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Abstract: The issue of exploration-exploitation remains one of the most challenging tasks within
the framework of evolutionary algorithms. To effectively balance the exploration and exploitation
in the search space, this paper proposes a modified cloud particles differential evolution algorithm
(MCPDE) for real-parameter optimization. In contrast to the original Cloud Particles Differential
Evolution (CPDE) algorithm, firstly, control parameters adaptation strategies are designed according
to the quality of the control parameters. Secondly, the inertia factor is introduced to effectively
keep a better balance between exploration and exploitation. Accordingly, this is helpful for
maintaining the diversity of the population and discouraging premature convergence. In addition,
the opposition mechanism and the orthogonal crossover are used to increase the search ability during
the evolutionary process. Finally, CEC2013 contest benchmark functions are selected to verify the
feasibility and effectiveness of the proposed algorithm. The experimental results show that the
proposed MCPDE is an effective method for global optimization problems.

Keywords: cloud particles differential evolution; exploration-exploitation; inertia factor;
global optimization

1. Introduction

Recently, many real-world problems which belong to optimization problems are very complex
and are quite difficult to solve. Traditional optimization methods are weak in some problems which
are multi-modal, high dimension, discontinuous, multi-objective, and dynamic, etc. Nature-inspired
meta-heuristic algorithms which can be called artificial evolution (AE) [1] are becoming more and more
popular in engineering applications by building feasible solutions. These evolutionary algorithms
(EAs) which are known to be capable of finding the near-optimum solution to the real-parameter
optimization problems, have been successfully applied to many optimization problems, such as
optimization, scheduling, economic problems, neural network training, data clustering, large-scale,
constrained, forecasting and multi-objective [2–9].

The meta-heuristic algorithms can be grouped in three main categories [10]: evolution-based,
physics-based, and swarm intelligence-based methods. The evolutionary algorithms which are
based on evolutionary process include Genetic Algorithm (GA) [11], Genetic Programming (GP) [12],
Differential Evolution (DE) [13], Derandomized Evolution Strategy with Covariance Matrix Adaptation
(CMA-ES) [14], and Biogeography-Based Optimizer (BBO) [15], et al. DE is a classical global optimization
algorithm which is proposed by Storn and Price. CMA-ES, proposed by Hansen and Ostermeier,
adapts the complete covariance matrix of the normal mutation distribution to solve optimization
problems. Some other methods which are based on physical processes include the Simulated Annealing
(SA) [16,17], Brain Storm Optimization (BSO) [18], Chemical Reaction Optimization (CRO) [19], etc.
SA is a heuristic algorithm which is based on an analog of thermodynamics that describes the way
metals cool and anneal [20]. BSO mimics the brainstorming process in which a group of people
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solves a problem together [21]. CRO is a chemical-reaction-inspired metaheuristic algorithm which
mimics the characteristics of chemical reactions in solving optimization problems [19]. Moreover,
there are some swarm intelligent methods based on animal-behavior phenomena such as Artificial
Bee Colony (ABC) [22], Teaching-Learning-Based Optimization (TLBO) [23,24] et al. ABC, proposed
by Karaboga, simulates the foraging behavior of the honeybee swarm and has been applied to solve
many engineering optimization problems [25,26]. The TLBO method, proposed by Rao, is based on
the effect of the influence of a teacher on the output of learners in a class [23].

The Cloud Particles Differential Evolution (CPDE) algorithm [27], which is inspired by the cloud
formation and state change, is a population-based algorithm. CPDE employs phase transformation
mechanism to promote the superior cloud particle to lead the swarm through the evolution. The evolutionary
process is divided into three stages in CPDE. They are gaseous, liquid and solid, respectively. The cloud
particles explore the searching area by condensation operation in a gaseous state. In a liquid state, the
liquefaction operation is carried out to realize macro-local exploitation. In a solid state, solidification
operation is carried out to realize micro-local exploitation. CPDE has been shown to perform well on
many optimization problems. However, it should be noted that the new cloud particles are generated
by the superior cloud particles, and then CPDE may easily trap in a local optima when solving complex
problems containing multiple local optimal solutions, such as CEC2013 benchmark functions.

This paper proposes a modified cloud particles differential evolution algorithm (MCPDE). Firstly,
control parameters adaptation strategies are designed by tuning the movement step and crossover
factor used at different evolutionary stages. Secondly, the inertia factor is introduced to effectively
balance exploration and exploitation. Superior cloud particles which are assigned with a smaller
movement step guide the searching direction and exploit the area where better particles may exist,
while inferior cloud particles which are assigned with a larger movement step maintain population
diversity. In addition, the opposition mechanism and the orthogonal crossover are used to increase the
search ability during the evolutionary process. Finally, the size of population is gradually decreased
during the evolution process to result in faster convergence.

The rest of the paper is organized as follows. Section 2 reviews the basic differential evolution
algorithm and variants of DE. Section 3 describes the modified cloud particles differential evolution
algorithm. To evaluate the performance of MCPDE, experiments are carried out on the CEC2013
contest which includes latest 28 standard benchmark functions in Section 4. For the source code used
for the compared algorithms, one may refer to http://ist.csu.edu.cn/YongWang.htm. Finally, the
conclusions and possible future research are drawn up in Section 5.

2. Background

2.1. Basic Differential Evolution Algorithm

DE is a well-known global optimization algorithm which includes mutation, crossover and
selection. During each generation, trial vectors are produced by mutation and crossover operations.
Then, vectors, which will survive to the next generation, are determined by the selection operation.

2.1.1. Mutation

With respect to each individual xi,G (called target vector) at generation G, a new individual

vi,G =
(

v1
i,G, v2

i,G, · · · vD
i,G

)
, which is called the mutant vector, is produced by mutation operation and

arithmetic recombination. Many mutation strategies can be found in the literature [28,29], the classical
one is “DE/rand/1”:

vi,G = xr1,G + F× (xr2,G − xr3,G) (1)

The indices r1, r2, r3 are three uniformly distributed random numbers within the range [1, N].
Index i is different from the indices r1, r2, r3. The control parameter F, namely mutation factor, is
defined by the user for scaling the difference vector.

http://ist.csu.edu.cn/YongWang.htm
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2.1.2. Crossover

To increase the population diversity, crossover operation is generally employed on the target vector
xi,G =

(
x1

i,G, x2
i,G, . . . , xD

i,G

)
to generate a trial vector ui,G =

(
u1

i,G, u2
i,G, . . . , uD

i,G

)
. Binomial (uniform)

crossover and exponential crossover are generally used in DE. In the basic version of DE, binomial
crossover is used and is defined as follows:

uj
i,G =

{
vj

i,G, i f
(
randj (0, 1) ≤ Cr or j = jrand

)
xj

i,G , otherwise
j = 1, 2, . . . , D (2)

In Equation (2), the crossover rate Cr ∈ [0, 1] is a control parameter. randj (0, 1) is randomly
selected in the range [0, 1]. jrand is randomly selected in the range [1, D]. Mutant vector vi,G is
generated according to Equation (1).

2.1.3. Selection

Selection operator determines the vectors which will survive for the next generation. If the fitness
of ui,G is better than or as good as xi,G, ui,G is selected. Otherwise, xi,G is selected. The selection
operation is defined as follows:

xi,G+1 =

{
ui,G, i f f (ui,G) ≤ f (xi,G)

xi,G, otherwise
(3)

2.2. Related Works

The performance of DE is directly affected by the control parameters and related evolutionary
strategies. Therefore, many variants of DE are proposed for improving the performance of the algorithm.

2.2.1. Adapting Control Parameters of Differential Evolution

In jDE [30], the self-adaptation of control parameters is proposed. F and Cr are encoded into the
individuals and updated with some probabilities so that better control parameters are used in the
next generation. In SaDE [28], promising solutions are generated with self-adapted control parameter.
The parameter F is generated by N(0.5, 0.3). The crossover rate Cr is generated by N(Crm, 0.1) with Crm

initialized to 0.5. In JADE [29], “DE/current-to-pbest” with optional external archive is introduced.
The external archive stores inferior solutions to provide a promising direction for the search process
and improve the population diversity. Control parameters are automatically updated according
to previously successful experiences. In success-history based adaptive DE (SHADE) [31], a new
parameter adaptation mechanism which is based on the successful searching experience is proposed.
Many variants of parameters control such as FiADE, DMPSADE and DESSA are available in the
literature [32–34].

