experimental study of the Kelner et al. algorithm. Their results partially extend ours and provide
additional insights. However, their focus differs from ours and does not consider running times with
natively-compiled code.
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In this paper, which extends the previous conference version [30], we implement the KOSZ solver
(the acronym follows from the authors’ last names) by Kelner et al. [12] and investigate its practical
performance. To this end, we start in Section 2 by describing important notation and outlining KOSZ.
In Section 3, we elaborate on the design choices one can make when implementing KOSZ. In particular,
we explain when these choices result in a provably nearly-linear time algorithm. Section 4 contains
the experimental evaluation of the Laplacian solver KOSZ. We consider the configuration options
of the algorithm, its asymptotics, its convergence and its use as a preconditioner or as a smoother.
As opposed to Boman et al. [29], we focus on real execution performance with natively-compiled
code. Moreover, we also explore implementation choices not pursued in [29]. Our results confirm a
nearly-linear running time, but are otherwise not very promising from a practical point of view: the
asymptotics hide very high constant factors, in part due to memory accesses. We conclude the paper
in Section 5 by summarizing the results and discussing future research directions.

2. Preliminaries

2.1. Fundamentals

We consider undirected simple weighted graphs G = (V, E) with n vertices and m edges.
A graph is weighted if we have an additional function w : E → R>0. Where necessary, we consider
unweighted graphs to be weighted with we = 1 ∀e ∈ E. We usually write an edge {u, v} ∈ E
as uv and its weight as wuv. Moreover, we define the set operations ∪, ∩ and \ on graphs by
applying them to the set of vertices and the set of edges separately. For every node u ∈ V, its
neighborhood NG(u) is the set NG(u) := {v ∈ V : uv ∈ E} of vertices v with an edge to u, and
its degree du is du = ∑v∈NG(u) wuv. The Laplacian matrix of a graph G = (V, E) is defined as:
Lu,v := −wuv if uv ∈ E, ∑x∈NG(u) wux if u = v, and 0 otherwise for u, v ∈ V. A Laplacian matrix is
always an SDD matrix. Another useful property of the Laplacian is the factorization L = BT R−1B,
where B ∈ RE×V is the incidence matrix and R ∈ RE×E is the resistance matrix defined by Bab,c = 1 if
a = c, = −1 if b = c and zero otherwise; Re1,e2 = 1/we1 if e1 = e2 and zero otherwise. This holds for all
e1, e2 ∈ E and a, b, c ∈ V, where we arbitrarily fix a start and end node for each edge when defining B.
With xT Lx = (Bx)T R−1(Bx) = ∑e∈E(Bx)2

e ·we ≥ 0 (every summand is non-negative), one can see that
L is positive semidefinite. (A matrix A ∈ Rn×n is positive semidefinite if xT Ax ≥ 0 for all x ∈ Rn.)

Some conventions used throughout the paper: Every function that is parametrized by a single
graph will implicitly use G, e.g., A = A(G). We also assume that G is connected. This is not a
significant restriction, since we can just apply the solver to every component. Of course, in our actual
implementation we first decompose the graph into components. Furthermore, whenever we talk about
the residual of a vector y with respect to a linear system Ax = b, we refer to the relative residual
∥Ay− b∥2/∥b∥2.

2.2. Cycles, Spanning Trees and Stretch

A cycle in a graph is usually defined as a simple path that returns to its starting point, and a graph
is called Eulerian if there is a cycle that visits every edge exactly once. In this work, we will interpret
cycles somewhat differently: We say that a cycle in G is a subgraph C of G such that every vertex in G
is incident to an even number of edges in C, i.e., a cycle is a union of Eulerian graphs. It is useful to
define the addition C1 ⊕ C2 of two cycles C1, C2 to be the set of edges that occurs in exactly one of the
two cycles, i.e., C1 ⊕ C2 := (C1 \ C2) ∪ (C2 \ C1). In algebraic terms, we can regard a cycle as a vector
C ⊆ FE

2 (F2 is the finite field of order two), such that ∑v∈NC(u) 1 = 0 in F2 for all u ∈ V and the cycle
addition as the usual addition on FE

2 . We call the resulting linear space of cycles C(G).
In a spanning tree (ST) T = (V, ET) of G, there is a unique path PT(u, v) from every node u

to every node v. For any edge e = uv ∈ E \ ET (an off-tree-edge with respect to T), the subgraph
e ∪ PT(u, v) is a cycle, the basis cycle induced by e. One can easily show that the basis cycles form
a basis of C(G). Thus, the basis cycles are very useful in algorithms that need to consider all of the
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cycles of a graph. Another notion we need is a measure of how well a spanning tree approximates the
original graph. We capture this by the stretch st(e) =

(
∑e′∈PT(u,v) we′

)
/we of an edge e = uv ∈ E. This

stretch is the detour you need in order to get from one endpoint of the edge to the other if you stay
in T, compared to the length of the original edge. In the literature, the stretch is sometimes defined
slightly differently, but we follow the definition in Kelner et al. [12] using we. The total stretch of the
whole tree T is the sum of the individual stretches st(T) = ∑e∈E st(e). Finally, we define the average
stretch as the total stretch divided by the total edge weight. Finding a spanning tree with low stretch is
crucial for proving the fast convergence of the KOSZ solver.

