

  A Modified Iterative Algorithm for Split Feasibility Problems of Right Bregman Strongly Quasi-Nonexpansive Mappings in Banach Spaces with Applications




A Modified Iterative Algorithm for Split Feasibility Problems of Right Bregman Strongly Quasi-Nonexpansive Mappings in Banach Spaces with Applications







Algorithms 2016, 9(4), 75; doi:10.3390/a9040075




Article



A Modified Iterative Algorithm for Split Feasibility Problems of Right Bregman Strongly Quasi-Nonexpansive Mappings in Banach Spaces with Applications



Anantachai Padcharoen 1,2, Poom Kumam 1,2,*, Yeol Je Cho 3,4 and Phatiphat Thounthong 5,6





1



KMUTT-Fixed Point Theory and Optimization Research Group (KMUTT-FPTO), Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand






2



KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand






3



Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea






4



Department of Mathematics, King Abdulaziz University Jeddah 21589, Saudi Arabia






5



Renewable Energy Research Centre, King Mongkut’s University of Technology North Bangkok (KMUTNB), Wongsawang, Bangsue, Bangkok 10800, Thailand






6



Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok (KMUTNB), Wongsawang, Bangsue, Bangkok 10800, Thailand









*



Correspondence:







Academic Editor: Alicia Cordero



Received: 8 September 2016 / Accepted: 1 November 2016 / Published: 10 November 2016



Abstract:



In this paper, we present a new iterative scheme for finding a common element of the solution set [image: there is no content] of the split feasibility problem and the fixed point set [image: there is no content] of a right Bregman strongly quasi-nonexpansive mapping T in p-uniformly convex Banach spaces which are also uniformly smooth. We prove strong convergence theorem of the sequences generated by our scheme under some appropriate conditions in real p-uniformly convex and uniformly smooth Banach spaces. Furthermore, we give some examples and applications to illustrate our main results in this paper. Our results extend and improve the recent ones of some others in the literature.
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1. Introduction


Let [image: there is no content], [image: there is no content] be Banach spaces and C, Q be nonempty closed convex subsets of [image: there is no content] and [image: there is no content], respectively. Let A[image: there is no content] be a bounded linear operator. The split feasibility problem (shortly, (SFP)) is as follows:


Findx∈CsuchthatAx∈Q.



(1)







We denote the solution set of the problem (SFP) by [image: there is no content] It is worth mentioning that (SFP) in finite-dimensional spaces was first introduced by Censor and Elfving [1] for modelling inverse problems which arise from phase retrievals and medical image reconstruction.



Note that, in finite dimensional Hilbert spaces, the strong convergence of a sequence is equivalent to the weak convergence and the boundedness of a sequence implies that there exists a strongly convergent subsequence. However, in infinite dimensional Hilbert spaces, the strong convergence of a sequence is not equivalent to the weak convergence and the boundedness of a sequence implies that there exists a weakly convergent subsequence. So, for some algorithms, we can prove only strong convergence theorems in finite dimensional Hilbert spaces, but we can prove weak and strong convergence theorems in infinite dimensional Hilbert spaces.



In [2], Byrne presented a new method [image: there is no content], which is called the CQ-algorithm for solving the problem (SFP) that does not involve matrix inverses, defined as follows:



For any [image: there is no content] and [image: there is no content]


[image: there is no content]



(2)




where [image: there is no content] and [image: there is no content] is the orthogonal projections onto C and [image: there is no content] respectively, [image: there is no content]L is the largest eigenvalue of the matrix [image: there is no content] and I is the identity matrix.



After that many authors [3,4,5,6,7] study extend some iterative algorithms from Hilbert spaces to Banach spaces by using Bregman’s technic as follows:



In solving the problem (SFP) in p-uniformly convex real Banach spaces which are also uniformly smooth, Schopfer et al. [8] proposed the following algorithm [image: there is no content] defined as follows:



For any [image: there is no content] and [image: there is no content]


[image: there is no content]



(3)




where [image: there is no content] denotes the Bregman projection and J the duality mapping.



Clearly, the algorithm (3) covers Byrne’s CQ algorithm (2), which is a gradient-projection method (GPM) in convex minimization as a special case. The duality mapping of [image: there is no content] is sequentially weak-to-weak-continuous (see [8]) in Banach spaces such as the classical Lp(2<p<∞) spaces.



In [9], Wang modified the algorithm (3) and proved strong convergence theorems for the following multiple-sets split feasibility problem (MSSFP):


Findx∈⋂i=1rCisuchthatAx∈⋂j=1+rr+sQj,



(4)




where [image: there is no content] are two given integers, Ci,i=1,2,3,⋯,r, is a closed convex subset in [image: there is no content] and Qj,j=r+1,⋯,r+s, is a closed convex subset in [image: there is no content] He defined the following: for each [image: there is no content]


[image: there is no content]



(5)




where [image: there is no content] is the cyclic control mapping i(n)=nmod(r+s)+1 and [image: there is no content] satisfies


[image: there is no content]



(6)




with a constant [image: there is no content] and proposed the following algorithm [image: there is no content] defined as follows: For any [image: there is no content] and [image: there is no content],


[image: there is no content]



(7)







Recently, Zegeye and Shahzad [10] proved a strong convergence theorem for a common fixed point of a finite family of right Bregman strongly nonexpansive mappings in the framework of real reflexive Banach spaces. Furthermore, they applied their method to approximate a common zero of a finite family of maximal monotone operators and a solution of a finite family of convex feasibility problems in reflexive real Banach spaces.