2.2.2. Generation Strategy of Differential Evolution

DE researchers have suggested that some trial vector generation strategies and operations can
improve the performance of DE. CoDE [35] combines three well-studied trial vector generation
strategies with three random control parameter settings to generate trial vectors. In L-SHADE [36],
the Linear Population Size Reduction (LPSR) is embedded into SHADE so that the robustness of the
algorithm is improved. Swagatam [37] proposed an improvement mechanism of DE by using the
concept of the neighborhood of each population member. Wenyin Gong et al. [38] proposed a crossover
rate repair technique for the adaptive DE algorithms. The crossover rate in DE is repaired by its
corresponding binary string which is used to replace the original crossover rate. In addition, some
algorithms [39–42] are based on population initialization and population tuning strategy.
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2.2.3. Hybridized Versions of Differential Evolution

Some useful techniques or different evolutionary algorithms are combined with DE algorithm
for improving the performance of DE. A hybrid of the DE algorithm (DE/EDA) [43], proposed by
Sun et al., produces new promising solutions by DE/EDA offspring generation scheme. Adam [44]
proposed an adaptive memetic differential evolution algorithm. The algorithm uses Nelder-Mead
algorithm as a local search method. Zheng [45] combines DE with fireworks algorithm (FA) to improve
the performance of DE. Ali [46] presents a hybrid optimization approach based on DE and receptor
editing property of immune system. A detailed survey of the hybrid DE algorithms can be found
in [4,47–51].

3. Modified Cloud Particles Differential Evolution Algorithm

Control parameters and evolutionary strategies can significantly influence the performance of
the algorithm. Based on our previous work [27], a modified cloud particles differential evolution
algorithm (MCPDE) is proposed.

3.1. The Proposed MCPDE

The relation between exploration and exploitation is an important issue in the framework
of EAs. The performance of the algorithm can be effectively improved by a balance between
exploration and exploitation in algorithm. Research results show that the algorithm should start
with exploration and then gradually change into exploitation. Based on this analysis, inertia factor
and adaptive control parameters strategies in different stage are designed to keep the balance between
exploration-exploitation. The opposition mechanism and the orthogonal crossover are employed to
increase the search ability during the evolutionary process. Finally, the size of population is gradually
decreased during the evolution process to result in faster convergence.

Like other optimization algorithms, the proposed algorithm starts with an initial population
which is composed of the cloud particles. Each cloud particle represents a feasible solution of the
problem. An MCPDE population is represented as a set of real parameter vectors which is defined
as follows:

xi = (x1, x2, · · · , xD) , i = 1, ..., N (4)

where D is the dimensionality of the optimization problem, and N is the population size.
At each generation, in order to find better solutions, superior particles exploit the searching area

with a smaller step and guide the searching direction, and inferior particles explore promising areas
with a relatively large radius and maintain population diversity. The evolutionary strategy, based on
DE/current-to-pbest with optional archive, is generated as follows:

ω1 = 0.85 + 10
FES

MaxFES−1.9 (5)

ω2 = 2−ω1 (6)

vi = xr1 + ω1 × Fi × (xbest − xr1) + ω2 × Fi × (xr2 − x̃r3) (7)

where ω1 and ω2 are inertia factors, i ∈ {1, . . . , N}, r1, r2 and r3 are mutually different random integer
indices selected in the range [1,N]. FES and MaxFES are the number of function evaluations and the
maximum number of function evaluations, respectively. In Equation (5), 0.85 and 1.9 are achieved by
experiments. The value of FES/MaxFES gradually increases as the iteration progresses. Therefore,
the superior particles attract the new particle to exploit better solutions with increasing ω1. Fi is the
mutation factor that controls the speed of the algorithm process. It is used by each cloud particle
xi and is generated at each generation. xbest is randomly chosen as one of the top p cloud particles
in the current population. p is 15% of the population size. x̃r3 is selected from the union of the
population and the archive. If the archive size exceeds 150% of the population size, some solutions are
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randomly removed from the archive so that some new cloud particles can be inserted into the archive.
The archive is the set of archived inferior solutions in JADE [29]. However, a mathematical proof has
been proposed to indicate that opposite numbers may likely to be closer to the optimal solution [52].
Motivated by this, some inferior solutions of the archive are randomly selected and replaced by their
opposite solutions. The opposite mechanism [39] on these inferior solutions is defined as follows:

x̃i = a + b− xi (8)

where xi ∈ [a, b], i = 1, . . . , D. x̃ = (x̃1, x̃2, · · · , x̃D) is the opposite of x = (x1, x2, · · · , xD).
The interchange number is N

D .
Figure 1 shows the curves of ω1 and ω2. It can be seen that ω1 tends to increase continually and

ω2 tends to decrease as the iteration progresses. The variation of ω1 and ω2 ensure that the proposed
algorithm smoothly transits between exploration and exploitation. At the early evolution stage, inferior
particles try to search for further areas in the solution space, and a larger ω2 is able to maintain the
diversity and exploration capability. Then, as the generation increases, ω2 tends to decrease while
ω1 tends to increase. In this way, the new particle is strongly attracted around the current superior
particles and tries to exploit better solutions which may exist in their neighborhoods. Meanwhile, the
convergence speed is enhanced.
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3.2. Control Parameters Assignments

In classic DE, control parameters are preset and fixed during the entire iteration process. However,
it is impossible to find one constant parameter setting that can fit all problems. As pointed out in [53],
the different parameter settings not only play an important role in the performance of DE, but also
may be used to solve specific test problems. Thus, a novel parameter adaptation scheme is presented
to adjust the parameter F and Cr at different evolutionary stage.

In MCPDE algorithm, the parameter settings are divided into three stages according to the
successful mutation factors F at current generation. The initial Fi and Cri used by each cloud particle xi
are generated independently and formulated as follows, respectively:

Fi = r2 × (r1 ×
f0

5
√

MaxFES
+

f0

5
) + f0 (9)
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Cri = r2 × (r1 ×
cr0

5
√

MaxFES
+

cr0

5
) + cr0 (10)

where f 0 and cr0 are initialized to be 0.5, respectively. r1 and r2 are random numbers in [0, 1].
In each generation, the set SF is used to store all successful mutation factors at current generation.

Similarly, the set SCr stores all the successful crossover rates at current generation. The size of SF is
recorded as |SF|. If |SF| exceeds the current population size N, randomly selected elements are
deleted from SF and SCr. Then SF and SCr are preserved for the next generation. When the set SF is
empty, it indicates that F and Cr at current generation are the proper parameters for the algorithm. Then,
they are preserved for the next generation. When |SF| is less than the current population size N, new
control parameters F′1, F′2, · · · , F′N−|SF |

are produced according to Equation (9). Cr′1, Cr′2, · · · , Cr′N−|SF |
are defined by

Cr′i = σ (SCr) + ri (i = 1, · · · , N − |SCr|) (11)

where σ (SCr) refers to the standard deviation of SCr. ri is randomly selected in the range [0, 1].
By the end of each generation, the parameters F and Cr are updated when |SF| is less than the

current population size N, as defined by

F = SF ∪ F′ (12)

Cr = SCr ∪ Cr′ (13)

where F′ = (F′1, F′2, · · · , F′N−|SF |
), Cr′ = (Cr′1, Cr′2, · · · , Cr′N−|SF |

).
In MCPDE algorithm, different control parameters are chosen at different stages. At the early

stage of evolution, the control parameter values near f 0 and cr0 with the randomization according to
Equations (9) and (10). Better diversity may improve the exploration ability. Then, cloud particles
try to explore further areas in the solution space. At each generation, better control parameters are
preserved for the next generation. The population diversity is improved and the convergence speed is
accelerated with better control parameters. However, it is difficult to find better control parameters
with the increasing generation. Thus, the algorithm may hard to jump out of the local optimum
because of faster convergence and poorer diversity. In order to solve these problems, some new
parameters F are introduced to maintain search efficiency according to Equations (9) and (12) while
some new parameters Cr are produced to improve population diversity according to Equations (11)
and (13). Therefore, the performance of the algorithm MCPDE is improved by choosing different
control parameters strategies at different evolutionary stages.

The size of the population used by EAs plays a significant role in controlling exploration and
exploitation. Large population sizes can encourage wider exploration of the search space, while small
population sizes may promote exploitation of the search space. Therefore, the population size is
gradually decreased as the iteration continues. By the end of each generation, the population size N is
updated and is defined by

N′ = N0 −
N0

MaxFES
× FES (14)

N =

{
N − 1 i f N < N′

N otherwise
(15)

where N0 is the initial population size. FES is the current number of fitness evaluation, and MaxFES
is the maximum number of fitness evaluations. If N < N′ , the worst individual is deleted and the
archive size is resized. Because Equation (7) requires at least four particles, the minimum population
size N is set to 4.

3.3. Orthogonal Crossover

It is well known that crossover operation is helpful for sharing the better gene segment by
exchanging the gene information of the parents. However, the quality of the offspring produced



Algorithms 2016, 9, 78 7 of 19

by the crossover operator is highly dependent on the characteristics of target problems, so that
multiple crossover operators are employed instead of a single crossover operator for solving different
optimization problems [54]. As pointed out in [55], OX (orthogonal crossover) operators can conduct
effective search in a region proposed by the parents. Hence, we come up with the idea that uses
QOX (quantization technique with orthogonal crossover) [55] operator to enhance the search ability
of MCPDE. In order to save the computational cost, we apply QOX only on a better particle which
is randomly selected from Pbest,G. The orthogonal array used in QOX operator is often denoted by
LM
(
QK), namely K factors (i.e., variables) with Q levels (i.e., values) and M combinations. In MCPDE,

let Q = 3, M = 9, and then L9
(
34) is used.