2.3. Electrical Network Analogy

We can regard G as an electrical network where each edge uv corresponds to a resistor with
conductance wuv and resistance 1/wuv, and x as an assignment of potentials to the nodes of G
(cf. Figure 1). L operates on every vector x ∈ Rn via (Lx)u = ∑v∈N(u)(xu − xv) · wuv for each u ∈ V.
Then, xu − xv is the voltage across uv, and (xu − xv) ·wuv is the resulting current along uv. Thus, (Lx)u

is the current flowing out of u that we want to be equal to the right-hand side bu. Furthermore, one can
reduce solving SDD systems to the related problem INV-LAPLACIAN-CURRENT [12]: Given a Laplacian
L = L(G) and a vector b ∈ im(L), compute a function f : Ẽ→ R with (i) f being a valid graph flow on
G with demand b and (ii) the potential drop along every cycle in G being zero, where a valid graph
flow means that the sum of the incoming and outgoing flow at each vertex respects the demand in b
and that f (u, v) = − f (v, u) ∀uv ∈ E. Furthermore, Ẽ is a bi-directed copy of E, and the potential drop
of cycle C is ∑e∈C f (e)re.

1 5

2

1

52

1V 5V

2V

1/1Ω

1/5Ω1/2Ω

(5V − 1V)/1Ω = 4A

Figure 1. Transformation into an electrical network.

2.4. KOSZ (Simple) Solver

The idea of the algorithm is to start with any valid flow and successively adjust the flow, such
that every cycle has potential zero. We need to transform the flow back to potentials at the end, but
this can be done consistently, as all potential drops along cycles are zero.

Regarding the crucial question of what flow to start with and how to choose the cycle to be
repaired in each iteration, Kelner et al. [12] suggest using the cycle basis induced by a spanning
tree T of G and prove that the convergence of the resulting solver depends on the stretch of T.
More specifically, they suggest starting with a flow that is nonzero only on T and weighting the
basis cycles proportionately to their stretch when sampling them. The resulting algorithm is shown
as Algorithm 1; note that we may stop before all potential drops along cycles are zero, and we can
consistently compute the potentials induced by f at the end by only looking at T.

The solver described in Algorithm 1 is actually just the SimpleSolver in the Kelner et al. [12] paper.
They also show how to improve this solver by adapting preconditioning to the setting of electrical
flows. In informal experiments, we could not determine a strategy that is consistently better than the
SimpleSolver, so we do not pursue this scheme any further here. Eventually, Kelner et al. derive the
following running time for the KOSZ (simple) solver:
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Theorem 1. (Theorem 3.2 in [12]) SimpleSolver can be implemented to run in time
O(m log2 n log log n log(ϵ−1n)) for computing an ϵ-approximation of x.

The improved running time of their FullSolver to compute an ϵ-approximation of x is
O(m log2 n log log n log(ϵ−1)) (Theorem 7.4 in [12]).

Algorithm 1: INV-LAPLACIAN-CURRENT solver KOSZ.
Input: Laplacian L = L(G) and vector b ∈ im(L).
Output: Solution x to Lx = b.

1 T ← a spanning tree of G
2 f ← unique flow with demand b that is only nonzero on T
3 while there is a cycle with potential drop ̸= 0 in f do
4 c← cycle in C(T) chosen randomly weighted by stretch

5 f ← f − cT R f
cT Rc c

6 return vector of potentials in f with respect to the root of T

3. Implementation

While Algorithm 1 provides the basic idea of the KOSZ solver, it leaves open several
implementation decisions we had to make and that we elaborate on in this section.

3.1. Spanning Trees

As suggested by the convergence result in Theorem 1, the KOSZ solver crucially depends on
low-stretch spanning trees. The notion of stretch was introduced by Alon et al. [20] along with an
algorithm to compute a spanning tree with low stretch. Unfortunately, the stretch guaranteed by their
algorithm is super-polynomial. Elkin et al. [21] presented an algorithm requiring nearly-linear time and
yielding nearly-linear average stretch. The basic idea is to recursively form a spanning tree using a star
of balls in each recursion step. We use Dijkstra with binary heaps for growing the balls and take care
not to need more work than necessary to grow the ball. In particular, ball growing is output-sensitive,
and growing a ball B(x, r) := {v ∈ V : distance from x to v is ≤ r} should require O(d log n) time
where d is the sum of the degrees of the nodes in B(x, r). The exponents of the logarithmic factors of
the stretch of this algorithm were improved by subsequent papers, but [24] showed experimentally
that these improvements do not yield better stretch in practice. In fact, his experiments suggest that
the stretch of the provably good algorithms is usually not better than just taking a minimum-weight
spanning tree. Therefore, we additionally use two simpler spanning trees without stretch guarantees: a
minimum-distance spanning tree with Dijkstra’s algorithm (the tree built implicitly during the search)
using binary heaps; as well as a minimum-weight spanning tree with Kruskal’s algorithm using
union-find with union-by-size and path compression.

