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Abstract: In this paper, we present a new iterative scheme for finding a common element of the
solution set F of the split feasibility problem and the fixed point set F(T) of a right Bregman strongly
quasi-nonexpansive mapping T in p-uniformly convex Banach spaces which are also uniformly
smooth. We prove strong convergence theorem of the sequences generated by our scheme under
some appropriate conditions in real p-uniformly convex and uniformly smooth Banach spaces.
Furthermore, we give some examples and applications to illustrate our main results in this paper.
Our results extend and improve the recent ones of some others in the literature.
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1. Introduction

Let E1, E2 be Banach spaces and C, Q be nonempty closed convex subsets of E1 and E2, respectively.
Let A: E1 → E2 be a bounded linear operator. The split feasibility problem (shortly, (SFP)) is as follows:

Find x ∈ C such that Ax ∈ Q. (1)

We denote the solution set of the problem (SFP) by F := {x ∈ C : Ax ∈ Q} = C ∩ A−1(Q). It is
worth mentioning that (SFP) in finite-dimensional spaces was first introduced by Censor and Elfving [1]
for modelling inverse problems which arise from phase retrievals and medical image reconstruction.

Note that, in finite dimensional Hilbert spaces, the strong convergence of a sequence is equivalent
to the weak convergence and the boundedness of a sequence implies that there exists a strongly
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convergent subsequence. However, in infinite dimensional Hilbert spaces, the strong convergence
of a sequence is not equivalent to the weak convergence and the boundedness of a sequence implies
that there exists a weakly convergent subsequence. So, for some algorithms, we can prove only
strong convergence theorems in finite dimensional Hilbert spaces, but we can prove weak and strong
convergence theorems in infinite dimensional Hilbert spaces.

In [2], Byrne presented a new method {xn}, which is called the CQ-algorithm for solving the
problem (SFP) that does not involve matrix inverses, defined as follows:

For any x0 ∈ C and n ≥ 1,

xn+1 = PC(xn + γAT(PQ − I)xn), (2)

where PC and PQ is the orthogonal projections onto C and Q, respectively, γ ∈ (0, 2
L ), L is the largest

eigenvalue of the matrix AT A and I is the identity matrix.
After that many authors [3–7] study extend some iterative algorithms from Hilbert spaces to

Banach spaces by using Bregman’s technic as follows:
In solving the problem (SFP) in p-uniformly convex real Banach spaces which are also uniformly

smooth, Schopfer et al. [8] proposed the following algorithm {xn} defined as follows:
For any x1 ∈ E1 and n ≥ 1,

xn+1 = ΠC J∗E1
(JE1(xn)− sn A∗ JE2(Axn − PQ(Axn))), (3)

where ΠC denotes the Bregman projection and J the duality mapping.
Clearly, the algorithm (3) covers Byrne’s CQ algorithm (2), which is a gradient-projection

method (GPM) in convex minimization as a special case. The duality mapping of E1 is sequentially
weak-to-weak-continuous (see [8]) in Banach spaces such as the classical Lp (2 < p < ∞) spaces.

In [9], Wang modified the algorithm (3) and proved strong convergence theorems for the following
multiple-sets split feasibility problem (MSSFP):

Find x ∈
r⋂

i=1

Ci such that Ax ∈
r+s⋂

j=1+r
Qj, (4)

where r, s are two given integers, Ci, i = 1, 2, 3, · · · , r, is a closed convex subset in E1 and
Qj, j = r + 1, · · · , r + s, is a closed convex subset in E2. He defined the following: for each n ∈ N,

Tn(x) =

ΠCi(n)(x), 1 ≤ i(n) ≤ r,

J∗E1
[JE1(x)− sn A∗ JE2(Ax− PQj(n)

(Ax))], r + 1 ≤ i(n) ≤ r + s,
(5)

where i : N→ I is the cyclic control mapping i(n) = n mod(r + s) + 1 and tn satisfies

0 < s ≤ sn ≤
q

Cq‖A‖q )
1

q−1 (6)

with a constant Cq and proposed the following algorithm {xn} defined as follows: For any x1 = x̄
and n ≥ 1, 

yn = Tnxn,

Dn = {w ∈ E1 : dp(yn, w) ≤ dp(xn, w)},
En = {w ∈ E1 : 〈xn − w, Jp(x̄)− Jp(xn) ≥ 0},
xn+1 = ΠDn∩En(x̄).

(7)

Recently, Zegeye and Shahzad [10] proved a strong convergence theorem for a common fixed
point of a finite family of right Bregman strongly nonexpansive mappings in the framework of real
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reflexive Banach spaces. Furthermore, they applied their method to approximate a common zero of
a finite family of maximal monotone operators and a solution of a finite family of convex feasibility
problems in reflexive real Banach spaces.

Let f : E → R be a cofinite function which is bounded, uniformly Fŕechet differentiable and
totally convex on bounded subsets of E. Let C be a nonempty closed convex subset of int(dom f )
and let Ti : C → C, for i = 1, 2, · · · , N, be a finite family of right Bregman strongly nonexpansive
mappings such that F(Ti) = F̂(Ti) for each i ∈ {1, 2, · · · , N}. Assume that F := F̂(Ti) is nonempty.
For any u, x1 ∈ C, let {xn} be a sequence generated by

xn+1 = αnu + (1− αn)Txn

for each n ≥ 1, where T = TN ◦ TN−1 ◦ · · · ◦ T1 and {αn} ⊂ (0, 1) satisfy the following conditions:

(i) lim
n→∞

αn = 0;

(ii)
∞
∑

n=1
αn = ∞.