L9

(
34
)
=



1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1


(16)

Q levels for the cloud particle Pi,G is defined as follows:

li,j = min
(

Cbest
i,G , Ci,G

)
+

j− 1
Q− 1

×
(

max
(

Cbest
i,G , Ci,G

)
−min

(
Cbest

i,G , Ci,G

))
(17)

where j = 1, . . . , Q. Cbest
i,G and Ci,G are the parents which define a search range [min

(
Cbest

i,G , Ci,G

)
,

max
(

Cbest
i,G , Ci,G

)
] for particle Pi,G. Cbest

i,G is randomly selected from Pbest,G.
The particle Pi,G is divided into K subvectors:

H1 =
(

p1
i,G, p2

i,G, · · · , pt1
i,G

)
H2 =

(
pt1+1

i,G , pt1+2
i,G , · · · , pt2

i,G

)
· · ·
Hk =

(
ptk−1+1

i,G , ptk−1+2
i,G , · · · , pD

i,G

) (18)

where t1, t2, . . . , tk−1 are randomly generated integers and 1 < t1 < t2 < tk−1 < . . . < D.
Hi is treated as a factor in QOX operator, and Q levels for are Hi defined as follows:

Li1 =
(
lti−1+1,1, lti−1+2,1, · · · , lti ,1

)
Li2 =

(
lti−1+1,2, lti−1+2,2, · · · , lti ,2

)
· · ·
LiQ =

(
lti−1+1,Q, lti−1+2,Q, · · · , lti ,Q

) (19)

Then, M solutions are constructed on factors H1, H2, . . . , Hk.
The pseudo-code of MCPDE is illustrated in Algorithm 1.
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Algorithm 1. MCPDE Algorithm

1: Initialize D (number of dimensions), N (number of population), LM
(
QK); Archive A = φ;

2: Initialize population randomly
3: Generate mutation factors F and Cr according to Equations (9) and (10)
4: while the termination criteria are not met do
5: Randomly replace N/D inferior solutions by their opposite solutions according to Equation (8)
6: Generate new individuals according to Equations (5)–(7)
7: Randomly select an index i from {1, . . . , N}
8: Qrthogonal Crossover according to Equations (17)–(19)
9: for i = 1 to N do
10: if f (ui) < f(xi) then
11: xi → A; xi = ui

12: endif
13: endfor
14: Calcute N for the next generation according to Equations (14) and (15)
15: if |SF| ≥ N then
16: delete randomly selected elements from the SF and SCr so that the parameters size are N
17: elseif (|SF| < N and SF 6= φ) then
18: Update F and Cr are according to Equations (11)–(13)
19: elseif SF = φ then
20: Fg+1 = Fg; Crg+1 = Crg;
21: endif
22: endwhile

4. Experiments and Discussion

4.1. General Experimental Setting

(1) Test Problems and Dimension Setting: For a comprehensive evaluation of MCPDE, all the
CEC2013 [36] benchmark functions are used to evaluate the performance of MCPDE. The CEC2013
benchmark set consists of 28 test functions. According to their shape characteristics, these benchmark
functions can be broadly classified into three kinds of optimization functions [56].

• unimodal problems f 1–f 5

• basic multimodal problems f 6–f 20, and
• composition problems f 21–f 28

For all of the problems, the search space is [–100,100]D. In this paper, the dimension (D) of all
functions is set to 10 and 30.

(2) Experimental Platform and Termination Criterion: For all experiments, 30 independent runs
are carried out on the same machine with a Celoron 3.40 GHz CPU, 4 GB memory, and windows 7
operating system with Matlab R2009b, and conducted with D × 10,000 (number of function evaluations, FES).

(3) Performance Metrics: In our experimental studies, the mean value (Fmean), standard deviation
(SD), maximum value (Max) and minimum value (Min) of the solution error measure [57] which is
defined as f (x)−f (x*) are recorded for evaluating the performance of each algorithm, where f (x) is the
best fitness value found by an algorithm in a run, and f (x*) is the real global optimization value of
tested problem. In order to statistically compare the proposed algorithm with its peers, Wilcoxon’s
rank-sum test at the 5% significance level is used to evaluate whether the median fitness values of two
sets of obtained results are statistically different from each other. Three marks “−”, “+” and “≈” are
also used to denote that the performance of MCPDE is better than, worse than, and similar to that of
the compared algorithm, respectively.
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4.2. Comparison with Nine State-of-the-Art Intelligent Algorithms on 10 and 30 Dimension

In this part, MCPDE is compared with PSO, PSOcf (PSO with constriction factor) [58], TLBO, DE,
JADE, CoDE, jDE, CMA-ES and CPDE. The appropriate parameters are important for the performance
of the intelligent optimization algorithms. Therefore, the setting of parameters of different algorithms
is given in the following:

For MCPDE, The population size N is set to 13 × D. The maximum size of the archive is set
to 1.5 × N. For DE, the population size N is set to 100. F and CR are set to 0.5 and 0.9, respectively.
For PSO, the population size N is set to 40, the linearly decreasing inertia ω from 0.9 to 0.4 is adopted
over the course of the search, and the acceleration coefficients c1, c2 are both set to 1.49445. For JADE,
the population size N is set to 100, p = 0.05 and c = 0.1. The parameters of other algorithms are the
same as those used in the corresponding references.

The statistical results, in terms of Fmean, SD, Max and Min obtained in 30 independent runs by
each algorithm, are reported in Tables 1 and 2.

(1) Unimodal problems f 1–f 5: From the statistical results of Tables 1 and 2, we can see that MCPDE
is better than other compared algorithms on unimodal problems f 1–f 5 according to the average rank
(Avg-rank) for 10 dimensions and 30 dimensions. Considering f 1–f 5 with 10 dimensions, for f 1,
MCPDE, DE, JADE, jDE, CMA-ES and CPDE work well and obtain better results. For f 2, MCPDE
performs better than other algorithms except JADE and CMA-ES. Moreover, for f 3, MCPDE performs
significantly better than the compared algorithms. For f 4, MCPDE, CMA-ES and CPDE beat other
compared algorithms. For f 5, MCPDE, DE, JADE, jDE and CPDE are better than other algorithms.
On f 1–f 5, MCPDE performs better than PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES and CPDE
on 5, 5, 5, 3, 2, 5, 3, 2, 2 test problems, respectively. The overall ranking sequences for unimodal
problems are MCPDE, CMA-ES, DE, CPDE, JADE, jDE, TLBO, CoDE, PSO and PSOcf in descending
direction. When the search space dimension D is set to 30, according to Table 2, MCPDE is much
better than PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES and CPDE on 5, 5, 5, 3, 3, 5, 3, 3, 4
test functions, respectively. MCPDE performs better than all compared algorithms for the unimodal
problems except f 2 and f 4. For f 2 and f 4, MCPDE ranks secondly. The overall ranking sequences for
unimodal problems are MCPDE, jDE, DE, CMA-ES, JADE, CPDE, CoDE, PSO, TLBO and PSOcf in
descending direction. The reason that MCPDE has the outstanding performance may be the use of the
inertia factors, which are helpful for guiding the search direction.

(2) Multimodal problems f 6–f 20: Considering the multimodal functions f 6–f 20 in Table 3, MCPDE is
significantly better than other algorithms on f 6, f 7, f 9 and f 20. Considering f 8, most of the compared
algorithms can achieve the similar results except CMA-ES. MCPDE beats most of the compared
algorithms except that JADE and jDE have a similar performance on f 11. JADE performs best on f 12,
f 13, f 15 and f 18–f 19. jDE performs best on f 14. CMA-ES performs best on f 10 and f 16. JADE and jDE
perform best on f 17. On these 15 multimodal problems, MCPDE performs better than PSO, PSOcf,
TLBO, DE, JADE, CoDE, jDE, CMA-ES and CPDE on 14, 12, 14, 14, 4, 14, 9, 13 and 11 problems
respectively. The overall ranking sequences on multimodal problems are MCPDE, JADE, jDE, CPDE,
PSO, TLBO, CoDE, DE, PSOcf and CMA-ES in descending direction. When the search space dimension
D is set to 30, according to the experimental results on 15 test problems from Table 4, we find that
MCPDE outperforms PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES and on 11, 10, 13, 14, 4, 14, 6,
13, 13 testproblems, respectively. The overall ranking sequences on multimodal problems are JADE,
MCPDE, jDE, CPDE, PSO, CoDE, TLBO, PSOcf, DE and CMA-ES in descending direction.