To test how dependent the algorithm is on the stretch of the spanning tree (ST), we also look at a
special ST for n1 × n2 grids. As depicted in Figure 2, we construct this spanning tree by subdividing
the n1 × n2 grid into four subgrids as evenly as possible (the subgrid sizes are shown in Figure 2a),
recursively building the STs in the subgrids (the termination of the recursion is shown in Figure 2b)
and connecting the subgrids by a U-shape in the middle.

Proposition 1. Let G be an n1 × n2 grid with n1, n2 ≥ 4. Then, the special ST has O
( (n1+n2)

2 log(n1+n2)
n1n2

)
average stretch on G.

Proof. First note that, by the recursive construction, the total stretch of the four subgrids remains
the same if such a subgrid is treated separately. Moreover, the stretches of the O(n1 + n2) off-tree
edges between the rows ⌊n1/2⌋ and ⌊n1/2⌋+ 1, as well as the columns ⌊n2/2⌋ and ⌊n2/2⌋+ 1 are
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in O(n1 + n2) each. To see this, let s and t be the source and target vertices of such an off-tree edge,
respectively. Then, by construction, it is possible to reach the center from s in O(n1 + n2) steps
and t from the center likewise. Consequently, S

(
n1, n2

)
= 4 · S

(
n1/2, n2/2

)
+ O

(
n1 + n2

)2 when
disregarding rounding. After solving, this recurrence (note that S(n1/2, n2/2) is essentially one fourth
in size compared to S(n1, n2) as long as n1, n2 ≥ 4); we get:

S
(
n1, n2

)
= O

(
(n1 + n2)

2 log(n1 + n2)
)
.

Since the number of edges is Θ(n1n2), the claim for the average stretch follows.

In case of a square grid (n1 = n2) with N = n1 × n2 vertices, we get S(N) = 4S(N/4) +O(N) =

O(N log N) = O(n2
1 log(n1)) and, thus, O(log n1) average stretch. A logarithmic average stretch

(and thus, detour) is noteworthy since the average distance between a random pair of nodes in the
square grid is Ω(n1). Furthermore, for this special case, our result slightly improves on the general
low-stretch spanning tree algorithms. Later on in this paper, we will use it in comparison to other
spanning trees to assess their effect on the KOSZ solver.

(a) Recursive construction (b) ST for n1 = n2 = 4

Figure 2. Special spanning tree (ST) with O
( (n1+n2)2 log(n1+n2)

n1n2

)
average stretch for the n1 × n2 grid.

3.2. Flows on Trees

Since every basis cycle contains exactly one off-tree-edge, the flows on off-tree-edges can simply
be stored in a single vector. To be able to efficiently get the potential drop of every basis cycle and to be
able to add a constant amount of flow to it, the core problem is to efficiently store and update flows in
T. We want to support the following operations for all u, v ∈ V and α ∈ R on the flow f :

• query(u, v): return the potential drop ∑e∈PT(u,v) f (e)re

• update(u, v, α): set f (e) := f (e) + α for all e ∈ PT(u, v)

}
(1)

We can simplify the operations by fixing v to be the root r of T:

• query(u): return the potential drop ∑e∈PT(u,r) f (e)re and

• update(u, α): set f (e) := f (e) + α for all e ∈ PT(u, r).

}
(2)

The itemized two-node operations can then be supported with query(u, v) := query(u) −
query(v) and update(u, v, α) :=

{
update(u, α) and update(v,−α)

}
, since the changes on the subpath

PT
(
r, LCA(u, v)

)
cancel out. Here, LCA(u, v) is the lowest common ancestor of the nodes u and v

in T, the node farthest from r that is an ancestor of both u and v. We provide two approaches for
implementing the operations; they are described next in some detail.
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3.3. Linear Time Updates

The trivial implementation of (2) directly stores the flows in the tree and implements each
operation in (2) with a single traversal from the node u to the root r. We can improve this
implementation by only traversing up to LCA(u, v) in (1). Of course, this does not help with
the worst-case time O(n), but could be quite significant in practice since basis cycles are often
short. Data structures that answer lowest common ancestor queries for pairs of nodes after some
precomputation are a classical topic; optimal solutions are known [31,32]. In our implementation, we
use a simpler implementation with higher (but still insignificant) preprocessing time that transforms
an LCA query into a range minimum query (RMQ), the problem of determining the minimum in
a subrange of an array. We can then solve the RMQ problem by precomputing the RMQ of every
range whose length is a power of two, i.e., for each i with 2i ≤ n and every j ∈ [n], we compute
prec[i, j] := arg min v[j . . . j + 2i − 1]. This can be done in O

(
n log n

)
time.