Then {xn} converges strongly to a point x̂.
In this paper, we modify the Halpern-Mann iterative method for split feasibility problems and

fixed point problems concerning right Bregman strongly quasi-nonexpansive mappings in p-uniformly
convex and uniformly smooth Banach spaces. We prove strong convergence theorem of the sequences
generated by our scheme under some appropriate conditions in real p-uniformly convex and uniformly
smooth Banach spaces. Also, we give numerical examples of our result to study its efficiency and
implementation. Our results extend and improve the recent ones of some others in the literature.

2. Preliminaries

Let E1, E2 be real Banach spaces and A: E1 → E2 be a bounded linear operator. The dual (adjoint)
operator of A, denoted by A∗, is a bounded linear operator defined by A∗: E∗2 → E∗1

〈A∗ȳ, x〉 := 〈ȳ, Ax〉 (8)

for all x ∈ E1 and ȳ ∈ E∗2 and the equalities ‖A∗‖ = ‖A‖, N (A∗) = R(A)⊥ are valid, where

R(A)⊥ := {x∗ ∈ E∗2 : 〈x∗, u〉 = 0, ∀u ∈ R(A)}.

For more details on bounded linear operators and their duals, see [11,12].

Definition 1. (1) The duality mapping Jp
E : E→ E∗ is defined by

Jp
E(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1}.

(2) The duality mapping Jp
E is said to be weak-to-weak continuous if

xn ⇀ x =⇒ 〈Jp
Exn, y〉 → 〈Jp

Ex, y〉

holds true for any y ∈ E.

We note here that lp (p > 1) spaces has such a property, but the Lp (p > 2) space does not share
this property. The domain of a convex function f : E→ R is defined by dom f := {x ∈ E : f (x) < +∞}.
When dom f 6= ∅, then we say that f is proper.

In the sequel, we adopt the following notations in this paper: xn → x means that xn → x strongly
and xn ⇀ x meansthat xn → x weakly.
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Definition 2 ([13]). Let f : E → R be a convex and Gâteaux differentiable function. The Bregman distance
with respect to f is defined by

d f (x, y) := f (y)− f (x)− 〈 f ′(x), y− x〉

for all x, y ∈ E.

The duality mapping Jp
E is actually the derivative of the function fp(x) = 1

p‖x‖p. If f = fp,
then the Bregman distance with respect to fp now becomes

dp(x, y) =
1
q
‖x‖p − 〈Jp

Ex, y〉+ 1
p
‖y‖p

=
1
p
(‖y‖p − ‖x‖p) + 〈Jp

Ex, x− y〉

=
1
q
(‖x‖p − ‖y‖p)− 〈Jp

Ex− Jp
Ey, y〉.

(9)

The Bregman distance is not symmetric and so it is not a metric, but it posses the following
important properties: for all w, x, y ∈ E,

dp(x, y) = dp(x, w) + dp(w, y) + 〈w− y, Jp
Ex− Jp

Ey〉 (10)

and
dp(x, y) + dp(y, x) = 〈x− y, Jp

Ex− Jp
Ey〉. (11)

Let 1 < q ≤ 2 ≤ p with 1
p + 1

q = 1. The modulus of smoothness of E is the function
ρE : [0, ∞)→ [0, ∞) defined by

ρE(t) := sup
{1

2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space E is said to be uniformly smooth if

lim
t→0

ρE(t)
t

= 0

and, for any q > 1, a Banach space E is said to be q-uniformly smooth if there exists Cq > 0 such that
ρE(t) ≤ Cqtq for any t > 0.

Let x, y ∈ E and q > 1. If a Banach space E is q-uniformly smooth, then there exists Cq > 0 such
that

‖x− y‖q ≤ ‖x‖q − q〈Jp
E(x), y〉+ Cq‖y‖q. (12)

Let dim(E) ≥ 2. The modulus of convexity of E is the function δE(ε): (0, 2]→ [0, 1] defined by

δE(ε) := inf
{

1−
∥∥∥ x + y

2

∥∥∥ : ‖x‖ = ‖y‖ = 1, ε = ‖x− y‖
}

.

A Banach space E is said to be uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2] and, for any p > 1,
a Banach space E is said to be p-uniformly convex if there is Cp > 0 such that δE(ε) ≥ Cpεp for any
ε ∈ (0, 2]. More information concerning uniformly convex spaces can be found, for example, in the
book by Goebel and Reich [14].

It is known that a Banach space E is p-uniformly convex and uniformly smooth if and only if
its dual E∗ is q-uniformly smooth and uniformly convex. It is also well known that the duality Jp

E is
one-to-one, single valued and satisfies Jp

E = (Jq
E∗)
−1, where Jq

E∗ is the duality mapping of E∗.
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For any p-uniformly convex Banach space E, the metric and the Bregman distance have the
following relation :

τ‖x− y‖p ≤ dp(x, y) ≤ 〈x− y, Jp
Ex− Jp

Ey〉, (13)

where τ > 0 is a fixed number.

Let C be a nonempty closed convex subset of E. The metric projection

PCx := arg min
y∈C
‖x− y‖

for all x ∈ E is the unique minimizer of the norm distance, which can be characterized by a variational
inequality

〈Jp
E(x− PCx), z− PCx〉 ≤ 0 (14)

for all z ∈ C.
Similarly, the Bregman projection is defined as follows:

ΠCx = arg min
y∈C

dp(x, y)

for all x ∈ E, which is the unique minimizer of the Bregman distance. In addition, the Bregman
projection can also be characterized by a variational inequality

〈Jp
E(x)− Jp

E(ΠCx), z−ΠCx〉 ≤ 0 (15)

for all z ∈ C, from which one has

dp(ΠCx, z) ≤ dp(x, z)− dp(x, ΠCx) (16)

for all z ∈ C.