(3) Composite problems f 21–f 28: As is known to all, composite problems are very time consuming
for fitness evaluation compared to others because these functions combine multiple test problems into
a complex landscape. Therefore, it is extremely difficult for state-of-the-art intelligent optimization
algorithms to obtain relatively ideal results. Concerning the composition functions f 21–f 28 in Table 5,
MCPDE performs better than PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, and CPDE on 7,
8, 7, 6, 3, 5, 7, 7 and 5 out of 8 test problems, respectively. Conversely, PSO, PSOcf, TLBO, DE, JADE,
CoDE, jDE, CMA-ES and CPDE surpass MCPDE on 1, 0, 0, 0, 1, 2, 0, 0 and 0 problems respectively.
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The overall ranking sequences of composite problems are MCPDE, JADE, CoDE, CPDE, DE, TLBO,
PSO, jDE, PSOcf and CMA-ES in descending direction. It can be observed from Table 6 that MCPDE
still performs better on these composition functions when the search space dimension D is set to
30. MCPDE performs better than PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES and CPDE
on 7, 7, 8, 7, 5, 8, 5, 8 and 7 out of 8 test problems, respectively. The overall ranking sequences of
composite problems are MCPDE, JADE, CPDE, DE, jDE, PSO, TLBO, CoDE, CMA-ES and PSOcf in
descending direction.

Table 1. Experimental results of PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and
MCPDE over 30 independent runs on f 1–f 5 test functions with 10D.

F PSO PSOcf TLBO DE JADE CoDE jDE CMA-ES CPDE MCPDE

f1

Fmean 5.30 × 10−14 31.2 3.03 × 10−14 0 0 1.80 × 10−11 0 0 0 0
SD 9.78 × 10−14 171 7.86 × 10−14 0 0 7.98 × 10−12 0 0 0 0

Max 2.27 × 10−14 938 2.27 × 10−13 0 0 3.66 × 10−11 0 0 0 0
Min 0 0 0 0 0 5.45 × 10−12 0 0 0 0

Compare/Rank −/8 −/10 −/7 ≈/1 ≈/1 −/9 ≈/1 ≈/1 ≈/1 \/1

f2

Fmean 9.59 × 105 5.00 × 105 1.06 × 105 5.98 × 10−12 0 198 1.61 × 10−8 0 3.04 × 10−6 9.85 × 10−14

SD 9.33 × 105 5.85 × 105 9.08 × 104 4.39 × 10−12 0 89 7.90 × 10−8 0 1.61 × 10−6 1.14 × 10−13

Max 3.48 × 106 2.36 × 106 3.87 × 105 2.18 × 10−11 0 425 4.33 × 10−7 0 6.71 × 10−6 2.27 × 10−13

Min 9.70 × 104 3.02 × 104 1.58 × 104 1.13 × 10−12 0 61.6 0 0 6.78 × 10−7 0
Compare/Rank −/10 −/9 −/8 −/4 +/1 −/7 −/5 +/1 −/6 \/3

f3

Fmean 4.66 × 106 4.99 × 108 4.82 × 105 0.135 26.8 1.05 × 106 2.15 4.35 × 10−2 0.194 6.34 × 10−5

SD 1.39 × 107 8.24 × 108 1.98 × 106 0.174 35.8 7.04 × 105 3.70 0.238 0.288 4.82 × 10−5

Max 7.39 × 107 3.62 × 109 1.07 × 107 0.688 116 2.65 × 106 15.1 1.30 1.15 1.42 × 10−4

Min 4.67 × 10−3 8.16 × 105 2.29 × 10−2 1.06 × 10−9 0 9.83 × 104 8.73 × 10−4 0 1.21 × 10−5 2.27 × 10−13

Compare/Rank −/9 −/10 −/7 −/3 −/6 −/8 −/5 −/2 −/4 \/1

f4

Fmean 3.87 × 103 2.05 × 103 2.98 × 103 7.57 × 10−14 320 9.83 × 10−1 3.72 × 10−12 0 0 0
SD 3.40 × 103 3.80 × 103 1.23 × 103 1.24 × 10−13 1.26 × 103 4.45 × 10−1 1.28 × 10−11 0 0 0

Max 1.85 × 104 2.12 × 104 6.90 × 103 4.54 × 10−13 6.04 × 103 1.89 6.91 × 10−11 0 0 0
Min 334 104 1.38 × 103 0 0 2.61 × 10−1 0 0 0 0

Compare/Rank −/10 −/8 −/9 −/4 −/7 −/6 −/5 ≈/1 ≈/1 \/1

f5

Fmean 1.21 × 10−13 18.2 1.47 × 10−13 0 0 5.17 × 10−8 0 2.08 × 10−13 0 0
SD 5.92 × 10−14 42.2 6.08 × 10−14 0 0 1.88 × 10−8 0 1.12 × 10−13 0 0

Max 2.27 × 10−13 136 3.41 × 10−13 0 0 1.04 × 10−7 0 6.82 × 10−13 0 0
Min 0 1.13 × 10−13 1.13 × 10−13 0 0 1.45 × 10−8 0 1.13 × 10−13 0 0

Compare/Rank −/6 −/10 −/7 ≈/1 ≈/1 −/9 ≈/1 −/8 ≈/1 \/1

−/≈/+ 5/0/0 5/0/0 5/0/0 3/2/0 2/2/1 5/0/0 3/2/0 2/2/1 2/3/0 \
Avg-Rank 8.60 9.40 7.60 2.60 3.20 7.80 3.40 2.60 2.60 1.40

Table 2. Experimental results of PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and
MCPDE over 30 independent runs on f 1–f 5 test functions with 30D.

F PSO PSOcf TLBO DE JADE CoDE jDE CMA-ES CPDE MCPDE

f1

Fmean 6.29 × 10−13 7.90 × 103 1.11 × 10−12 0 0 3.63 × 10−8 0 4.32 × 10−13 2.27 × 10−14 0
SD 2.78 × 10−13 3.56 × 103 6.49 × 10−13 0 0 1.18 × 10−8 0 1.92 × 10−13 6.99 × 10−14 0

Max 1.81 × 10−12 1.97 × 104 3.63 × 10−12 0 0 6.32 × 10−8 0 9.09 × 10−13 2.27 × 10−13 0
Min 2.27 × 10−13 2.70 × 103 4.54 × 10−13 0 0 1.26 × 10−8 0 2.27 × 10−13 0 0

Compare/Rank −/7 −/10 −/8 ≈/1 ≈/1 −/9 ≈/1 −/6 ≈/1 \/1

f2

Fmean 1.51 × 107 3.91 × 107 1.23 × 106 3.47 × 105 6.25 × 103 1.24 × 105 2.26 × 105 4.32 × 10−13 2.97 × 105 344
SD 1.12 × 107 4.06 × 107 5.38 × 105 2.59 × 105 6.93 × 103 1.40 × 105 1.59 × 105 1.61 × 10−13 2.04 × 105 252

Max 4.32 × 107 1.43 × 108 2.31 × 106 9.68 × 105 3.43 × 104 7.28 × 105 7.46 × 105 6.82 × 10−13 7.35 × 105 951
Min 7.68 × 105 2.30 × 106 2.41 × 105 4.85 × 104 545 2.42 × 104 5.69 × 104 2.27 × 10−13 8.34 × 104 21.4

Compare/Rank −/9 −/10 −/8 −/7 −/3 −/4 −/5 +/1 −/6 \/2

f3

Fmean 2.64 × 108 5.51 × 1010 5.44 × 107 1.22 6.46 × 105 2.88 × 107 1.53 × 106 263 44.7 1.31 × 10−12

SD 5.76 × 108 3.91 × 1010 8.74 × 107 5.22 1.97 × 106 1.40 × 107 3.19 × 106 1.01 × 103 167 2.61 × 10−12

Max 2.89 × 109 1.51 × 1011 2.99 × 108 28.5 9.62 × 106 7.14 × 107 1.28 × 107 5.42 × 103 753 1.11 × 10−11

Min 3.57 × 106 5.18 × 109 6.45 × 105 2.14 × 10−7 7.50 × 10−12 7.79 × 106 2.83 × 10−1 2.04 × 10−12 1.52 × 10−2 0
Compare/Rank −/9 −/10 −/8 −/2 −/5 −/7 −/6 −/4 −/3 \/1

f4

Fmean 7.34 × 103 4.68 × 103 8.05 × 103 1.32 × 103 1.03 × 104 17.8 4.90 3.94 × 10−13 776 3.91 × 10−3

SD 2.77 × 103 3.98 × 103 2.60 × 103 840 1.67 × 104 14.2 4.37 1.57 × 10−13 303 5.19 × 10−3

Max 1.60 × 104 1.67 × 104 1.46 × 104 3.61 × 103 5.57 × 104 60.5 19.7 6.82 × 10−13 1.51 × 103 1.55 × 10−2

Min 3.13 × 103 1.03 × 103 3.32 × 103 302 5.03 × 10−8 3.17 4.61 × 10−1 2.27 × 10−13 364 1.30 × 10−4

Compare/Rank −/8 −/7 −/9 −/6 −/10 −/4 −/3 +/1 −/5 \/2

f5

Fmean 7.50 × 10−13 1.29 × 103 1.44 × 10−12 9.47 × 10−14 9.09 × 10−14 1.35 × 10−5 9.09 × 10−14 9.32 × 10−13 1.53 × 10−13 9.47 × 10−14

SD 5.11 × 10−13 962 7.16 × 10−13 4.30 × 10−14 4.62 × 10−14 3.73 × 10−6 4.62 × 10−14 1.74 × 10−12 5.56 × 10−14 4.30 × 10−14

Max 2.27 × 10−12 3.31 × 103 4.32 × 10−12 1.13 × 10−13 1.13 × 10−13 2.26 × 10−5 1.13 × 10−13 7.73 × 10−12 2.27 × 10−13 1.13 × 10−13

Min 3.41 × 10−13 191 6.82 × 10−13 0 0 7.04 × 10−6 0 2.27 × 10−13 1.13 × 10−13 0
Compare/Rank −/6 −/10 −/8 ≈/1 ≈/1 −/9 ≈/1 −/7 −/5 \/1

−/≈/+ 5/0/0 5/0/0 5/0/0 3/2/0 3/2/0 5/0/0 3/2/0 3/0/2 4/1/0 \
Avg-Rank 7.80 9.40 8.20 3.40 4.00 6.60 3.20 3.80 4.00 1.40
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Table 3. Experimental results of PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and
MCPDE over 30 independent runs on f 6–f 20 test functions with 10D.