Let [image: there is no content] be a cofinite function which is bounded, uniformly Fŕechet differentiable and totally convex on bounded subsets of [image: there is no content] Let C be a nonempty closed convex subset of int(dom f) and let [image: there is no content] for i=1,2,⋯,N, be a finite family of right Bregman strongly nonexpansive mappings such that [image: there is no content] for each i∈{1,2,⋯,N}. Assume that [image: there is no content] is nonempty. For any [image: there is no content] let [image: there is no content] be a sequence generated by


[image: there is no content]








for each [image: there is no content], where [image: there is no content] and [image: there is no content] satisfy the following conditions:

	(i)

	
[image: there is no content]




	(ii)

	
[image: there is no content]









Then [image: there is no content] converges strongly to a point [image: there is no content]



In this paper, we modify the Halpern-Mann iterative method for split feasibility problems and fixed point problems concerning right Bregman strongly quasi-nonexpansive mappings in p-uniformly convex and uniformly smooth Banach spaces. We prove strong convergence theorem of the sequences generated by our scheme under some appropriate conditions in real p-uniformly convex and uniformly smooth Banach spaces. Also, we give numerical examples of our result to study its efficiency and implementation. Our results extend and improve the recent ones of some others in the literature.




2. Preliminaries


Let [image: there is no content], [image: there is no content] be real Banach spaces and A: [image: there is no content] be a bounded linear operator. The dual (adjoint) operator of A, denoted by [image: there is no content], is a bounded linear operator defined by [image: there is no content]: [image: there is no content]


[image: there is no content]



(8)




for all [image: there is no content] and [image: there is no content] and the equalities [image: there is no content], [image: there is no content] are valid, where


R(A)⊥:={x*∈E2*:⟨x*,u⟩=0,∀u∈R(A)}.











For more details on bounded linear operators and their duals, see [11,12].



Definition 1.

(1) The duality mapping [image: there is no content]is defined by


JEp(x)={x*∈E*:⟨x,x*⟩=∥x∥p,∥x*∥=∥x∥p−1}.











(2) The duality mapping [image: there is no content]is said to be weak-to-weak continuous if


xn⇀x⟹⟨JEpxn,y⟩→⟨JEpx,y⟩








holds true for any [image: there is no content]





We note here that lp(p>1) spaces has such a property, but the Lp(p>2) space does not share this property. The domain of a convex function [image: there is no content] is defined by dom[image: there is no content] When dom[image: there is no content] then we say that f is proper.



In the sequel, we adopt the following notations in this paper: [image: there is no content] means that [image: there is no content] strongly and [image: there is no content] meansthat [image: there is no content] weakly.



Definition 2 

([13]).Let f: [image: there is no content]be a convex and Gâteaux differentiable function. The Bregman distance with respect to f is defined by


[image: there is no content]








for all [image: there is no content].





The duality mapping [image: there is no content] is actually the derivative of the function [image: there is no content] If [image: there is no content], then the Bregman distance with respect to [image: there is no content] now becomes


dp(x,y)=1q∥x∥p−⟨JEpx,y⟩+1p∥y∥p=1p(∥y∥p−∥x∥p)+⟨JEpx,x−y⟩=1q(∥x∥p−∥y∥p)−⟨JEpx−JEpy,y⟩.



(9)







The Bregman distance is not symmetric and so it is not a metric, but it posses the following important properties: for all [image: there is no content],


[image: there is no content]



(10)




and


[image: there is no content]



(11)







Let [image: there is no content] with [image: there is no content] The modulus of smoothness of E is the function [image: there is no content] defined by


[image: there is no content]











A Banach space E is said to be uniformly smooth if


[image: there is no content]








and, for any [image: there is no content], a Banach space E is said to be q-uniformly smooth if there exists [image: there is no content] such that [image: there is no content] for any [image: there is no content]



Let [image: there is no content] and [image: there is no content]. If a Banach space E is q-uniformly smooth, then there exists [image: there is no content] such that


[image: there is no content]



(12)







Let [image: there is no content] The modulus of convexity of E is the function [image: there is no content]: [image: there is no content] defined by


δE(ϵ):=inf1−∥x+y2∥:∥x∥=∥y∥=1,ϵ=∥x−y∥.