3.4. Logarithmic Time Updates

While the data structure presented above allows fast repairs for short basis cycles, the worst-case
time is still in O(n). We therefore also implement the data structure by Kelner et al. [12] with O(log n)
worst-case time repairs. It is based on link-cut trees [33]. The first observation it uses is that every
rooted tree T on n nodes can be decomposed into edge-disjoint subtrees intersecting in exactly one
node such that each subtree has ≤ n/2 nodes. Equivalently, we find a vertex in T, all of whose induced
subtrees have size ≤ n/2. We call such a vertex a good vertex separator. By recursively finding good
vertex separators on the subtrees, we get a recursive decomposition of the whole tree into subtrees.
Since the size of the trees halves in each step, the depth of this decomposition is at most O(log n).

Now, consider a tree T at one level of recursion with root r that is split into the subtrees T0, . . . , Tk
at the good vertex separator d. Let T0 contain r without loss.

Remark 1. We can implement query and update efficiently by storing several values: (i) ddrop: the total
potential drop on the path PT(r, d), (ii) dext: the total flow contribution to PT(r, d) from vertices below d,
and (iii) for every u ∈ V(T): height(u) := ∑e∈PT(r,u)∩PT(r,d) re, i.e., the accumulated resistance in common
between the PT(r, d) path and the PT(r, u) path.

Then, we can compute query(u) as follows: If u ∈ T0, the potential drop consists of the potential
drop queryT0

(u) in T0 and the part dext · height(u) of the potential drop caused by vertices beyond d.
If, however, u ∈ Ti and u ̸= d, then we have the complete potential drop ddrop along PT(d, r) and a
recursive potential drop queryTi

(u).
The update(u, α) operation can be implemented similarly: If u ̸∈ T0, we need to adjust dext by

α. In all cases, we need to update ddrop by the height(u) part of the PT(r, u) path in common with
T0. Unless u = d, we then need to recursively update the tree Ti with u ∈ Ti. While we could
directly implement this recursion, we unroll it to get a more efficient implementation. We can store
the complete state of the data structure in a dense vector x containing the ddrop and dext values for all
recursion levels. For each u ∈ T, query is then a dot product q(u) · x with a vector q(u) containing
the appropriate coefficients, and update(u, α) is a vector addition x := x + αl(u) with a vector l(u).
The vectors q(u) and l(u) are sparse with at most O(log n) nonzero entries and can be determined
directly from the recursive decomposition in O

(
n log(n)

)
time (their entries are either height(u) or

one). Kelner et al. [12] provide more details about the unrolling.

3.5. Results

In our preliminary experiments, in order to evaluate the flow data structures, the cost of querying
the LCA-based data structure (LCAFlow) strongly depends on the structure of the used spanning tree,
while the logarithmic-time data structure (LogFlow) induces costs that stay nearly the same. Similarly,
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the cost of LCAFlow grows far more with the size of the graph than LogFlow, and LogFlow wins for
the larger graphs in both classes. For these reasons, we only use LogFlow in later results.

3.6. Remarks on Initial Solution and Cycle Selection

Given x, we can compute a flow f via fuv := (x(u)− x(v)) ·wuv. The potential drop of each cycle
in this flow f is zero. Unfortunately, this flow is not a valid graph flow with demand b, unless x already
fulfills Lx = b. In contrast, in the solver, we iteratively establish the zero-cycle-sum property from the
flow originally induced by the spanning tree T. There is an important consequence: we cannot start
from an arbitrary vector x, which may make it harder to use the solver in a larger context.

The easiest way to select a cycle, in turn, is to choose an off-tree edge uniformly at random in
O(1) time. However, to get provably good results, we need to weight the off-tree-edges by their stretch,
i.e., edges chosen with a probability proportionate to their stretch. We can use the flow data structure
described above to get the stretches. More specifically, the data structure initially represents f = 0. For
every off-tree edge uv, we first execute update(u, v, 1), then query(u, v) to get ∑e∈PT(u,v) re and, finally,
update(u, v,−1) to return to f = 0. This results in O(m log n) time to initialize cycle selection. Once
we have the weights, we use roulette wheel selection in order to select a cycle inO(log m) time after an
additionalO(m) time initialization. Roulette wheel selection is a simple strategy to sample an arbitrary
discrete distribution with finite support: (i) let X be a random variable with Prob[X = xi] = pi for
i ∈ [k]; (ii) precompute the prefix sums P = (0, p1, p1 + p2, . . . , p1 + · · · + pk = 1); (iii) to sample,
choose a uniform random value x ∈ [0, 1), then find the index i with Pi ≤ x < Pi+1 using binary search

and output xi. The probability for getting xi with this scheme is
∣∣∣[∑i−1

j=0 pi, ∑i
j=0 pi

)∣∣∣ = pi, as desired.