F PSO PSOcf TLBO DE JADE CoDE jDE CMA-ES CPDE MCPDE

f6

Fmean 16.6 26.5 6.64 2.61 6.21 8.43 × 10−4 3.19 × 10−2 7.01 5.67 × 10−3 0
SD 24.9 27.3 4.57 4.41 4.80 2.93 × 10−4 4.26 × 10−2 4.41 2.53 × 10−2 0

Max 96.8 90.8 9.81 9.81 9.81 1.42 × 10−3 2.04 × 10−1 9.81 1.13 × 10−1 0
Min 2.06 × 10−1 9.81 2.05 × 10−3 0 0 1.75 × 10−4 3.31 × 10−4 0 2.72 × 10−12 0

Compare/Rank −/9 −/10 −/7 −/5 −/6 −/2 −/4 −/8 −/3 \/1

f7

Fmean 5.56 46.3 1.07 3.43 × 10−4 7.97 × 10−2 8.29 4.96 × 10−3 2.07 × 108 1.48 × 10−3 7.58 × 10−5

SD 5.33 26.4 3.17 2.50 × 10−4 1.17 × 10−1 1.93 5.68 × 10−3 1.13 × 109 1.45 × 10−3 1.00 × 10−4

Max 20.5 117 17.1 9.58 × 10−4 4.81 × 10−1 12.8 2.00 × 10−2 6.21 × 109 5.79 × 10−3 3.65 × 10−4

Min 3.80 × 10−1 8.06 1.90 × 10−4 2.98 × 10−5 2.04 × 10−8 4.30 9.58 × 10−5 1.09 3.73 × 10−4 6.56 × 10−8

Compare/Rank −/7 −/9 −/6 −/2 −/5 −/8 −/4 −/10 −/3 \/1

f8

Fmean 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3
SD 8.88 × 10−2 8.26 × 10−2 5.93 × 10−2 8.49 × 10−2 8.25 × 10−2 7.42 × 10−2 6.74 × 10−2 4.55 × 10−1 7.43 × 10−2 7.12 × 10−2

Max 20.5 20.4 20.4 20.4 20.5 20.4 20.4 21.6 20.4 20.4
Min 20.1 20.1 20.2 20 20.1 20.1 20.1 20 20.2 20.1

Compare/Rank ≈/1 ≈/1 ≈/1 ≈/1 ≈/1 ≈/1 ≈/1 −/10 ≈/1 \/1

f9

Fmean 3.11 4.21 2.95 6.20 × 10−1 3.74 6.06 5.76 14.1 5.60 × 10−1 1.66 × 10−1

SD 1.54 1.65 8.69 × 10−1 7.40 × 10−1 7.45 × 10−1 6.31 × 10−1 6.96 × 10−1 3.72 6.41 × 10−1 3.23 × 10−1

Max 6.99 7.01 4.35 2.24 4.98 7.04 7.04 20.3 2.39 9.78 × 10−1

Min 2.65 × 10−1 8.70 × 10−1 1.19 6.92 × 10−8 1.89 4.61 4.50 7.71 2.60 × 10−4 0
Compare/Rank −/5 −/7 −/4 −/3 −/6 −/9 −/8 −/10 −/2 \/1

f10

Fmean 6.52 × 10−1 20.7 1.16 × 10−1 3.91 × 10−1 1.95 × 10−2 4.59 × 10−1 4.47 × 10−2 1.83 × 10−2 4.82 × 10−1 2.51 × 10−2

SD 4.56 × 10−1 35.8 5.60 × 10−2 1.45 × 10−1 1.04 × 10−2 5.96 × 10−2 3.71 × 10−2 3.20 × 10−2 9.18 × 10−2 1.08 × 10−2

Max 1.86 165 2.26 × 10−1 5.57 × 10−1 4.03 × 10−2 5.57 × 10−1 1.48 × 10−1 1.75 × 10−1 6.30 × 10−1 4.18 × 10−2

Min 1.08 × 10−1 1.72 × 10−2 2.27 × 10−2 1.72 × 10−2 2.26 × 10−3 3.32 × 10−1 2.56 × 10−9 0 3.10 × 10−1 5.68 × 10−14

Compare/Rank −/9 −/10 −/5 −/6 +/2 −/7 ≈/3 +/1 −/8 \/3

f11

Fmean 3.78 8.29 5.29 16.7 0 3.41 × 10−5 0 286 3.79 0
SD 2.11 9.65 2.33 3.81 0 2.87 × 10−5 0 331 3.14 0

Max 7.95 39.4 9.94 23.8 0 1.40 × 10−4 0 921 9.35 0
Min 9.94 × 10−1 0 1.99 9.08 0 3.73 × 10−6 0 3.97 2.43 × 10−8 0

Compare/Rank −/5 −/8 −/7 −/9 ≈/1 −/4 ≈/1 −/10 −/6 \/1

f12

Fmean 13.5 25 8.18 26.8 4.38 25 11.4 284 6.57 5.36
SD 5.23 12 3.64 4.25 1.22 5.15 3.22 327 4.06 1.75

Max 22.8 54.1 14.8 35.5 7.07 33.4 19 1.37 × 103 19.1 8.66
Min 4.97 6.96 1.25 17.3 1.83 11 5.20 5.96 1.98 1.52

Compare/Rank −/6 −/7 −/4 −/9 ≈/1 −/7 −/5 −/10 ≈/2 \/2

f13

Fmean 22.1 33.5 11.6 24.7 5.27 26.6 14.8 311 7.92 6.69
SD 7.35 11.3 5.08 3.85 2.39 4.31 3.84 412 4.50 2.83

Max 40.1 55.9 25.6 31.8 11.5 32.6 22.4 1.36 × 103 16.5 13.5
Min 7.22 3.45 3.55 16.5 2.45 13.7 6.73 12.6 2.03 1.98

Compare/Rank −/6 −/9 −/4 −/7 +/1 −/8 −/5 −/10 ≈/2 \/2

f14

Fmean 226 236 598 995 2.28 × 10−2 38.8 4.74 × 10−11 1.80 × 103 275 6.97
SD 161 157 256 136 3.47 × 10-2 7.97 1.83 × 10-10 423 115 4.94

Max 605 667 1.09 × 103 1.17 × 103 1.24 × 10-1 53.2 9.72 × 10-10 2.80 × 103 506 15.1
Min 3.47 3.60 32.3 472 0 19.3 0 993 72.3 6.24 × 10-2

Compare/Rank −/5 −/6 −/8 −/9 −/2 −/4 +/1 −/10 −/7 \/3

f15

Fmean 982 847 1.28 × 103 1.31 × 103 426 1.20 × 103 1.15 × 103 1.88 × 103 535 760
SD 345 231 188 155 109 141 151 438 195 142

Max 1.55 × 103 1.27 × 103 1.56 × 103 1.53 × 103 653 1.46 × 103 1.48 × 103 2.75 × 103 772 983
Min 290 187 743 809 189 963 901 1.00 × 103 113 479

Compare/Rank −/5 −/4 −/8 −/9 +/1 −/7 −/6 −/10 +/2 \/3

f16

Fmean 1.09 5.56 × 10−1 1.13 1.04 1.11 1.10 1.07 2.72 × 10−1 1.10 9.92 × 10−1

SD 2.88 × 10−1 1.80 × 10−1 2.43 × 10−1 2.39 × 10−1 2.07 × 10−1 2.12 × 10−1 1.82 × 10−1 2.55 × 10−1 2.05 × 10−1 1.04 × 10−1

Max 1.72 9.09 × 10−1 1.60 1.50 1.45 1.54 1.39 1.23 1.41 1.14
Min 4.49 × 10−1 2.50 × 10−1 6.79 × 10−1 5.48 × 10−1 6.63 × 10−1 6.40 × 10−1 7.12 × 10−1 3.62 × 10−2 5.14 × 10−1 7.16 × 10−1

Compare/Rank −/6 +/2 −/10 ≈/3 −/9 −/7 −/5 +/1 −/7 \/3

f17

Fmean 14.2 13.3 24.7 27.7 10.1 11.4 10.1 956 28 10.3
SD 4.68 1.46 3.31 3.28 1.44 × 10−14 5.07 × 10−1 2.05 × 10−10 469 2.80 3.33 × 10−1