A Banach space E is said to be uniformly convex if [image: there is no content] for all [image: there is no content] and, for any [image: there is no content], a Banach space E is said to be p-uniformly convex if there is [image: there is no content] such that [image: there is no content] for any [image: there is no content] More information concerning uniformly convex spaces can be found, for example, in the book by Goebel and Reich [14].



It is known that a Banach space E is p-uniformly convex and uniformly smooth if and only if its dual [image: there is no content] is q-uniformly smooth and uniformly convex. It is also well known that the duality [image: there is no content] is one-to-one, single valued and satisfies [image: there is no content] where [image: there is no content] is the duality mapping of [image: there is no content]



For any p-uniformly convex Banach space E, the metric and the Bregman distance have the following relation:


[image: there is no content]



(13)




where [image: there is no content] is a fixed number.



Let C be a nonempty closed convex subset of [image: there is no content] The metric projection


[image: there is no content]








for all [image: there is no content] is the unique minimizer of the norm distance, which can be characterized by a variational inequality


[image: there is no content]



(14)




for all [image: there is no content].



Similarly, the Bregman projection is defined as follows:


ΠCx=argminy∈Cdp(x,y)








for all [image: there is no content], which is the unique minimizer of the Bregman distance. In addition, the Bregman projection can also be characterized by a variational inequality


[image: there is no content]



(15)




for all [image: there is no content], from which one has


[image: there is no content]



(16)




for all [image: there is no content].



Following [15,16], we will make use of the function [image: there is no content]: [image: there is no content] associated with [image: there is no content] which is defined by


[image: there is no content]








for all [image: there is no content] and [image: there is no content]. Then [image: there is no content] is nonnegative and


[image: there is no content]



(17)




for all [image: there is no content] and [image: there is no content] Moreover, by the subdifferential inequality, we have


[image: there is no content]



(18)




for all [image: there is no content] and [image: there is no content] (see also [17,18]). In addition, [image: there is no content] is convex in the first variable. Thus, for all [image: there is no content]


[image: there is no content]



(19)




where [image: there is no content] and [image: there is no content] with [image: there is no content] For more details, see [19,20].



Let C be a nonempty, closed and convex subset of E. A mapping T: [image: there is no content] is said to be nonexpansive if


[image: there is no content]








for all [image: there is no content]. We denote by [image: there is no content] the set of fixed points of [image: there is no content] that is, [image: there is no content]



Let C be a convex subset of int (dom [image: there is no content]), where fp(x)=(1p)∥x∥p,2≤p<∞, and T be a self-mapping of [image: there is no content] A point [image: there is no content] is called an asymptotic fixed point of T if C contains a sequence [image: there is no content] which converges weakly to [image: there is no content] and [image: there is no content] The set of asymptotic fixed point of T is denoted by [image: there is no content] (see [21]).



In general, the Bregman distance is not a metric due to the absence of symmetry, but it has some distance-like properties.



Definition 3.

A nonlinear mapping T with a nonempty asymptotic fixed point set is said to be:

	(1) 

	
T is called right Bregman quasi-nonexpansive (shortly, R-BQNE) (see [22]) if [image: there is no content]and


[image: there is no content]








for all [image: there is no content]and [image: there is no content].




	(2) 

	
T is called right Bregman strongly quasi-nonexpansive (shortly, R-BSQNE) (see [23,24]) with respect to a nonempty [image: there is no content]if


[image: there is no content]








for all [image: there is no content][image: there is no content], and if whenever [image: there is no content]is bounded, [image: there is no content]and [image: there is no content]then it follows that [image: there is no content]




	(3) 

	
T is called right Bregman firmly nonexpansive (shortly, R-BFNE) if


[image: there is no content]








for all [image: there is no content]or, equivalently,


[image: there is no content]








for all [image: there is no content].











Lemma 1 

([25]). Let [image: there is no content]be a sequence of real numbers such that there exists a nondecreasing subsequence [image: there is no content]of [image: there is no content]that is, [image: there is no content]for all [image: there is no content]Then there exists a nondecreasing subsequence [image: there is no content]such that [image: there is no content]and the following properties are satisfied for all (sufficiently large number [image: there is no content])[image: there is no content]and [image: there is no content]In fact, [image: there is no content]





Lemma 2 

([26]). Let [image: there is no content]be a sequence of nonnegative real numbers satisfying the following relation:


[image: there is no content]








for each [image: there is no content], where

	(i) 

	
[image: there is no content]and [image: there is no content];




	(ii) 

	
[image: there is no content]




	(iii) 

	
[image: there is no content]and [image: there is no content]






Then [image: there is no content]






3. Results


Now, we give our main results in this paper.



Theorem 1.