3.7. Summary

For convenience, we summarize the implementation choices for Algorithm 1 in Table 1.
The top-level item in each section is the running time of the best sub-item that can be used to get
a provably good running time. The convergence theorem requires a low-stretch spanning tree and
weighted cycle selection. Note that m = Ω(n), as G is connected.

Table 1. Summary of the components of the KOSZ solver.

Spanning tree O
(
m log n log log n)

)
stretch, O(m log n log log n) time

Dijkstra no stretch bound, O(m log n) time
Kruskal no stretch bound, O(m log n) time
Elkin et al. [21] O(m log2n log log n) stretch, O(m log2n) time
Abraham and Neiman [23] O(m log n log log n) stretch, O(m log n log log n) time

Initialize cycle selection O(m log n) time
Uniform O(m) time
Weighted O(m log n) time

Initialize flow O(n log n) time
LCA flow O(n) time
Log flow O(n log n) time

Iterations O
(
m log n log log n log(ϵ−1 log n)

)
expected iterations

Select a cycle O(log n) time
Uniform O(1) time
Weighted O(log n) time

Repair cycle O(log n) time
LCA flow O(n) time
Log flow O(log n) time

Complete solver O(m log2n log log n log
(
ϵ−1 log n)

)
expected time

Improved solver O(m log2n log log n log
(
ϵ−1)

)
expected time
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4. Evaluation

4.1. Settings

4.1.1. Software, Hardware and Data

We implemented the KOSZ solver in C++ using NetworKit [34], a tool suite focused on large-scale
network analysis. Our code is publicly available [35]. As compiler we use g++ 4.8.3. The benchmark
platform is a dual-socket server with two eight-core Intel Xeon E5-2680 at 2.7 GHz each and
256 GB RAM. We present a representative subset of our experiments, in which we compare our
KOSZ implementation to existing linear solvers as implemented by the libraries Eigen 3.2.2 [36] and
Paralution 0.7.0 [37], both libraries with fast sparse matrix solvers.

We mainly use two graph classes for our tests: (i) rectangular k × l grids given by
Gk,l :=

(
[k] × [l],

{
{(x1, y1), (x2, y2)} ⊆ (V

2) : |x1 − x2| = 1 ∨ |y1 − y2| = 1
})

; Laplacian systems
on grids are, for example, crucial for solving boundary value problems on rectangular domains; note
that Gk,l is very uniform, i.e., most of its nodes have degree 4; (ii) Barabási–Albert random graphs
with parameter k [38]. These random graphs are parametrized with a so-called attachment k. They
are constructed by starting with Kk and iteratively adding (n− k) nodes. We connect a new node
to k random existing nodes where each existing node is weighted by its current degree, i.e., nodes
are preferentially attached to nodes that already have a high degree. We denote the distribution of
Barabási–Albert random graphs with n nodes and attachment k by Barabasi(n, k). Their construction
models that the degree distribution in many natural graphs is not uniform at all.

For both classes of graphs, we consider both unweighted and weighted variants (uniform random
weights in [1, 8]). We also did informal tests on 3D grids and also real-world graphs, in particular
complex networks. These graphs did not exhibit significantly different behavior than the two graph
classes above and are therefore omitted from the presentation of the results.

4.1.2. Termination and Performance Counters

In the description of the solver, so far, we did not state our termination condition; Kelner et al. [12]
only give a theoretical expected number of iterations to achieve a desired error in ∥ · ∥L. We choose,
as usual in iterative solvers, to terminate when the relative residual ∥Ax− b∥2/∥b∥2 is smaller than a
given ϵ > 0. Unfortunately, the KOSZ solver cannot keep track of the residual. To get it, we must first
compute the dual potential vector x. Since this takes O

(
m log(n)

)
time, we cannot update the residual

every iteration. Therefore, to still get provably nearly-linear time, we heuristically choose to update it
every m iterations. Informal experiments show that computing the residuals takes less than 3% of the
global time and that only updating every m iterations does not prolong convergence more than 4% in
all of our tests.

CPU performance characteristics, such as the number of executed FLOP (floating point operations),
etc., are measured with the PAPI library [39]. Each of our benchmarking runs takes several seconds
(billions of cycles), so we expect the counter values to be quite accurate. Moreover, our most basic
choice to reduce the impact of possible measurement errors is to repeat the benchmark multiple times
and average the values gathered. In our case, we repeated each measurement 10 times. This number is
mainly motivated by time constraints. Since the resulting measurements are not skewed, we believe
that the central limit theorem (an asymptotic theorem) is already applicable for these 10 runs. Moreover,
the measured standard deviations are below 5%. We take an optimistic approach with regards to cache
usage and start each series of runs with a dry run that fills the caches.