Max 21.7 17.9 34.4 35.7 10.1 12.3 10.1 1.58 × 103 33.9 11.3
Min 4.06 11 18.2 22.2 10.1 9.56 10.1 22.4 23.6 10.1

Compare/Rank ≈/4 ≈/4 −/7 −/8 +/1 +/4 +/1 −/10 −/9 \/3

f18

Fmean 34.6 21.8 32.6 36.1 18.8 42.2 31.1 925 36.3 25.9
SD 10.7 7.60 4.00 3.85 2.24 5.46 3.32 462 3.30 4.38

Max 54.2 40.2 41.5 42.9 22.9 52.2 36.5 1.85 × 103 42.6 32.7
Min 5.60 7.21 25.6 26.9 15.4 31.8 23.6 15.1 30.8 15.6

Compare/Rank −/6 +/2 −/5 −/7 +/1 −/9 −/4 −/10 −/8 \/3

f19

Fmean 6.33 × 10−1 1.99 9.83 × 10−1 2.17 3.37 × 10−1 9.24 × 10−1 4.00 × 10−1 1.10 1.95 4.44 × 10−1

SD 1.78 × 10−1 5.08 2.24 × 10−1 3.47 × 10−1 4.32 × 10−2 1.49 × 10−1 9.80 × 10−2 4.74 × 10−1 3.22 × 10−1 1.05 × 10−1

Max 1.00 20.9 1.35 2.66 3.94 × 10−1 1.24 5.74 × 10−1 2.52 2.34 6.60 × 10−1

Min 2.99 × 10−1 3.66 × 10−1 5.86 × 10−1 9.78 × 10−1 2.08 × 10−1 5.82 × 10−1 1.48 × 10−1 3.99 × 10−1 1.25 2.39 × 10−1

Compare/Rank ≈/3 −/9 −/7 −/10 +/1 −/6 ≈/2 −/7 −/8 \/2

f20

Fmean 3.31 3.39 2.64 2.57 2.27 3.06 3.10 3.92 2.50 1.99
SD 7.65 × 10−1 4.09 × 10−1 4.20 × 10−1 2.61 × 10−1 4.49 × 10−1 2.37 × 10−1 1.75 × 10−1 4.20 × 10−1 2.77 × 10−1 1.87 × 10−1

Max 5.00 4.01 3.32 3.29 3.23 3.39 3.45 4.99 3.07 2.24
Min 1.97 2.26 1.83 1.93 1.72 2.58 2.73 2.92 2.09 1.55

Compare/Rank −/8 −/9 −/5 −/4 ≈/1 −/6 −/7 −/10 −/3 \/1

−/≈/+ 14/1/0 12/1/2 14/1/0 14/1/0 4/3/8 14/1/0 9/4/2 13/0/2 11/3/1 \
Avg-Rank 5.67 6.47 5.87 6.20 2.60 5.93 3.80 8.47 4.73 2.00
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Table 4. Experimental results of PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and
MCPDE over 30 independent runs ON f 6–f 20 test functions with 30D.

F PSO PSOcf TLBO DE JADE CoDE jDE CMA-ES CPDE MCPDE

f6

Fmean 90.4 339 36.6 8.88 8.80 × 10−1 13.5 18.1 4.40 8.05 1.18 × 10−7

SD 41.2 252 28.2 6.12 4.82 2.51 8.43 × 10−1 10 4.39 1.72 × 10−7

Max 150 1.03 × 103 80.1 26.4 26.4 26.4 20.5 26.4 26.4 5.58 × 10−7

Min 6.90 50.4 3.35 4.18 × 10−2 0 11.9 16.4 1.13 × 10−13 5.63 1.34 × 10−10

Compare/Rank −/9 −/10 −/8 −/5 −/2 −/6 −/7 −/3 −/4 \/1

f7

Fmean 45.9 197 49.2 2.40 × 10−1 2.68 40.4 5.90 12.1 3.30 × 10−1 1.07 × 10−3

SD 18.4 61.5 18 5.52 × 10−1 2.58 6.67 5.11 6.38 5.47 × 10−1 7.68 × 10−4

Max 97 324 84.9 2.84 12.4 55 17.7 27.9 2.20 2.99 × 10−3

Min 17.7 80.2 25.7 2.39 × 10−3 1.09 × 10−1 30.3 4.15 × 10−1 1.85 6.64 × 10−3 5.42 × 10−5

Compare/Rank −/8 −/10 −/9 −/2 −/4 −/7 −/5 −/6 −/3 \/1

f8

Fmean 20.9 20.9 20.9 20.9 20.9 20.9 20.9 21.4 20.9 20.9
SD 5.97 × 10−2 6.20 × 10−2 4.74 × 10−2 4.61 × 10−2 1.13 × 10−1 5.74 × 10−2 5.75 × 10−2 8.31 × 10−2 5.46 × 10−2 5.16 × 10−2

Max 21 21 21 21 21 21 21 21.6 21 20.9
Min 20.7 20.6 20.8 20.8 20.4 20.7 20.8 21.2 20.8 20.7

Compare/Rank ≈/1 ≈/1 ≈/1 ≈/1 ≈/1 ≈/1 ≈/1 −/10 ≈/1 \/1

f9

Fmean 22.8 25.2 26.8 32 26.8 32.5 29.2 41 6.48 22.9
SD 3.85 4.00 4.37 11.1 1.75 1.46 1.83 10.1 2.28 3.96

Max 2.90 × 10 32.8 37.2 40.1 29.7 34.2 34 54.9 11.2 28
Min 15.4 18.5 16.6 9.49 23.5 29.1 25.2 19.8 2.86 15

Compare/Rank ≈/2 ≈/2 −/6 −/8 −/5 −/9 −/7 −/10 −/1 \/2

f10

Fmean 1.61 × 10−1 1.01 × 103 1.20 × 10−1 7.88 × 10−3 4.54 × 10−2 2.46 × 10−1 3.80 × 10−2 1.78 × 10−2 6.53 × 10−3 0
SD 9.72 × 10−2 6.21 × 102 7.75 × 10−2 6.85 × 10−3 2.61 × 10−2 1.76 × 10−1 2.03 × 10−2 1.29 × 10−2 4.81 × 10−3 0

Max 4.60 × 10−1 2.44 × 103 3.40 × 10−1 2.95 × 10−2 1.03 × 10−1 5.98 × 10−1 8.86 × 10−2 5.66 × 10−2 1.47 × 10−2 0
Min 2.46 × 10−2 2.13 × 102 2.21 × 10−2 0 0 2.79 × 10−2 7.39 × 10−3 5.68 × 10−14 5.68 × 10−14 0

Compare/Rank −/8 −/10 −/7 −/3 −/6 −/9 −/5 −/4 −/2 \/1

f11

Fmean 33.9 151 105 129 0 25.1 0 109 71 2.77
SD 8.52 44.1 26.6 25.8 0 2.15 0 337 13.4 1.69

Max 58.7 261 190 176 0 28.8 0 1.89 × 103 104 7.59
Min 18.9 74.7 67.6 73 0 19 0 26.8 48.4 5.68 × 10-14

Compare/Rank −/5 −/10 −/7 −/9 +/1 −/4 +/1 −/8 −/6 \/3

f12

Fmean 88.2 201 92.1 180 22.9 165 59.6 484 173 80.1
SD 37.7 91.2 24.1 9.38 3.34 12.1 8.38 828 7.87 22.2

Max 227 421 147 196 29.8 190 70.6 2.65 × 103 191 113
Min 41.7 78.3 43.7 156 25.7 141 34.3 25.8 161 44.1

Compare/Rank ≈/3 −/9 ≈/3 −/8 +/1 −/6 +/2 −/10 −/7 \/3

f13

Fmean 140 255 156 180 50.8 175 89.5 1.44 × 103 173 117
SD 32.8 50.4 32.2 11.3 13.5 14.7 18.3 1.41 × 103 8.86 21.9

Max 186 378 224 198 76.5 201 131 5.06 × 103 188 140
Min 83.4 179 76.7 146 17.9 129 58.8 79.3 155 65.7

Compare/Rank −/4 −/9 −/5 −/8 +/1 −/7 +/2 −/10 −/6 \/3

f14

Fmean 1.22 × 103 2.65 × 103 5.64 × 103 6.08 × 103 3.12 × 10−2 1.39 × 103 8.13 × 10−1 5.27 × 103 3.36 × 103 292
SD 317 656 1.21 × 103 549 2.49 × 10−2 154 2.11 690 644 118

Max 1.84 × 103 3.79 × 103 7.11 × 103 6.87 × 103 1.04 × 10−1 1.70 × 103 8.89 7.44 × 103 4.43 × 103 592
Min 634 1.56 × 103 1.71 × 103 4.43 × 103 1.81 × 10−12 1.08 × 103 5.07 × 10−9 4.07 × 103 1.94 × 103 91.8