Let [image: there is no content], [image: there is no content]be p-uniformly convex real Banach spaces which are also uniformly smooth and C, Q be nonempty closed convex subsets of [image: there is no content], [image: there is no content]respectively. Let A: [image: there is no content]be a bounded linear operator and [image: there is no content]: [image: there is no content]be the adjoint of [image: there is no content]Suppose that the problem (SFP) has a nonempty solution set [image: there is no content]. Let [image: there is no content]be a right Bregman strongly quasi-nonexpansive mapping such that [image: there is no content]and [image: there is no content]Suppose that [image: there is no content], [image: there is no content], [image: there is no content]and [image: there is no content]are the sequences in [image: there is no content]such that [image: there is no content], αn≤b<1,(1−αn)a<γn<δn,a∈(0,12).For any fixed [image: there is no content]let the sequences [image: there is no content]and [image: there is no content]be iteratively generated by [image: there is no content]and


[image: there is no content]



(20)




for each [image: there is no content]. Suppose the following conditions are satisfied:

	(a) 

	
[image: there is no content]




	(b) 

	
[image: there is no content]




	(c) 

	
[image: there is no content]









Then the sequence [image: there is no content]and [image: there is no content]converge strongly to a point [image: there is no content]





Proof. 

Firstly, we prove that the sequences [image: there is no content] and [image: there is no content] are bounded. Setting [image: there is no content] for each [image: there is no content] From (14), it follows that, for any [image: there is no content],


⟨JE2p(zn),Aun−Aw⟩=∥Aun−PQ(Aun)∥p+⟨JE2p(zn),PQ(Aun)−Aw⟩≥∥Aun−PQ(Aun)∥p=∥zn∥p.



(21)









So, from (21) and (12), it follows that


dp(xn,w)≤dp(JE1*q[JE1p(un)−snA*JE2p(I−PQ)Aun],w)=1q∥JE1p(un)−snA*JE2p(zn)∥q−⟨JE1p(un),w⟩+sn⟨JE2p(zn),Aw⟩+1p∥w∥p≤∥JE1p(un)∥−sn⟨Aun,JE2p(zn)⟩+Cq(sn∥A∥)qq∥JE2p(zn)∥p−⟨JE1p(un),w⟩+1p∥w∥p+sn⟨Aw,JE2p(zn)⟩=1q∥un∥p−⟨JE1p(un),w⟩+1q∥w∥p+sn⟨JE2p(zn),Aw−Aun⟩+Cq(sn∥A∥)qq∥zn∥p=dp(un,w)+sn⟨JE2p(zn),Aw−Aun⟩+Cq(sn∥A∥)qq∥zn∥p≤dp(un,w)−(sn−Cq(sn∥A∥)qq)∥zn∥p.



(22)







By using [image: there is no content] we obtain


[image: there is no content]











From (20), we have


dp(un+1,w)≤dp(JE1*q[αnJE1p(u)+(1−αn)(βnJE1p(u)+γnJE1p(xn)+δnJE1p(Txn))],w)=dp(JE1*q[αnJE1p(u)+(1−αn)βnJE1p(u)+(1−αn)γnJE1p(xn)+(1−αn)δnJE1p(Txn)],w)≤αndp(u,w)+(1−αn)βndp(u,w)+(1−αn)γndp(xn,w)+(1−αn)δndp(Txn,w)≤αndp(u,w)+(1−αn)βndp(u,w)+(1−αn)γndp(xn,w)+(1−αn)δndp(xn,w)=(αn+(1−αn)βn)dp(u,w)+(1−αn)(γn+δn)dp(xn,w)≤(αn+(1−αn)βn)dp(u,w)+(1−αn)(γn+δn)dp(un,w)≤max{dp(u,w),dp(un,w)}⋯≤max{dp(u,w),dp(u1,w)}.



(23)







Thus [image: there is no content] is bounded and, consequently, we have that [image: there is no content] is bounded. Hence the sequence [image: there is no content] and [image: there is no content] are bounded. Setting


[image: there is no content]








for each [image: there is no content]. Then we have


dp(xn+1,w)≤dp(un+1,w)≤dp(JE1*q[αnJE1p(u)+(1−αn)(βnJE1p(u)+γnJE1p(xn)+δnJE1p(Txn))],w)=Vf(αnJE1p(u)+(1−αn)(βnJE1p(u)+γnJE1p(xn)+δnJE1p(Txn)),w)≤Vf(αnJE1p(u)+(1−αn)(βnJE1p(u)+γnJE1p(xn)+δnJE1p(Txn))−αn(JE1p(u)−JE1p(w)),w)−⟨−αn(JE1p(u)−JE1p(w)),JE1*q[αnJE1p(u)+(1−αn)(βnJE1p(u)+γnJE1p(xn)+δnJE1p(Txn))]−w⟩=Vf(αnJE1p(u)+(1−αn)(βnJE1p(u)+γnJE1p(xn)+δnJE1p(Txn)),w)+αn⟨JE1p(u)−JE1p(w),yn−w⟩=Vf(αnJE1p(w)+(1−αn)(βnJE1p(u)+γnJE1p(xn)+δnJE1p(Txn)),w)+αn⟨JE1p(u)−JE1p(w),yn−w⟩=dp(JE1*q[αnJE1p(w)+(1−αn)(βnJE1p(u)+γnJE1p(xn)+δnJE1p(Txn))],w)+αn⟨nJE1p(u)−JE1p(w),yn−w⟩≤αndp(w,w)+(1−αn)βndp(w,w)+(1−αn)γndp(xn,w)+(1−αn)δndp(Txn,w)










≤(1−αn)γndp(xn,w)+(1−αn)δndp(xn,w)+αn⟨JE1p(u)−JE1p(w),yn−w⟩=(1−αn)(γn+δn)dp(un,w)+αn⟨JE1p(u)−JE1p(w),yn−w⟩≤(1−αn)dp(un,w)+αn⟨JE1p(u)−JE1p(w),yn−w⟩.