4.2. Results

4.2.1. Spanning Tree

Papp [24] tested various low-stretch spanning tree algorithms and found that in practice, the
provably good low-stretch algorithms do not yield better stretch than simply using Kruskal. We confirm
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and extend this observation by comparing our own implementation of the low-stretch ST algorithm
by Elkin et al. [21] to Kruskal and Dijkstra in Figure 3. Except for the unweighted 100× 100 grid,
Elkin has worse stretch than the other algorithms, and Kruskal yields a good ST. For Barabási–Albert
graphs, Elkin is extremely bad (almost a factor of 20 worse). Interestingly, Kruskal outperforms the
other algorithms even on the unweighted Barabási–Albert graphs, where it degenerates to choosing an
arbitrary ST. Figure 3 also shows that our special ST (see Section 3.1) yields significantly lower stretch
for the unweighted 2D grid, but it does not help in the weighted case.

0 20 40 60 80 100 120

Relative stretch

100× 100 grid, unweighted

100× 100 grid, weighted

Barabasi(25000, 4), unweighted

Barabasi(25000, 4), weighted

Dĳkstra ST
Kruskal ST
Elkin ST
Special ST

Figure 3. Average stretch st(T)/m with different ST algorithms.

4.2.2. Convergence

In Figure 4, we plot the convergence of the residual for different graphs and different algorithm
settings. We examine a 100× 100 grid and a Barabási–Albert graph with 25,000 nodes. While the
residuals can increase, they follow a global downward trend. Furthermore, note that the spikes of
the residuals are smaller if the convergence is better and that the order (by convergence speed) of the
residual curves is the same.

In all cases, the solver converges exponentially, but the convergence speed crucially depends on
the solver settings. If we select cycles by their stretch, the order of the convergence speeds is the same
as the order of the stretches of the ST (compare Figure 3), except for the Dijkstra ST and the Kruskal ST
on the weighted grid. In particular, on Barabási–Albert graphs, there is a significant gap between the
Elkin ST and the other algorithm settings. On these graphs, the Elkin ST barely converges at all. Thus,
low-stretch STs are crucial for convergence. In informal experiments we also saw this behavior for
3D grids and non-synthetic graphs. In contrast, for the uniform cycle selection on the unweighted grid,
the special ST is superior over the Kruskal ST, even though its stretch is smaller. This is caused by the
fact that the basis cycles with the Kruskal ST are longer than the basis cycles with the special ST. Fixing
the shorter basis cycles of the special ST seems to help the algorithm converge quicker. Still, the other
curves with uniform cycle selection have the same order as stretch cycle selection.
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Figure 4. Convergence of the residual. Terminate when the residual is ≤10−4.

Using the results of all our experiments, we are not able to detect any correlation between
the improvement made by a cycle repair and the stretch of the cycle. Therefore, we cannot fully
explain the different speeds with uniform cycle selection and stretch cycle selection. For the grid, the
stretch cycle selection wins, while Barabási–Albert graphs favor uniform cycle selection. Another
interesting observation is that most of the convergence speeds stay constant after an initial fast
improvement at the start to about a residual of one. That is, there is no significant change of
behavior or periodicity. Even though we can hugely improve convergence by choosing the right
settings, even the best convergence is still very slow, e.g., we need about six million iterations (≈3000
sparse matrix-vector multiplications (SpMVs) in time comparison) on a Barabási–Albert graph with
25,000 nodes and 100,000 edges in order to reach a residual of 10−4. In contrast, conjugate gradient
(CG) without preconditioning only needs 204 SpMVs for this graph (preconditioning is explained in
the corresponding subsection below).

4.2.3. Asymptotics

Now that we know which settings of the algorithm yield the best performance for 2D grids and
Barabási–Albert graphs, we proceed by looking at how the performance with these settings behaves
asymptotically and how it compares to conjugate gradient (CG) without preconditioning, a simple
and popular iterative solver (often used in its preconditioned form). Since KOSZ turns out to be not
competitive, we do not need to compare it to more sophisticated algorithms.
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Figure 5. Asymptotic behavior for 2D grids. Termination when the relative residual was ≤10−4.
The error bars give the standard deviation.