Following [15,16], we will make use of the function Vp: E∗ × E → [0,+∞) associated with fp,
which is defined by

Vp(x̄, x) =
1
q
‖x̄‖q − 〈x̄, x〉+ 1

p
‖x‖p

for all x ∈ E and x̄ ∈ E∗. Then Vp is nonnegative and

Vp(x̄, x) = dp(J∗E(x̄), x) = dp(Jq
E(x̄), x) (17)

for all x ∈ E and x̄ ∈ E∗. Moreover, by the subdifferential inequality, we have

Vp(x̄, x) + 〈ȳ, J∗E(x̄)− x〉 ≤ Vp(x̄ + ȳ, x) (18)

for all x ∈ E and x̄, ȳ ∈ E∗ (see also [17,18]). In addition, Vp is convex in the first variable. Thus, for all
z ∈ E,

dp

(
Jq
E

( N

∑
i=1

ti J
p
E(xi)

)
, w
)
= dp

(
J∗E
( N

∑
i=1

ti J
p
E(xi)

)
, w
)
≤

N

∑
i=1

tidp(xi, w), (19)

where {xi} ⊂ E and {ti} ⊂ (0, 1) with
N
∑

i=1
= 1. For more details, see [19,20].

Let C be a nonempty, closed and convex subset of E. A mapping T: C → C is said to be
nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C. We denote by F(T) the set of fixed points of T, that is, F(T) = {x ∈ C : Tx = x}.
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Let C be a convex subset of int (dom fp), where fp(x) = ( 1
p )‖x‖p, 2 ≤ p < ∞, and T be

a self-mapping of C. A point x̂ ∈ C is called an asymptotic fixed point of T if C contains a sequence
{xn} which converges weakly to x̂ and lim

n→∞
‖xn − Txn‖ = 0. The set of asymptotic fixed point of T is

denoted by F̂(T) (see [21]).

In general, the Bregman distance is not a metric due to the absence of symmetry, but it has some
distance-like properties.

Definition 3. A nonlinear mapping T with a nonempty asymptotic fixed point set is said to be:

(1) T is called right Bregman quasi-nonexpansive (shortly, R-BQNE) (see [22]) if F(T) 6= ∅ and

dp(Tx, x̄) ≤ dp(x, x̄)

for all x ∈ C and x̄ ∈ F(T).
(2) T is called right Bregman strongly quasi-nonexpansive (shortly, R-BSQNE) (see [23,24]) with respect to

a nonempty F̂(T) if
dp(Tx, x̂) ≤ dp(x, x̂)

for all x̂ ∈ F̂(T), x ∈ C , and if whenever {xn} ⊂ C is bounded, x̂ ∈ F̂(T) and lim
n→+∞

(dp(xn, x̂)−
dp(Txn, x̂)) = 0, then it follows that lim

n→+∞
dp(xn, Txn) = 0.

(3) T is called right Bregman firmly nonexpansive (shortly, R-BFNE) if

〈∇ f (Tx)−∇ f (Ty), Tx− Ty〉 ≤ 〈∇ f (x)−∇ f (y), Tx− Ty〉

for all x, y ∈ C or, equivalently,

dp(Tx, Ty) + dp(Ty, Tx) + dp(x, Tx) + dp(y, Ty) ≤ dp(x, Ty) + dp(y, Tx)

for all x, y ∈ C.

Lemma 1 ([25]). Let {an} be a sequence of real numbers such that there exists a nondecreasing subsequence
{ni} of {n}, that is, ani ≤ ani+1 for all i ∈ N. Then there exists a nondecreasing subsequence {mk} ⊂ N such
that mk → ∞ and the following properties are satisfied for all (sufficiently large number k ∈ N): amk ≤ amk+1

and ak ≤ amk+1. In fact, mk = max{j ≤ k : aj ≤ aj+1}.

Lemma 2 ([26]). Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1− αn)an + αnσn + γn

for each n ≥ 0, where

(i) {αn} ⊂ [0, 1] and
∞
∑

n=1
= ∞;

(ii) lim sup
n→∞

σn ≤ 0;

(iii) γn ≥ 0 and
∞
∑

n=1
γn < ∞.

Then lim
n→∞

an = 0.

3. Results

Now, we give our main results in this paper.
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Theorem 1. Let E1, E2 be p-uniformly convex real Banach spaces which are also uniformly smooth and C,
Q be nonempty closed convex subsets of E1, E2, respectively. Let A: E1 → E2 be a bounded linear operator and
A∗: E∗2 → E∗1 be the adjoint of A. Suppose that the problem (SFP) has a nonempty solution setF . Let T : C → C
be a right Bregman strongly quasi-nonexpansive mapping such that F(T) = F̂(T) 6= ∅ and F(T) ∩ F 6= ∅.
Suppose that {αn}, {βn}, {γn} and {δn} are the sequences in (0, 1) such that αn + βn + γn + δn = 1,
αn ≤ b < 1, (1− αn)a < γn < δn, a ∈ (0, 1

2 ). For any fixed u ∈ C, let the sequences {xn} and {un} be
iteratively generated by u0 ∈ E1 and{

xn = ΠC Jq
E∗1

(
Jp
E1
(un)− sn A∗ Jp

E2
(I − PQ)Aun

)
,

un+1 = ΠC Jq
E∗1

(
αn Jp

E1
(u) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn))

) (20)

for each n ≥ 1. Suppose the following conditions are satisfied:

(a) lim
n→∞

αn = 0;

(b)
∞
∑

n=1
αn = ∞;

(c) 0 < s ≤ sn ≤ k <
( q

Cq‖A‖q

) 1
q−1

.