(24)







Now, we prove the strong convergence theorem by the two cases:



Case I.

Suppose that there exists [image: there is no content] such that [image: there is no content] is monotonically non-increasing for all [image: there is no content]. Then [image: there is no content] converges and, as [image: there is no content],


[image: there is no content]



(25)









Setting [image: there is no content] Then we have


dp(tn,w)=dpJE1*qγn1−αnJE1p(xn)+δn1−αnJE1p(Txn),w≤γn1−αndp(xn,w)+δn1−αndp(Txn,w)≤γn+δn1−αndp(xn,w)≤dp(xn,w).



(26)







Therefore, we have


0≤dp(xn,w)−dp(tn,w)=dp(xn,w)−dp(xn+1,w)+dp(xn+1,w)−dp(tn,w)≤dp(xn,w)−dp(xn+1,w)+dp(un+1,w)−dp(tn,w)≤dp(xn,w)−dp(xn+1,w)+αndp(u,w)+(1−αn)dp(tn,w)−dp(tn,w)=dp(xn,w)−dp(xn+1,w)+αndp(u,w)−αndp(tn,w)→0



(27)




as [image: there is no content]. Again, we obtain


dp(tn,w)≤γn1−αndp(xn,w)+δn1−αndp(Txn,w)=1−βn+δn1−αndp(xn,w)+δn1−αndp(Txn,w)=dp(xn,w)−βn1−αndp(xn,w)+δn1−αn(dp(Txn,w)−dp(xn,w))≤dp(xn,w)+δn1−αn(dp(Txn,w)−dp(xn,w)).



(28)







Since [image: there is no content] and [image: there is no content] we have


a(dp(xn,w)−dp(Txn,w))<δn1−αn(dp(xn,w)−dp(Txn,w))≤dp(xn,w)−dp(tn,w)→0



(29)




as [image: there is no content]. By using [image: there is no content], we have


[image: there is no content]








as [image: there is no content]. Since T is right Bregman strongly quasi-nonexpansive, we obtain


[image: there is no content]








which implies that


[image: there is no content]



(30)







Since [image: there is no content] is bounded and E is reflexive, there exists a subsequence [image: there is no content] of [image: there is no content] which converges weakly to [image: there is no content] From (30), it follows that [image: there is no content] since [image: there is no content]



Next, we prove that [image: there is no content] that is, [image: there is no content] Setting


[image: there is no content]











From (16), (22) and (24), it follows that


dp(vn,xn)=dp(vn,Πcvn)≤dp(vn,w)−dp(xn,w)≤d(un,w)−dp(xn,w)≤αnM+dp(xn−1,w)−dp(xn,w)→0



(31)




as [image: there is no content], where [image: there is no content] and [image: there is no content] Hence we have


[image: there is no content]



(32)







From (22), it follows that, as [image: there is no content],


sn−Cq(sn∥A∥)qq∥zn∥p≤d(un,w)−dp(xn,w)≤αnM+dp(xn−1,w)−dp(xn,w)→0.



(33)







Since


[image: there is no content]



(34)




it follows that ∥zn∥p→0asn→∞, which implies that ∥Aun−PQ(un)∥→0asn→∞. By the definition of [image: there is no content] we have


0≤∥JE1p(vn)−JE1p(un)≤sn∥A*∥∥JE2p(Aun−PQ(Aun))∥≤qCq∥A∥q1q−1∥A*∥∥Aun−PQ(Aun)∥→0



(35)




as [image: there is no content]. Since [image: there is no content] is norm to norm uniformly continuous on bounded subsets of [image: there is no content] we obtain


[image: there is no content]



(36)




as [image: there is no content]. From (3) and (36), we obtain


[image: there is no content]



(37)




as [image: there is no content]. From (14), it follows that


∥(I−PQ)Ax¯∥p=⟨JE2p(Ax¯−PQAx¯),Ax¯−PQAx¯⟩=⟨JE2p(Ax¯−PQAx¯),Ax¯−Auni⟩+⟨JE2p(Ax¯−PQAx¯),Auni−PQAuni⟩+⟨JE2p(Ax¯−PQAx¯),PQAuni−PQAx¯⟩≤⟨JE2p(Ax¯−PQAx¯),Ax¯−Auni⟩+⟨JE2p(Ax¯−PQAx¯),Auni−PQAuni⟩.