In Figure 5, each occurrence of c stands for a new instance of a real constant. We expect the cost
of the CG method to scale with O(n1.5) on 2D grids [40], while our KOSZ implementation should
scale nearly linearly. This expectation is confirmed in the plot: Using Levenberg–Marquardt [41] to
approximate the curves for CG with a function of the form axb + c, we get b ≈ 1.5 for FLOP and
memory accesses, while the (more machine-dependent) wall time and cycle count yield a slightly
higher exponent b ≈ 1.6. We also see that the curves for our KOSZ implementation are almost linear
from about 650× 650. Unfortunately, the hidden constant factor is so large that our algorithm cannot
compete with CG even for a 1000× 1000 grid. Note that the difference between the algorithms in FLOP
is significantly smaller than the difference in memory accesses and that the difference in running time
is larger still. This suggests that the practical performance of our algorithm is particularly bounded by
memory access patterns and not by floating point operations. This is noteworthy when we look at our
special spanning tree for the 2D grid. We see that using the special ST always results in performance
that is better by a constant factor. In particular, we save many FLOP (factor of 10), while the savings in
memory accesses (factor of two) are much smaller. Even though the FLOP when using the special ST
are within a factor of two of CG, we still have a wide chasm in running time. However, note that later
in this section, we see that the micro-performance (in terms of caches) of the solver is actually very
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competitive with CG. Thus, the bad running time is mainly caused by memory accesses and the very
slow convergence that we have already seen before.

The results for the Barabási–Albert graphs are basically the same (and hence, not shown in detail):
Even though the growth is approximately linear from about 400,000 nodes, there is still a large gap
between KOSZ and CG since the constant factor is enormous. Furthermore, the results for the number
of FLOP are again much better than the results for the other performance counters.

In conclusion, although we have nearly-linear growth, even for 1,000,000 graph nodes, the KOSZ
algorithm is still not competitive with CG because of huge constant factors, in particular a large number
of iterations and memory accesses.

4.2.4. Preconditioning

The convergence of most iterative linear solvers on a linear system Ax = b depends on the
condition number κ(A) of A. The smaller the condition number is, the better the solvers converge.
A common way to improve the condition number is to find a matrix P, such that κ(P−1 A) < κ(A) and
then solve the system P−1 Ax = P−1b instead of Ax = b (preconditioning). Some linear solvers, such
as Gauss–Seidel, are good preconditioners even though they are slow when used on their own. Thus,
we check whether this is also true for KOSZ.

In iterative methods, we usually do not explicitly compute P−1 A, but apply P−1 and A separately
to the current vector in each iteration. In our case, we use a few KOSZ iterations as a preconditioner
in each iteration instead of taking a fixed matrix P. Since the solver only works for SDD matrices,
we need to use an iterative solver that only passes SDD matrices to the preconditioner. We choose
the CG method and the FGMRES method (see Section 9.4 in [42]) on an unweighted 100× 100 grid.
The convergence of the residual with these solvers is plotted in Figure 6.

For the CG method, we see that, unfortunately, the more iterations we use, the more slowly the
methods converge. Since the cycle repairs depend crucially on the right-hand side and the solver is
probabilistic, using the Laplacian solver as the preconditioner means that the preconditioner matrix
is not fixed, but changes from iteration to iteration. Axelsson and Vassilevski [43] show why this
behavior leads to convergence problems and propose a CG method with variable-step preconditioning
to cope with it. In practice, the flexible GMRES method is often more resistant to these convergence
problems. Since the initial vector on the special ST is very good, we get good convergence in Figure 6
when using zero iterations of the solver in FGMRES, a behavior that is obviously not generalizable. For
more iterations of the Laplacian solver, FGMRES still has convergence problems, but it is somewhat
better than CG.

We conclude that KOSZ is not suitable as a preconditioner for common iterative methods. It would
be an interesting extension to check if the solver works in a specialized variable-step method.
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Figure 6. Convergence of the residual when using the Laplacian solver as a preconditioner on an
unweighted 100× 100 grid.

4.2.5. Smoothing

One way of combining the good qualities of two different solvers is smoothing. Smoothing means
to dampen the high-frequency components of the error, which is usually done in combination with
another solver that dampens the low-frequency error components. It is known that in CG and
most other solvers, the low-frequency components of the error converge very quickly, while the
high-frequency components converge slowly. Thus, we are interested in finding an algorithm that
dampens the high-frequency components, a good smoother. This smoother does not necessarily need
to reducing the error, it just needs to make its frequency distribution more favorable. Smoothers
are particularly often applied at each level of multigrid or multilevel schemes [44] that turn a good
smoother into a good solver by applying it at different levels of a matrix hierarchy.

To test whether the Laplacian solver is a good smoother, we start with a fixed x with Lx = b and
add white uniform noise in [−1, 1] to each of its entries in order to get an initial vector x0. Then, we
execute a few iterations of our Laplacian solver and check whether the high-frequency components
of the error have been reduced. Unfortunately, we cannot directly start at the vector x0 in the solver.
Our solution is to use Richardson iteration. That is, we transform the residual r = b− Lx0 back to the
source space by computing L−1r with the Laplacian solver, get the error e = x− x0 = L−1r and then
the output solution x1 = x0 + L−1r.
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Figure 7 shows the error vectors of the solver for a 32× 32 grid together with their transformations
into the frequency domain for different numbers of iterations of our solver. We see that the solver may
indeed be useful as a smoother since the energies for the large frequencies (on the periphery) decrease
rapidly, while small frequencies (in the middle) in the error remain.