Then the sequence {xn} and {un} converge strongly to a point ΠF(T)∩Fu.

Proof. Firstly, we prove that the sequences {xn} and {un} are bounded. Setting zn := Aun − PQ(Aun)

for each n ≥ 1. From (14), it follows that, for any w ∈ F(T) ∩ F ,

〈Jp
E2
(zn), Aun − Aw〉 = ‖Aun − PQ(Aun)‖p + 〈Jp

E2
(zn), PQ(Aun)− Aw〉

≥ ‖Aun − PQ(Aun)‖p

= ‖zn‖p.

(21)

So, from (21) and (12), it follows that

dp(xn, w)

≤ dp(Jq
E∗1
[Jp

E1
(un)− sn A∗ Jp

E2
(I − PQ)Aun], w)

=
1
q
‖Jp

E1
(un)− sn A∗ Jp

E2
(zn)‖q − 〈Jp

E1
(un), w〉+ sn〈Jp

E2
(zn), Aw〉+ 1

p
‖w‖p

≤ ‖Jp
E1
(un)‖ − sn〈Aun, Jp

E2
(zn)〉+

Cq(sn‖A‖)q

q
‖Jp

E2
(zn)‖p

− 〈Jp
E1
(un), w〉+ 1

p
‖w‖p + sn〈Aw, Jp

E2
(zn)〉

=
1
q
‖un‖p − 〈Jp

E1
(un), w〉+ 1

q
‖w‖p + sn〈Jp

E2
(zn), Aw− Aun〉

+
Cq(sn‖A‖)q

q
‖zn‖p

= dp(un, w) + sn〈Jp
E2
(zn), Aw− Aun〉+

Cq(sn‖A‖)q

q
‖zn‖p

≤ dp(un, w)− (sn −
Cq(sn‖A‖)q

q
)‖zn‖p.

(22)

By using (c), we obtain
dp(xn, w) ≤ dp(un, w).
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From (20), we have

dp(un+1, w)

≤ dp(Jq
E∗1
[αn Jp

E1
(u) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn))], w)

= dp(Jq
E∗1
[αn Jp

E1
(u) + (1− αn)βn Jp

E1
(u)

+ (1− αn)γn Jp
E1
(xn) + (1− αn)δn Jp

E1
(Txn)], w)

≤ αndp(u, w) + (1− αn)βndp(u, w)

+ (1− αn)γndp(xn, w) + (1− αn)δndp(Txn, w)

≤ αndp(u, w) + (1− αn)βndp(u, w)

+ (1− αn)γndp(xn, w) + (1− αn)δndp(xn, w)

= (αn + (1− αn)βn)dp(u, w) + (1− αn)(γn + δn)dp(xn, w)

≤ (αn + (1− αn)βn)dp(u, w) + (1− αn)(γn + δn)dp(un, w)

≤ max{dp(u, w), dp(un, w)}
· · ·
≤ max{dp(u, w), dp(u1, w)}.

(23)

Thus {dp(un, w)} is bounded and, consequently, we have that {dp(xn, w)} is bounded. Hence the
sequence {xn} and {un} are bounded. Setting

yn = Jq
E∗1
[αn Jp

E1
(u) + (1− α)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn))]

for each n ≥ 1. Then we have

dp(xn+1, w)

≤ dp(un+1, w)

≤ dp(Jq
E∗1
[αn Jp

E1
(u) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn))], w)

= Vf (αn Jp
E1
(u) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn)), w)

≤ Vf (αn Jp
E1
(u) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn))

− αn(Jp
E1
(u)− Jp

E1
(w)), w)− 〈−αn(Jp

E1
(u)− Jp

E1
(w)),

Jq
E∗1
[αn Jp

E1
(u) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn))]− w〉

= Vf (αn Jp
E1
(u) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn)), w)

+ αn〈Jp
E1
(u)− Jp

E1
(w), yn − w〉

= Vf (αn Jp
E1
(w) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn)), w)

+ αn〈Jp
E1
(u)− Jp

E1
(w), yn − w〉

= dp(Jq
E∗1
[αn Jp

E1
(w) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn))], w)

+ αn〈n Jp
E1
(u)− Jp

E1
(w), yn − w〉

≤ αndp(w, w) + (1− αn)βndp(w, w) + (1− αn)γndp(xn, w)

+ (1− αn)δndp(Txn, w)
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≤ (1− αn)γndp(xn, w) + (1− αn)δndp(xn, w)

+ αn〈Jp
E1
(u)− Jp

E1
(w), yn − w〉

= (1− αn)(γn + δn)dp(un, w) + αn〈Jp
E1
(u)− Jp

E1
(w), yn − w〉

≤ (1− αn)dp(un, w) + αn〈Jp
E1
(u)− Jp

E1
(w), yn − w〉.

(24)

Now, we prove the strong convergence theorem by the two cases:

Case I. Suppose that there exists n0 ∈ N such that {dp(xn, w)} is monotonically non-increasing for all
n ≥ n0. Then {dp(xn, w)} converges and, as n→ ∞,

dp(xn+1, w)− dp(xn, w)→ 0. (25)

Setting tn = Jq
E∗1
( βn

1−αn
Jp
E1
(xn) +

γn
1−αn

Jp
E1
(xn) +

δn
1−αn

Jp
E1
(Txn)). Then we have

dp(tn, w) = dp

(
Jq
E∗1

( γn

1− αn
Jp
E1
(xn) +

δn

1− αn
Jp
E1
(Txn)

)
, w
)

≤ γn

1− αn
dp(xn, w) +

δn

1− αn
dp(Txn, w)

≤ γn + δn

1− αn
dp(xn, w)

≤ dp(xn, w).