(38)







By the continuity of A and ∥xn−un∥→0asn→∞, we have [image: there is no content] as [image: there is no content] Thus, letting [image: there is no content] we have


[image: there is no content]











Hence [image: there is no content] that is, [image: there is no content] Therefore, we have that [image: there is no content]



Next, we prove that [image: there is no content] converges strongly to [image: there is no content] Now, we have


dp(yn,xn)=dp(JE1*q[αnJE1p(u)+(1−αn)(βnJE1p(u)+γnJE1p(xn)+δnJE1p(Txn))],xn)≤αndp(u,xn)+(1−αn)βndp(u,xn)+(1−αn)γndp(xn,xn)+(1−α)δndp(Txn,xn)→0








as [image: there is no content]. Thus we have


[image: there is no content]








as [image: there is no content]. Let [image: there is no content] From (24), we have


[image: there is no content]











Then there exists a subsequence [image: there is no content] of [image: there is no content] such that


[image: there is no content]








and [image: there is no content] Thus, from (15), it follows that


lim supn→∞⟨JE1p(u)−JE1p(x^),xn−x^⟩=limj→∞⟨JE1p(u)−JE1p(x^),xnj−x^⟩=⟨JE1p(u)−JE1p(x^),x¯−x^⟩≤0.











Since ∥xn−yn∥→0asn→∞, we have


[image: there is no content]











Hence, by Lemma 2, we conclude that [image: there is no content] as [image: there is no content] Therefore, [image: there is no content] as [image: there is no content] and, since [image: there is no content] as [image: there is no content], we have [image: there is no content] as [image: there is no content]



Case II.

Suppose that there exists a subsequence [image: there is no content] of [image: there is no content] such that


[image: there is no content]








for all [image: there is no content] Then, by Lemma 1, there exists a nondecreasing sequence [image: there is no content] with [image: there is no content] as [image: there is no content] such that


dp(xmk,x^)≤dp(xmk+1,x^),dp(xk,x^)≤dp(xmk+1,x^)








for all [image: there is no content] Thus it follows from (27) and the same methods in the proof of Case I that


∥xmk+1−xmk∥→0,∥Txmk−xmk∥→0








as [image: there is no content] Therefore, we have


[image: there is no content]



(39)









From (24), also, we have


[image: there is no content]



(40)







Since [image: there is no content] it follows from (40) that


αmkdp(xmk,x^)≤dp(xmk,x^)−dp(xmk+1,x^)+αmk⟨JE1p(u)−JE1p(x^),ymk−x^⟩≤αmk⟨JE1p(u)−JE1p(x^),ymk−x^⟩



(41)







Since [image: there is no content] we obtain


[image: there is no content]



(42)







Then, from (39), it follows that [image: there is no content] as [image: there is no content] This together with (40), we obtain [image: there is no content] as [image: there is no content] Since [image: there is no content] for all [image: there is no content] we have [image: there is no content] as [image: there is no content] which implies that [image: there is no content] as [image: there is no content]



Therefore, from the above two cases, we conclude that [image: there is no content] converges strongly to [image: there is no content] This completes the proof. ☐



Corollary 1 

([19]). Let [image: there is no content], [image: there is no content]be two p-uniformly convex real Banach spaces which are also uniformly smooth and C, Q be nonempty closed convex subsets of [image: there is no content], [image: there is no content]respectively. Let [image: there is no content]be a bounded linear operator and [image: there is no content]be the adjoint of [image: there is no content]Suppose that the problem (SFP) has a nonempty solution set [image: there is no content]. Let [image: there is no content]be a right Bregman strongly quasi-nonexpansive mapping such that [image: there is no content]and [image: there is no content]Suppose that [image: there is no content]and [image: there is no content]are the sequences in [image: there is no content]such that [image: there is no content], βn≤b<1,(1−βn)a<γn<δn,a∈(0,12).For any fixed [image: there is no content]let the sequences [image: there is no content]and [image: there is no content]be iteratively generated by [image: there is no content]and


[image: there is no content]



(43)




for each [image: there is no content]. Suppose the following condition is satisfied:

	(a) 

	
[image: there is no content]




	(b) 

	
[image: there is no content]




	(c) 

	
[image: there is no content]









Then the sequence [image: there is no content]and [image: there is no content]converges strongly to a point [image: there is no content]





Proof. 

If [image: there is no content] for all [image: there is no content] in Theorem 1, then we obtain the desired conclusion.  ☐





Corollary 2.