In the solver, we start with a flow that is nonzero only on the ST. Therefore, the flow values on the
ST are generally larger at the start than in later iterations, where the flow will be distributed among the
other edges. Since we construct the output vector by taking potentials on the tree, after one iteration,
x1 will, thus, have large entries compared to the entries of b. In Subplot (c) of Figure 7, we see that the
start vector of the solver has the same structure as the special ST and that its error is very large. For the
32× 32 grid, we, therefore, need about 10,000 iterations (≈150 SpMVs in running time comparison)
to get an error of x1 similar to x0, even though the frequency distribution is favorable. Note that the
number of SpMVs to which the 10,000 iterations correspond depends on the graph size, e.g., for an
100× 100 grid, the 10,000 iterations correspond to 20 SpMVs.

While testing the Laplacian solver in a multigrid scheme could be worthwhile, the bad initial
vector creates robustness problems when applying the Richardson iteration multiple times with a fixed
number of iterations of our solver. In informal tests, multiple Richardson steps lead to ever increasing
errors without improved frequency behavior unless our solver already yields an almost perfect vector
in a single run.

4.2.6. Cache Behavior

The nearly-linear running time of the Laplacian solver was proven in the RAM machine model.
To get good practical performance on modern out-of-order superscalar computers, one also has to take
their complex execution behavior into account, e.g., the cache hierarchy.

One particular problem indicated by our experiments is that the number of cache misses increases
in the LogFlow data structure when a bad spanning tree is used. Note that querying and updating
the flow with this data structure corresponds to a dot product and an addition, respectively, of a
dense vector and a sparse vector. The sparse vectors are stored as sequences of pairs of indices
(into the dense vector) and values. Thus, the cache behavior depends on the distribution of the indices,
which is determined by the subtree decomposition of the spanning tree and the order of the subtrees.

We managed to consistently improve the time by about 6% by doing the decomposition in
breadth-first search order, so that the indices are grouped together at the front of the vector. In contrast,
the actual decomposition only depends on the spanning tree. Furthermore, we could save an additional
10% of time by using 256-bit AVX instructions to do four double precision operations at the same time
in LogFlow, but this vectorized implementation still uses (vectorized) indirect accesses.

In our experiments, we get about 5% cache misses by using the minimum weight ST on the
2D grid, compared with 1% when using CG. In contrast, the special ST yields competitive cache
behavior. Not surprisingly, since the Barabási–Albert graph has a much more complex structure,
its cache misses using the sparse matrix representation increase to 5%. In contrast, the cache misses
improve for larger graphs with LogFlow since the diameter of the spanning tree is smaller than on
grids and the decomposition, thus grouping most indices at the start of the vector.

From the benchmarks, we can infer that the micro-performance in terms of cache misses suffers
from indirect accesses just as in the case of the usual sparse matrix representations. Furthermore,
the micro-performance crucially depends on the quality of the spanning tree. For good spanning trees
or more complex graphs, the micro-performance of the Laplacian solver is competitive with CG.
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Figure 7. The Laplacian solver with the special ST as a smoother on a 32× 32 grid. For each number of iterations of the solver, we plot the current error and the
absolute values of its transformation into the frequency domain. Note that (a) and (k) have a different scale.
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5. Conclusions

At the time of writing the conference version of this paper, we provided the first comprehensive
experimental study of a Laplacian solver with provably nearly-linear running time. In the meantime,
our results regarding KOSZ have been recently confirmed and in some aspects extended [29],
albeit with a focus on more theoretical performance measures and possibilities for parallelization, not
on actual performance with natively-compiled code.

Our study supports the theoretical result that the convergence of KOSZ crucially depends on
the stretch of the chosen spanning tree, with low stretch generally resulting in faster convergence.
This particularly suggests that it is crucial to build algorithms that yield spanning trees with lower
stretch. Since we have confirmed and extended Papp’s observation that algorithms with provably
low stretch do not yield good stretch in practice [24], improving the low-stretch ST algorithms is an
important future research direction.

Even though KOSZ proves to grow nearly linearly as predicted by theory, the constant seems
to be too large to make it competitive without major changes in the algorithm, even compared to
the CG method without a preconditioner. Hence, we can say that the running time is nearly linear
indeed and, thus, fast in the O-notation, but the constant factors prevent usefulness in practice so far.
While the negative results may predominate in this study, we expect to deliver insights that lead to
further improvements, both in theory and practice. It seems promising to repair cycles other than
just the basis cycles in each iteration; as also suggested and performed by Boman et al. [29]. Yet, their
results indicate that this alone may not be sufficient. Besides, it would necessitate significantly different
data structures to obtain the best possible performance in practice.
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