(26)

Therefore, we have

0 ≤ dp(xn, w)− dp(tn, w)

= dp(xn, w)− dp(xn+1, w) + dp(xn+1, w)− dp(tn, w)

≤ dp(xn, w)− dp(xn+1, w) + dp(un+1, w)− dp(tn, w)

≤ dp(xn, w)− dp(xn+1, w) + αndp(u, w) + (1− αn)dp(tn, w)− dp(tn, w)

= dp(xn, w)− dp(xn+1, w) + αndp(u, w)− αndp(tn, w)→ 0

(27)

as n→ ∞. Again, we obtain

dp(tn, w) ≤ γn

1− αn
dp(xn, w) +

δn

1− αn
dp(Txn, w)

=
(

1− βn + δn

1− αn

)
dp(xn, w) +

δn

1− αn
dp(Txn, w)

= dp(xn, w)− βn

1− αn
dp(xn, w) +

δn

1− αn
(dp(Txn, w)− dp(xn, w))

≤ dp(xn, w) +
δn

1− αn
(dp(Txn, w)− dp(xn, w)).

(28)

Since αn + δn ≤ 1 and αn ≤ b < 1, we have

a(dp(xn, w)− dp(Txn, w)) <
δn

1− αn
(dp(xn, w)− dp(Txn, w))

≤ dp(xn, w)− dp(tn, w)→ 0
(29)

as n→ ∞. By using (c), we have

dp(xn, w)− dp(Txn, w)→ 0
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as n→ ∞. Since T is right Bregman strongly quasi-nonexpansive, we obtain

lim
n→∞

dp(Txn, xn) = 0,

which implies that
lim

n→∞
‖Txn − xn‖ = 0. (30)

Since {xn} is bounded and E is reflexive, there exists a subsequence {xni} of {xn}which converges
weakly to x̄ ∈ C. From (30), it follows that x̄ ∈ F(T) since F(T) = F̂(T).

Next, we prove that Ax̄ ∈ Q, that is, x̄ ∈ F . Setting

vn = Jq
E∗1
[Jp

E1
(un)− sn A∗ Jp

E2
(I − PQ)Aun].

From (16), (22) and (24), it follows that

dp(vn, xn) = dp(vn, Πcvn)

≤ dp(vn, w)− dp(xn, w)

≤ d(un, w)− dp(xn, w)

≤ αnM+ dp(xn−1, w)− dp(xn, w)→ 0

(31)

as n→ ∞, whereM > 0 and dp(xn−1, w) + 〈Jp
E1
(u)− Jp

E1
(w), yn−1 − w〉 ≤ M. Hence we have

lim
n→∞

‖xn − vn‖ = 0. (32)

From (22), it follows that, as n→ ∞,(
sn −

Cq(sn‖A‖)q

q

)
‖zn‖p ≤ d(un, w)− dp(xn, w)

≤ αnM+ dp(xn−1, w)− dp(xn, w)→ 0.
(33)

Since

s
(

1−
Cqkq−1(‖A‖)q

q

)
≤
(

sn −
Cq(sn‖A‖)q

q

)
, (34)

it follows that ‖zn‖p → 0 as n → ∞, which implies that ‖Aun − PQ(un)‖ → 0 as n → ∞. By the
definition of vn, we have

0 ≤ ‖Jp
E1
(vn)− Jp

E1
(un)

≤ sn‖A∗‖‖Jp
E2
(Aun − PQ(Aun))‖

≤
( q

Cq‖A‖q

) 1
q−1 ‖A∗‖‖Aun − PQ(Aun)‖ → 0

(35)

as n→ ∞. Since Jq
E∗1

is norm to norm uniformly continuous on bounded subsets of E∗1 , we obtain

lim
n→∞

‖vn − un‖ = lim
n→∞

‖Jq
E∗1
(Jp

E1
(vn))− Jq

E∗1
(Jp

E1
(un))‖ → 0 (36)

as n→ ∞. From (3) and (36), we obtain

‖xn − un‖ ≤ ‖xn − yn‖+ ‖yn − un‖ → 0. (37)
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as n→ ∞. From (14), it follows that

‖(I − PQ)Ax̄‖p

= 〈Jp
E2
(Ax̄− PQ Ax̄), Ax̄− PQ Ax̄〉

= 〈Jp
E2
(Ax̄− PQ Ax̄), Ax̄− Auni 〉+ 〈J

p
E2
(Ax̄− PQ Ax̄), Auni − PQ Auni 〉

+ 〈Jp
E2
(Ax̄− PQ Ax̄), PQ Auni − PQ Ax̄〉

≤ 〈Jp
E2
(Ax̄− PQ Ax̄), Ax̄− Auni 〉+ 〈J

p
E2
(Ax̄− PQ Ax̄), Auni − PQ Auni 〉.

(38)

By the continuity of A and ‖xn − un‖ → 0 as n → ∞, we have Auni ⇀ Ax̄ as n → ∞. Thus,
letting i→ ∞, we have

‖Ax̄− PQ Ax̄‖ = 0.