Compare/Rank +/4 −/6 −/9 −/10 +/1 +/5 +/2 −/8 −/7 \/3

f15

Fmean 6.19 × 103 4.34 × 103 7.07 × 103 7.12 × 103 3.20 × 103 6.92 × 103 5.60 × 103 5.16 × 103 7.04 × 103 6.66 × 103

SD 1.25 × 103 784 331 216 347 369 392 798 288 391
Max 7.92 × 103 6.65 × 103 7.62 × 103 7.47 × 103 3.70 × 103 7.43 × 103 6.57 × 103 6.69 × 103 7.37 × 103 7.19 × 103

Min 3.37 × 103 3.07 × 103 6.18 × 103 6.67 × 103 2.37 × 103 6.13 × 103 4.39 × 103 3.79 × 103 6.37 × 103 6.08 × 103

Compare/Rank ≈/5 +/2 −/9 −/10 +/1 −/7 +/4 +/3 −/8 \/5

f16

Fmean 2.53 1.87 2.41 2.52 2.00 2.36 2.48 8.14 × 10−2 2.50 1.92
SD 4.26 × 10−1 4.64 × 10−1 2.88 × 10−1 3.76 × 10−1 7.07 × 10−1 2.49 × 10−1 1.69 × 10−1 5.62 × 10−2 2.94 × 10−1 1.69 × 10−1

Max 3.34 2.66 2.92 3.07 2.96 2.90 2.76 2.85 × 10−1 3.01 2.06
Min 1.46 7.24 × 10−1 1.64 1.32 5.95 × 10−1 1.78 2.13 1.99 × 10−2 1.54 1.23

Compare/Rank −/10 ≈/2 −/6 −/9 ≈/2 −/5 −/7 +/1 −/8 \/2

f17

Fmean 74.6 142 106 180 30.4 65.1 30.4 3.88 × 103 182 37.5
SD 19 88.5 27.1 16.3 1.05 × 10−14 3.62 1.70 × 10−6 665 18.4 2.55

Max 105 352 173 211 30.4 71.2 30.4 5.00 × 103 213 42.3
Min 35.7 58.9 69.8 151 30.4 56.7 30.4 2.54 × 103 146 33.6

Compare/Rank −/5 −/7 −/6 −/8 +/1 −/4 +/1 −/10 −/9 \/3

f18

Fmean 207 156 220 212 78.3 230 161 4.08 × 103 206 187
SD 30.2 51.7 15.5 9.55 6.43 9.76 16 911 10 10.1

Max 268 252 253 229 94.8 248 187 5.97 × 103 223 199
Min 140 81.9 182 193 65.5 211 133 1.76 × 103 178 155

Compare/Rank −/6 +/2 −/8 −/7 +/1 −/9 +/3 −/10 −/5 \/4

f19

Fmean 4.43 1.83 × 103 12.4 15 1.44 8.25 1.63 3.43 14.6 2.55
SD 1.19 3.59 × 103 5.75 8.57 × 10−1 1.18 × 10−1 8.60 × 10−1 1.48 × 10−1 8.32 × 10−1 1.15 4.83 × 10−1

Max 6.69 1.62 × 104 26.2 16.5 1.70 9.60 1.87 5.24 16.2 3.26
Min 2.31 5.85 5.00 13.1 1.11 6.46 1.31 1.66 12.4 1.53

Compare/Rank −/5 −/10 −/7 −/9 +/1 −/6 +/2 −/4 −/8 \/3

f20

Fmean 15 14.5 12 12.2 10.3 12.5 12.6 12.7 12.2 11.7
SD 0 9.53 × 10−1 3.30 × 10−1 2.38 × 10−1 6.17 × 10−1 2.28 × 10−1 3.51 × 10−1 9.28 × 10−1 3.22 × 10−1 3.37 × 10−1

Max 15 15 12.6 12.6 11.9 13 13.3 14.3 12.7 12.1
Min 15 11.5 11.4 11.6 9.05 12 12 10 11.3 10.6

Compare/Rank −/10 −/9 −/3 −/4 +/1 −/6 −/7 −/8 −/5 \/2

−/≈/+ 11/4/0 10/3/2 13/2/0 14/1/0 4/2/9 14/1/0 6/1/8 13/0/2 13/1/1 \
Avg-Rank 5.67 6.60 6.27 6.73 1.93 6.07 3.73 7.00 5.33 2.47
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Table 5. Experimental results of PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and
MCPDE over 30 independent runs on f 21–f 28 test functions with 10D.

F PSO PSOcf TLBO DE JADE CoDE jDE CMA-ES CPDE MCPDE

f21

Fmean 360 400 400 373 393 210 400 363 365 393
SD 85.5 2.97 × 10−13 1.58 × 10−1 69.2 36.5 54.8 2.89 × 10−13 96.4 87.5 36.5

Max 400 400 400 400 400 400 400 400 400 400
Min 100 400 399 200 200 100 400 100 100 200

Compare/Rank ≈/2 −/8 −/8 ≈/2 ≈/2 +/1 −/8 ≈/2 ≈/2 \/2

f22

Fmean 295 433 366 1.04 × 103 4.07 232 56 2.31 × 103 336 27.7
SD 130 219 307 188 4.93 47.8 18.4 475 156 18.1

Max 531 876 1.24 × 103 1.36 × 103 17.3 318 93.4 3.11 × 103 68.5 88
Min 69.6 33.9 41.4 491 4.42 × 10-6 111 22.8 1.31 × 103 120 0

Compare/Rank −/5 −/8 −/7 −/9 +/1 −/4 −/3 −/10 −/6 \/2

f23

Fmean 981 1.02 × 103 1.29 × 103 1.28 × 103 445 1.27 × 103 1.44 × 103 2.24 × 103 426 371
SD 369 398 238 134 175 199 212 518 234 157

Max 1.65 × 103 1.88 × 103 1.77 × 103 1.61 × 103 897 1.66 × 103 1.82 × 103 3.12 × 103 793 675
Min 246 245 706 1.06 × 103 163 879 766 1.14 × 103 72.9 33.9

Compare/Rank −/4 −/5 −/8 −/7 ≈/1 −/6 −/9 −/10 ≈/1 \/1

f24

Fmean 211 216 197 202 201 197 214 327 204 202
SD 4.09 18.9 19.3 16.6 6.82 28.9 11.2 149 3.09 3.31

Max 218 228 219 209 211 215 222 758 209 208
Min 200 119 148 115 168 133 160 107 200 200

Compare/Rank −/7 −/9 ≈/2 −/5 ≈/2 +/1 −/8 −/10 −/6 \/2

f25

Fmean 211 218 204 202 200 207 218 247 201 200
SD 5.12 4.26 3.65 2.96 8.77 11.2 2.10 50.5 2.27 1.15

Max 223 227 212 212 209 213 222 350 204 204
Min 201 210 200 200 155 148 213 200 200 200

Compare/Rank −/7 −/8 −/5 −/4 −/2 −/6 −/8 −/10 −/3 \/1

f26

Fmean 206 188 151 150 141 136 188 247 158 105
SD 75.8 61.8 34.5 36.1 45.3 4.20 29.2 1202 42.8 2.17

Max 321 321 200 200 200 146 200 618 200 109
Min 110 105 103 105 102 126 106 40.1 104 100

Compare/Rank −/9 −/7 −/5 −/4 −/3 −/2 −/7 −/10 −/6 \/1

f27

Fmean 506 562 359 323 300 344 480 360 315 300
SD 104 72.5 82.7 61.3 4.88 × 10-1 30.8 18.4 62.8 48.8 0

Max 635 652 534 481 302 440 512 520 481 300
Min 300 400 300 300 300 316 435 300 300 300

Compare/Rank −/9 −/10 −/6 −/4 −/2 −/5 −/8 −/7 −/3 \/1

f28

Fmean 320 403 308 246 293 193 286 1.00 × 103 270 300
SD 80.6 163 90.2 89.9 36.5 101 50.7 1.07 × 103 73.2 0

Max 664 756 579 300 300 300 300 4.00 × 103 300 300
Min 300 300 100 100 100 100 100 300 100 300

Compare/Rank −/8 −/9 −/7 ≈/1 ≈/1 ≈/1 ≈/1 −/10 ≈/1 \/1

−/≈/+ 7/0/1 8/0/0 7/1/0 6/2/0 3/4/1 5/1/2 7/1/0 7/1/0 5/3/0 \
Avg-Rank 6.38 8.00 6.00 4.50 1.75 3.25 6.50 8.63 3.50 1.38

Table 6. Experimental results of PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and
MCPDE over 30 independent runs on f 21–f 28 test functions with 30D.