Let [image: there is no content], [image: there is no content]be two p-uniformly convex real Banach spaces which are also uniformly smooth and C, Q be nonempty closed convex subsets of [image: there is no content], [image: there is no content]respectively. Let [image: there is no content]be a bounded linear operator and [image: there is no content]be the adjoint of [image: there is no content]Suppose that the problem (SFP) has a nonempty solution set [image: there is no content]. Let [image: there is no content]be a right Bregman strongly quasi-nonexpansive mapping such that [image: there is no content]and [image: there is no content]Suppose that [image: there is no content]is a sequences in [image: there is no content]such that αn≤b<1,a∈(0,12).For any fixed [image: there is no content]let the sequences [image: there is no content]and [image: there is no content]be iteratively generated by [image: there is no content]and


[image: there is no content]



(44)




for each [image: there is no content]. Suppose the following conditions are satisfied:

	(a) 

	
[image: there is no content]




	(b) 

	
[image: there is no content]




	(c) 

	
[image: there is no content]









Then the sequence [image: there is no content]and [image: there is no content]converges strongly to a point [image: there is no content]





Proof. 

If [image: there is no content] for all [image: there is no content] in Theorem 1, then we obtain the desired conclusion.  ☐





Next, we consider the mapping [image: there is no content] defined by [image: there is no content] where [image: there is no content] for each [image: there is no content] is a right Bregman strongly quasi-nonexpansive mapping on [image: there is no content] Using the results in [10], we have the following:



Corollary 3.

Let [image: there is no content], [image: there is no content]be two p-uniformly convex real Banach spaces which are also uniformly smooth and C, Q be nonempty closed convex subsets of [image: there is no content], [image: there is no content]respectively. Let [image: there is no content]be a bounded linear operator and [image: there is no content]be the adjoint of [image: there is no content]Suppose that the problem (SFP) has a nonempty solution set [image: there is no content]. Let [image: there is no content]where [image: there is no content]for each [image: there is no content]be a finite family of right Bregman strongly quasi-nonexpansive mappings such that [image: there is no content]and [image: there is no content]Suppose that {αn},{βn},{γn}and [image: there is no content]are the sequences in [image: there is no content]such that αn+βn+γn+δn=1,αn≤b<1, (1−αn)a<γn<δn,a∈(0,12).For any fixed [image: there is no content]let the sequences [image: there is no content]and [image: there is no content]be iteratively generated by [image: there is no content]and


[image: there is no content]



(45)




for each [image: there is no content]. Suppose the following conditions are satisfied:

	(a) 

	
[image: there is no content]




	(b) 

	
[image: there is no content]




	(c) 

	
[image: there is no content]









Then the sequence [image: there is no content]and [image: there is no content]converges strongly to a point [image: there is no content]





Proof. 

If [image: there is no content] in Theorem 1, then we obtain the desired conclusion.  ☐





Corollary 4.

Let [image: there is no content], [image: there is no content]be two real Hilbert spaces and C, Q be nonempty closed convex subsets of [image: there is no content], [image: there is no content]respectively. Let [image: there is no content]be a bounded linear operator and [image: there is no content]be the adjoint of [image: there is no content]Suppose that the problem (SFP) has a nonempty solution set [image: there is no content]. Let [image: there is no content]be a right Bregman strongly quasi-nonexpansive mapping such that F(T)=F^(T)≠∅,I−Tis demiclosed at zero and [image: there is no content]Suppose that {αn},{βn},{γn}and [image: there is no content]are the sequences in [image: there is no content]such that [image: there is no content], αn≤b<1,(1−αn)a<γn<δn,a∈(0,12).For any fixed [image: there is no content]let the sequences [image: there is no content]and [image: there is no content]be iteratively generated by [image: there is no content]and


[image: there is no content]



(46)




for each [image: there is no content]. Suppose the following conditions are satisfied:

	(a) 

	
[image: there is no content]




	(b) 

	
[image: there is no content]




	(c) 

	
[image: there is no content]









Then the sequence [image: there is no content]and [image: there is no content]converges strongly to a point [image: there is no content]





Proof. 

Let [image: there is no content] in Theorem 1. Since the duality mappings JE1*q,JE1p and [image: there is no content] are the identity mapping in a Hilbert space H, from Theorem 1, we obtain the desired conclusion.  ☐





Corollary 5.

Let [image: there is no content], [image: there is no content]be two real Hilbert spaces and C, Q be nonempty closed convex subsets of [image: there is no content], [image: there is no content]respectively. Let [image: there is no content]be a bounded linear operator and [image: there is no content]be the adjoint of [image: there is no content]Suppose that the problem (SFP) has a nonempty solution set [image: there is no content]. Let [image: there is no content]be a right Bregman strongly quasi-nonexpansive mapping such that F(T)=F^(T)≠∅,I−Tis demiclosed at zero and [image: there is no content]Suppose that [image: there is no content]and [image: there is no content]are sequences in [image: there is no content]such that βn+γn+δn=1,βn≤b<1, (1−βn)a<γn<δn,a∈(0,12).For any fixed [image: there is no content]let the sequences [image: there is no content]and [image: there is no content]be iteratively generated by [image: there is no content]and


[image: there is no content]



(47)




for each [image: there is no content]. Suppose the following conditions are satisfied:

	(a) 

	
[image: there is no content]




	(b) 

	
[image: there is no content]




	(c) 

	
[image: there is no content]









Then the sequence [image: there is no content]and [image: there is no content]converges strongly to a point [image: there is no content]





Proof. 