Hence Ax̄ = PQ Ax̄, that is, Ax̄ ∈ Q. Therefore, we have that x̄ ∈ F(T) ∩ F .
Next, we prove that {xn} converges strongly to ΠP(T)∩Fu. Now, we have

dp(yn, xn)

= dp(Jq
E∗1
[αn Jp

E1
(u) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn))], xn)

≤ αndp(u, xn) + (1− αn)βndp(u, xn)

+ (1− αn)γndp(xn, xn) + (1− α)δndp(Txn, xn)

→ 0

as n→ ∞. Thus we have
‖yn − xn‖ → 0

as n→ ∞. Let x̂ = ΠP(T)∩Fu. From (24), we have

dp(xn+1, x̂) ≤ (1− αn)dp(xn, x̂) + αn〈Jp
E1
(u)− Jp

E1
(x̂), yn − x̂〉.

Then there exists a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈Jp
E1
(u)− Jp

E1
(x̂), xn − x̂〉 = lim

j→∞
〈Jp

E1
(u)− Jp

E1
(x̂), xnj − x̂〉

and xnj → x̄. Thus, from (15), it follows that

lim sup
n→∞

〈Jp
E1
(u)− Jp

E1
(x̂), xn − x̂〉 = lim

j→∞
〈Jp

E1
(u)− Jp

E1
(x̂), xnj − x̂〉

= 〈Jp
E1
(u)− Jp

E1
(x̂), x̄− x̂〉

≤ 0.

Since ‖xn − yn‖ → 0 as n→ ∞, we have

lim sup
n→∞

〈Jp
E1
(u)− Jp

E1
(x̂), yn − x̂〉 ≤ 0.

Hence, by Lemma 2, we conclude that dp(xn, x̂)→ 0 as n→ ∞. Therefore, xn → x̂ as n→ ∞ and,
since ‖xn − un‖ → 0 as n→ ∞, we have un → x̂ as n→ ∞.

Case II. Suppose that there exists a subsequence {nj} of {n} such that

dp(xni , x̂) < dp(xni+1, x̂)
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for all j ∈ N. Then, by Lemma 1, there exists a nondecreasing sequence {mk} ⊂ N with mk → ∞ as
n→ ∞ such that

dp(xmk , x̂) ≤ dp(xmk+1, x̂), dp(xk, x̂) ≤ dp(xmk+1, x̂)

for all k ∈ N. Thus it follows from (27) and the same methods in the proof of Case I that

‖xmk+1 − xmk‖ → 0, ‖Txmk − xmk‖ → 0

as k→ ∞. Therefore, we have

lim sup
k→∞

〈Jp
E1
(u)− Jp

E1
(x̂), ymk+1 − x̂〉 = lim sup

k→∞
〈Jp

E1
(u)− Jp

E1
(x̂), ymk − x̂〉 ≤ 0. (39)

From (24), also, we have

dp(xmk+1, x̂) ≤ (1− αmk )dp(xmk , x̂) + αmk 〈J
p
E1
(u)− Jp

E1
(x̂), ymk − x̂〉. (40)

Since dp(xmk , x̂) ≤ dp(xmk+1, x̂), it follows from (40) that

αmk dp(xmk , x̂) ≤ dp(xmk , x̂)− dp(xmk+1, x̂) + αmk 〈J
p
E1
(u)− Jp

E1
(x̂), ymk − x̂〉

≤ αmk 〈J
p
E1
(u)− Jp

E1
(x̂), ymk − x̂〉

(41)

Since αmk > 0, we obtain

dp(xmk , x̂) ≤ 〈Jp
E1
(u)− Jp

E1
(x̂), ymk − x̂〉. (42)

Then, from (39), it follows that dp(xmk , x̂) → 0 as k → ∞. This together with (40), we obtain
dp(xmk+1, x̂) → 0 as k → ∞. Since dp(xk, x̂) ≤ (xmk+1, x̂) for all k ∈ N, we have xk → x̂ as k → ∞,
which implies that xn → x̂ as k→ ∞.

Therefore, from the above two cases, we conclude that {xn} converges strongly to x̂ = ΠP(T)∩Fu.
This completes the proof.

Corollary 1 ([19]). Let E1, E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth
and C, Q be nonempty closed convex subsets of E1, E2, respectively. Let A : E1 → E2 be a bounded linear
operator and A∗ : E∗2 → E∗1 be the adjoint of A. Suppose that the problem (SFP) has a nonempty solution set F .
Let T : C → C be a right Bregman strongly quasi-nonexpansive mapping such that F(T) = F̂(T) 6= ∅ and
F(T) ∩ F 6= ∅. Suppose that {βn}, {γn} and {δn} are the sequences in (0, 1) such that βn + γn + δn = 1,
βn ≤ b < 1, (1− βn)a < γn < δn, a ∈ (0, 1

2 ). For any fixed u ∈ C, let the sequences {xn} and {un} be
iteratively generated by u0 ∈ E1 and{

xn = ΠC Jq
E∗1

(
Jp
E1
(un)− sn A∗ Jp

E2
(I − PQ)Aun

)
,

un+1 = ΠC Jq
E∗1

(
βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn)

) (43)

for each n ≥ 1. Suppose the following condition is satisfied:

(a) lim
n→∞

βn = 0;

(b)
∞
∑

n=1
βn = ∞;

(c) 0 < s ≤ sn ≤ k <
( q

Cq‖A‖q

) 1
q−1

.

Then the sequence {xn} and {un} converges strongly to a point ΠF(T)∩Fu.

Proof. If αn = 0 for all n ≥ 1 in Theorem 1, then we obtain the desired conclusion.
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Corollary 2. Let E1, E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth and C,
Q be nonempty closed convex subsets of E1, E2, respectively. Let A : E1 → E2 be a bounded linear operator
and A∗ : E∗2 → E∗1 be the adjoint of A. Suppose that the problem (SFP) has a nonempty solution set F .
Let T : C → C be a right Bregman strongly quasi-nonexpansive mapping such that F(T) = F̂(T) 6= ∅ and
F(T) ∩ F 6= ∅. Suppose that {αn} is a sequences in (0, 1) such that αn ≤ b < 1, a ∈ (0, 1

2 ). For any fixed
u ∈ C, let the sequences {xn} and {un} be iteratively generated by u0 ∈ E1 and{

xn = ΠC Jq
E∗1

(
Jp
E1
(un)− sn A∗ Jp

E2
(I − PQ)Aun

)
,

un+1 = ΠC Jq
E∗1

(
αn Jp

E1
(u) + (1− αn)Jp

E1
(Txn)

) (44)

for each n ≥ 1. Suppose the following conditions are satisfied:

(a) lim
n→∞

αn = 0;

(b)
∞
∑

n=1
αn = ∞;

(c) 0 < s ≤ sn ≤ k <
( q

Cq‖A‖q

) 1
q−1

.

Then the sequence {xn} and {un} converges strongly to a point ΠF(T)∩Fu.

Proof. If βn = γn = δn = 0 for all n ≥ 1 in Theorem 1, then we obtain the desired conclusion.

Next, we consider the mapping T : C → C defined by T = TN ◦ TN−1 ◦ · · · ◦ T1, where Ti for
each i = 1, 2, · · · , N is a right Bregman strongly quasi-nonexpansive mapping on E. Using the results
in [10], we have the following:

Corollary 3. Let E1, E2 be two p-uniformly convex real Banach spaces which are also uniformly smooth and C,
Q be nonempty closed convex subsets of E1, E2, respectively. Let A : E1 → E2 be a bounded linear operator
and A∗ : E∗2 → E∗1 be the adjoint of A. Suppose that the problem (SFP) has a nonempty solution set F .
Let T = TN ◦ TN−1 ◦ · · · ◦ T1, where Ti : C → C for each i = 1, 2, · · ·N be a finite family of right Bregman

strongly quasi-nonexpansive mappings such that F(Ti) = F̂(Ti) 6= ∅ and (
N⋂

i=1
F(Ti)) ∩ F 6= ∅. Suppose that

{αn}, {βn}, {γn} and {δn} are the sequences in [0, 1) such that αn + βn + γn + δn = 1, αn ≤ b < 1,
(1− αn)a < γn < δn, a ∈ (0, 1

2 ). For any fixed u ∈ C, let the sequences {xn} and {un} be iteratively
generated by u0 ∈ E1 and{

xn = ΠC Jq
E∗1

(
Jp
E1
(un)− sn A∗ Jp

E2
(I − PQ)Aun

)
,

un+1 = ΠC Jq
E∗1

(
αn Jp

E1
(u) + (1− αn)(βn Jp

E1
(u) + γn Jp

E1
(xn) + δn Jp

E1
(Txn))

) (45)

for each n ≥ 1. Suppose the following conditions are satisfied:

(a) lim
n→∞

αn = 0;

(b)
∞
∑

n=1
αn = ∞;

(c) 0 < s ≤ sn ≤ k <
( q

Cq‖A‖q

) 1
q−1

.

Then the sequence {xn} and {un} converges strongly to a point ΠF(T)∩Fu.

Proof. If T = TN ◦ TN−1 ◦ · · · ◦ T1 in Theorem 1, then we obtain the desired conclusion.

Corollary 4. Let H1, H2 be two real Hilbert spaces and C, Q be nonempty closed convex subsets of H1,
H2, respectively. Let A : H1 → H2 be a bounded linear operator and A∗ : H2 → H1 be the adjoint of A.
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Suppose that the problem (SFP) has a nonempty solution set F . Let T : C → C be a right Bregman strongly
quasi-nonexpansive mapping such that F(T) = F̂(T) 6= ∅, I − T is demiclosed at zero and F(T) ∩ F 6= ∅.
Suppose that {αn}, {βn}, {γn} and {δn} are the sequences in [0, 1) such that αn + βn + γn + δn = 1,
αn ≤ b < 1, (1− αn)a < γn < δn, a ∈ (0, 1

2 ). For any fixed u ∈ C, let the sequences {xn} and {un} be
iteratively generated by u0 ∈ E1 and{

xn = PC
(
un − sn A∗(I − PQ)Aun

)
,

un+1 = PC
(
αnu + (1− αn)(βnu + γnxn + δnTxn)

) (46)

for each n ≥ 1. Suppose the following conditions are satisfied:

(a) lim
n→∞

αn = 0;

(b)
∞
∑

n=1
αn = ∞;

(c) 0 < s ≤ sn ≤ k <
2
‖A‖2 .

Then the sequence {xn} and {un} converges strongly to a point ΠF(T)∩Fu.

Proof. Let E = H in Theorem 1. Since the duality mappings Jq
E∗1

, Jp
E1

and Jp
E2

are the identity mapping
in a Hilbert space H, from Theorem 1, we obtain the desired conclusion.

Corollary 5. Let H1, H2 be two real Hilbert spaces and C, Q be nonempty closed convex subsets of H1,
H2, respectively. Let A : H1 → H2 be a bounded linear operator and A∗ : H2 → H1 be the adjoint of A.
Suppose that the problem (SFP) has a nonempty solution set F . Let T : C → C be a right Bregman strongly
quasi-nonexpansive mapping such that F(T) = F̂(T) 6= ∅, I − T is demiclosed at zero and F(T) ∩ F 6= ∅.
Suppose that {βn}, {γn} and {δn} are sequences in [0, 1) such that βn + γn + δn = 1, βn ≤ b < 1,
(1− βn)a < γn < δn, a ∈ (0, 1

2 ). For any fixed u ∈ C, let the sequences {xn} and {un} be iteratively
generated by u0 ∈ E1 and {

xn = PC
(
un − sn A∗(I − PQ)Aun

)
,

un+1 = PC
(

βnu + γnxn + δnTxn
) (47)

for each n ≥ 1. Suppose the following conditions are satisfied:

(a) lim
n→∞

βn = 0;

(b)
∞
∑

n=1
βn = ∞;

(c) 0 < s ≤ sn ≤ k <
2
‖A‖2 .