Let [image: there is no content] and [image: there is no content] for each [image: there is no content]. Since the duality mappings JE1*q,JE1p and [image: there is no content] are the identity mapping in a Hilbert space H, from Theorem 1, we obtain the desired conclusion.  ☐





Remark 1.

A prototype for the sequences {αn},{βn},{γn},{δn}and [image: there is no content]in Theorem 1 are as follows:


αn=1n+1,βn=1−2an+1n+1,γn=12ann+1,δn=32ann+1,a∈0,12








and


[image: there is no content]








for each [image: there is no content].






4. Some Numerical Examples


In this section, we present some preliminary numerical results to illustrate the main result, Theorem 1. All codes were written in Matlab 2013b and run on Sumsung i-3 Core laptop.



Example 1.

We find a numerical example in [image: there is no content]of the problem considered in Theorem 1 of the previous section. Now, take


[image: there is no content]








where [image: there is no content]and [image: there is no content]Then we have


[image: there is no content]











Let [image: there is no content], where [image: there is no content]and [image: there is no content]Then we have


[image: there is no content]











Suppose that the mapping T in Theorem 1 is defined as [image: there is no content]the metric projection on [image: there is no content]Then the problem considered in Theorem 1 reduces to the problem:


Findx∈F(T)∩C(=C)suchthatAx∈Q.



(48)







Let [image: there is no content]denote the set of solutions of the problem (48) with [image: there is no content]Furthermore, let


αn=1n+1,βn=n8(n+1),γn=n8(n+1),δn=3n8(n+1),A=4−6−8−51−5−8−54.











Then our iterative processes (20) becomes


[image: there is no content]



(49)




for each [image: there is no content]. Now, we make different choices of u,u1,snand take [image: there is no content]as our stopping criterion.





Case I.

Take u=(1,1,1),u1=(3,0,4) and [image: there is no content] Then we have the numerical analysis tabulated in Table 1 and show in Figure 1.


Figure 1. Example 1, case I.



[image: Algorithms 09 00075 g001]






Table 1. Example 1, case I.







	
[image: there is no content]

	
Time Taken

	
Number of Iterations

	
[image: there is no content]

	
[image: there is no content]






	
0.0137

	
0.0400

	
2

	
0.6758

	
4.2169




	
3

	
0.0122

	
0.0453




	
4

	
0.0177

	
0.0497




	
5

	
0.0158

	
0.0265




	
6

	
0.0146

	
0.0194




	
7

	
0.0130

	
0.0154




	
8

	
0.0113

	
0.0127




	
9

	
0.0098

	
0.0107




	
10

	
0.0085

	
0.0091




	
11

	
0.0074

	
0.0079












Case II.

Take u=(1,1,1),u1=(3,0,4) and [image: there is no content] Then we have the numerical analysis tabulated in Table 2 and show in Figure 2.


Figure 2. Example 1, case II.



[image: Algorithms 09 00075 g002]






Table 2. Example 1, case II.







	
[image: there is no content]

	
Time Taken

	
Number of Iterations

	
[image: there is no content]

	
[image: there is no content]






	
0.0001

	
0.0400

	
2

	
1.7588

	
3.9690




	
3

	
0.1950

	
0.1968




	
4

	
0.0181

	
0.0182




	
5

	
0.0265

	
0.0266




	
6

	
0.0318

	
0.0320




	
7

	
0.0303

	
0.0305




	
8

	
0.0271

	
0.0273




	
9

	
0.0237

	
0.0239




	
10

	
0.0207

	
0.0209




	
11

	
0.0181

	
0.0182












Case III.

Take u=(1,1,1),u1=(3,0,4) and [image: there is no content] Then we have the numerical analysis tabulated in Table 3 and show in Figure 3.


Figure 3. Example 1, case III.



[image: Algorithms 09 00075 g003]






Table 3. Example 1, case III.







	
[image: there is no content]

	
Time Taken

	
Number of Iterations

	
[image: there is no content]

	
[image: there is no content]






	
0.0000001

	
0.0400

	
2

	
1.7720

	
3.9674




	
3

	
0.1969

	
0.1969




	
4

	
0.0179

	
0.0179




	
5

	
0.0272

	
0.0272




	
6

	
0.0326

	
0.0326




	
7

	
0.0311

	
0.0311




	
8

	
0.0278

	
0.0278




	
9

	
0.0244

	
0.0244




	
10

	
0.0213

	
0.0213




	
11

	
0.0186

	
0.0186












Remark 2.

We make the following comments from Example 1. We observe that different choices of [image: there is no content]has no effect in terms of number of iterations obtained and the time taken for the convergence of our algorithm.






5. Conclusions


Our iterative processes can be used for finding a common element of the solution set [image: there is no content] of the split feasibility problem and the fixed point set [image: there is no content] of a right Bregman strongly quasi-nonexpansive mapping T in p-uniformly convex Banach spaces, which are also uniformly smooth.
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