Then the sequence {xn} and {un} converges strongly to a point ΠF(T)∩Fu.

Proof. Let E = H and αn = 0 for each n ≥ 1. Since the duality mappings Jq
E∗1

, Jp
E1

and Jp
E2

are the
identity mapping in a Hilbert space H, from Theorem 1, we obtain the desired conclusion.

Remark 1. A prototype for the sequences {αn}, {βn}, {γn}, {δn} and {sn} in Theorem 1 are as follows:

αn =
1

n + 1
, βn = 1− 2an + 1

n + 1
, γn =

1
2

an

n + 1
, δn =

3
2

an

n + 1
, a ∈

(
0,

1
2

)
and

sn =
( n

n + 1

)( q
Cq‖A‖q

) 1
q−1

for each n ≥ 0.
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4. Some Numerical Examples

In this section, we present some preliminary numerical results to illustrate the main result,
Theorem 1. All codes were written in Matlab 2013b and run on Sumsung i-3 Core laptop.

Example 1. We find a numerical example in (R3, ‖ · ‖2) of the problem considered in Theorem 1 of the previous
section. Now, take

C := {x = (x1, x2, x3) ∈ R3 : 〈a, x〉 ≥ b},

where a = (2,−6, 1) and b = −4. Then we have

PC(x) =
b− 〈a, x〉
‖a‖2

2
a + x.

Let Q := {x = (x1, x2, x3) ∈ R3 : 〈c, x〉 = d}, where c = (3, 5, 7) and d = 2. Then we have

ΠQ(x) = PQ(x) = max
{

0,
d− 〈c, x〉
‖c‖2

2

}
c + x.

Suppose that the mapping T in Theorem 1 is defined as T := PC, the metric projection on C. Then the
problem considered in Theorem 1 reduces to the problem:

Find x ∈ F(T) ∩ C(= C) such that Ax ∈ Q. (48)

Let F denote the set of solutions of the problem (48) with F 6= ∅. Furthermore, let

αn =
1

n + 1
, βn =

n
8(n + 1)

, γn =
n

8(n + 1)
, δn =

3n
8(n + 1)

, A =

 4 −6 −8
−5 1 −5
−8 −5 4

 .

Then our iterative processes (20) becomes xn = PC
(
un − sn AT(I − PQ)Aun

)
,

un+1 = PC

[ u
n + 1

+
(

1− 1
n + 1

)( n
2(n + 1)

u +
n

8(n + 1)
xn +

3n
8(n + 1)

PCxn

)] (49)

for each n ≥ 1. Now, we make different choices of u, u1, sn and take
‖xn+1 − xn‖
‖x2 − x1‖

< 10−2 as our

stopping criterion.

Case I. Take u = (1, 1, 1), u1 = (3, 0, 4) and sn = 0.0137. Then we have the numerical analysis tabulated
in Table 1 and show in Figure 1.

Table 1. Example 1, case I.

sn Time Taken Number of Iterations ‖xn+1− xn‖2 ‖un+1− un‖2

0.0137 0.0400

2 0.6758 4.2169
3 0.0122 0.0453
4 0.0177 0.0497
5 0.0158 0.0265
6 0.0146 0.0194
7 0.0130 0.0154
8 0.0113 0.0127
9 0.0098 0.0107

10 0.0085 0.0091
11 0.0074 0.0079
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Figure 1. Example 1, case I.

Case II. Take u = (1, 1, 1), u1 = (3, 0, 4) and sn = 0.0001. Then we have the numerical analysis
tabulated in Table 2 and show in Figure 2.

Table 2. Example 1, case II.

sn Time Taken Number of Iterations ‖xn+1− xn‖2 ‖un+1− un‖2

0.0001 0.0400

2 1.7588 3.9690
3 0.1950 0.1968
4 0.0181 0.0182
5 0.0265 0.0266
6 0.0318 0.0320
7 0.0303 0.0305
8 0.0271 0.0273
9 0.0237 0.0239
10 0.0207 0.0209
11 0.0181 0.0182

Figure 2. Example 1, case II.

Case III. Take u = (1, 1, 1), u1 = (3, 0, 4) and sn = 0.0000001. Then we have the numerical analysis
tabulated in Table 3 and show in Figure 3.

Table 3. Example 1, case III.

sn Time Taken Number of Iterations ‖xn+1− xn‖2 ‖un+1− un‖2

0.0000001 0.0400

2 1.7720 3.9674
3 0.1969 0.1969
4 0.0179 0.0179
5 0.0272 0.0272
6 0.0326 0.0326
7 0.0311 0.0311
8 0.0278 0.0278
9 0.0244 0.0244

10 0.0213 0.0213
11 0.0186 0.0186
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Figure 3. Example 1, case III.

Remark 2. We make the following comments from Example 1. We observe that different choices of sn has no
effect in terms of number of iterations obtained and the time taken for the convergence of our algorithm.

5. Conclusions

Our iterative processes can be used for finding a common element of the solution set F of the
split feasibility problem and the fixed point set F(T) of a right Bregman strongly quasi-nonexpansive
mapping T in p-uniformly convex Banach spaces, which are also uniformly smooth.
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