F PSO PSOcf TLBO DE JADE CoDE jDE CMA-ES CPDE MCPDE

f21

Fmean 290 774 318 302 305 330 295 316 269 256
SD 83.1 343 70.2 83.7 64.7 101 72.3 94.2 76.9 50.4

Max 443 1.89 × 103 443 443 443 443 443 443 443 300
Min 200 200 200 200 200 200 200 200 200 200

Compare/Rank −/3 −/10 −/8 −/5 −/6 −/9 −/4 −/7 −/2 \/1

f22

Fmean 1.30 × 103 2.60 × 103 1.92 × 103 6.13 × 103 93.5 2.21 × 103 232 7.08 × 103 3.56 × 103 353
SD 405 627 1.18 × 103 727 30.6 268 43 868 760 118

Max 2.36 × 103 3.74 × 103 6.04 × 103 7.18 × 103 122 2.64 × 103 314 8.45 × 103 4.58 × 103 678
Min 754 1.48 × 103 609 4.69 × 103 15.3 1.66 × 103 160 4.66 × 103 1.73 × 103 167

Compare/Rank −/4 −/7 −/5 −/9 +/1 −/6 +/2 −/10 −/8 \/3

f23

Fmean 6.19 × 103 4.76 × 103 7.06 × 103 7.18 × 103 3.53 × 103 7.24 × 103 6.18 × 103 7.07 × 103 7.15 × 103 5.96 × 103

SD 1.26 × 103 999 315 203 325 223 418 634 381 483
Max 7.77 × 103 7.07 × 103 7.57 × 103 7.66 × 103 4.13 × 103 7.65 × 103 7.52 × 103 8.18 × 103 7.76 × 103 6.68 × 103

Min 2.99 × 103 3.01 × 103 6.44 × 103 6.78 × 103 2.73 × 103 6.70 × 103 5.49 × 103 5.51 × 103 5.98 × 103 4.99 × 103

Compare/Rank ≈/3 +/2 −/6 −/9 +/1 −/10 ≈/3 −/7 −/8 \/3

f24

Fmean 272 288 261 200 208 237 284 909 200 200
SD 10.5 10 7.89 3.25 7.42 6.97 4.30 687 2.72 × 10-1 6.02 × 10-3

Max 296 303 278 217 228 252 291 2.23 × 103 201 200
Min 255 271 242 200 200 222 275 213 200 200

Compare/Rank −/7 −/9 −/6 −/3 −/4 −/5 −/8 −/10 −/2 \/1

f25

Fmean 291 296 284 238 271 294 290 254 238 235
SD 10 9.61 9.88 4.99 15.1 5.42 5.21 27.7 4.12 2.57

Max 315 316 305 247 289 303 297 387 244 238
Min 272 278 266 228 239 279 277 201 230 229

Compare/Rank −/8 −/10 −/6 −/2 −/5 −/9 −/7 −/4 −/2 \/1
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Table 6. Cont.

F PSO PSOcf TLBO DE JADE CoDE jDE CMA-ES CPDE MCPDE

f26

Fmean 333 312 219 20.7 226 200 260 574 211 200
SD 61 84.2 50 27.5 54.2 5.20 × 10-3 86.9 504 35.1 2.26 × 10-4

Max 373 391 352 316 345 200 389 1.87 × 103 317 200
Min 200 200 200 200 200 200 200 132 200 200

Compare/Rank −/9 −/8 −/5 −/3 −/6 −/2 −/7 −/10 −/4 \/1

f27

Fmean 956 1.04 × 103 820 363 691 962 1.11 × 103 555 416 300
SD 90.5 75.9 85.5 × 10 85.4 228 153 32.7 123 109 1.19 × 10-1

Max 1.10 × 103 1.20 × 103 961 513 1.00 × 103 1.17 × 103 1.17 × 103 799 617 300
Min 775 861 660 300 309 659 1.04 × 103 387 300 300

Compare/Rank −/7 −/9 −/6 −/2 −/5 −/8 −/10 −/4 −/3 \/1

f28

Fmean 385 2.13 × 103 514 300 300 300 300 300 300 300
SD 325 258 639 2.27 × 10-13 0 6.78 × 10-3 0 3.75 × 103 1.84 × 10-9 2.65 × 10-13

Max 1.63 × 103 2.84 × 103 2.69 × 103 300 300 300 300 1.34 × 104 300 300
Min 300 1.67 × 103 100 300 300 300 300 100 300 300

Compare/Rank −/7 −/10 −/8 ≈/1 ≈/1 −/6 ≈/1 −/9 ≈/1 \/1

−/≈/+ 7/1/0 7/0/1 8/0/0 7/1/0 5/1/2 8/0/0 5/2/1 8/0/0 7/1/0 \
Avg-Rank 6.00 8.13 6.25 4.25 3.63 6.88 5.25 7.63 3.75 1.50

All in all, MCPDE performs better than the compared algorithms on the unimodal, multimodal
and composition problems with D = 10 and D = 30. Overall, Table 7 shows that MCPDE has a good
performance on CEC2013 test problems. When D is set to 10, the overall ranking sequences on
CEC2013 test problems are MCPDE, JADE, CPDE, jDE, DE, CoDE, TLBO, PSO, PSOcf and CMA-ES
in descending direction. The overall ranking sequences on CEC2013 test functions with D = 30 are
MCPDE, JADE, jDE, CPDE, DE, PSO, CoDE, CMA-ES, TLBO and PSOcf in descending direction.
The convergence graphs of PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and MCPDE on
different benchmark functions in terms of the mean errors (in logarithmic scale) in 30 runs are plotted
in Figure 2 (D = 10) and Figure 3 (D = 30). Sixteen benchmark functions are selected to compare the
performance of different algorithms in Figures 2 and 3. From Figure 2, it can be seen that MCPDE
performs better than other compared algorithms on 9 out of 16 test problems. Figure 3 shows that
MCPDE beats other compared algorithms on 8 out of 16 test problems. The comparison experiments
indicate that MCPDE is a challenging method for these functions. Moreover, MCPDE has a higher
convergence rate because of good exploration ability.

The experimental results reveal that MCPDE works well for most benchmark problems. This is
due to the effective parameter adaptation approach and the inertia factors which are used in MCPDE.
Better control parameters are preserved to produce new control parameters for the next generation.
Therefore, the probability of finding better solutions is greater and this is helpful for improving the
performance of the proposed algorithm. The inertia factors are changed during the evolution process
to favor, balance, and combine the exploration with exploitation. At the beginning of the search,
the inertia factor ω1 is less than ω2, so it favors exploration. Then, ω1 tends to increase continually
while ω2 tends to decrease. Accordingly, it balances the search direction. Later, the inertia factor ω1

is greater than ω2, so the exploitation ability of the algorithm is dynamically adjusted. In addition,
the opposition mechanism and the orthogonal crossover are helpful for increasing the search ability
during the evolutionary process. Therefore, both the exploration and exploitation aspects are done in
parallel during the optimization process. Accordingly, MCPDE not only can improve the convergence
rate of algorithm but also can decrease the risk of premature convergence as much as possible.

Table 7. Comparison of MCPDE with PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES and CPDE
on the CEC2013 benchmarks (D = 10 and 30 dimensions).

D PSO PSOcf TLBO DE JADE CoDE jDE CMA-ES CPDE MCPDE

10
−/≈/+ 26/2/0 25/1/2 26/2/0 23/5/0 9/9/10 24/2/2 19/7/2 22/3/3 18/9/1 \
Avg-rank 6.39 7.43 6.21 5.07 2.46 5.50 4.50 7.46 4.00 1.71

30
−/≈/+ 23/5/0 22/3/3 26/2/0 24/4/0 12/5/11 27/1/0 14/5/9 24/0/4 24/3/1 \
Avg-rank 6.14 7.54 6.61 5.43 2.79 6.39 4.07 6.61 4.64 2.00
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Figure 2. Evolution of the mean function error values derived from PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and MCPDE versus the number of FES on 
sixteen test problems with D = 10. (a) f2; (b) f3; (c) f6; (d) f7; (e) f9; (f) f10; (g) f11; (h) f12; (i) f14; (j) f15; (k) f16; (l) f20; (m) f23; (n) f24; (o) f25; (p) f26. 
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Figure 2. Evolution of the mean function error values derived from PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and MCPDE versus the number of FES
on sixteen test problems with D = 10. (a) f 2; (b) f 3; (c) f 6; (d) f 7; (e) f 9; (f) f 10; (g) f 11; (h) f 12; (i) f 14; (j) f 15; (k) f 16; (l) f 20; (m) f 23; (n) f 24; (o) f 25; (p) f 26.
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Figure 3. Evolution of the mean function error values derived from PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and MCPDE versus the number of FES on 
sixteen test problems with D = 30. (a) f3; (b) f5; (c) f6; (d) f7; (e) f8; (f) f9; (g) f10; (h) f12; (i) f13; (j) f17; (k) f20; (l) f24; (m) f25; (n) f26; (o) f27; (p) f28. 
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Figure 3. Evolution of the mean function error values derived from PSO, PSOcf, TLBO, DE, JADE, CoDE, jDE, CMA-ES, CPDE and MCPDE versus the number of FES
on sixteen test problems with D = 30. (a) f 3; (b) f 5; (c) f 6; (d) f 7; (e) f 8; (f) f 9; (g) f 10; (h) f 12; (i) f 13; (j) f 17; (k) f 20; (l) f 24; (m) f 25; (n) f 26; (o) f 27; (p) f 28.
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5. Conclusions

In order to improve the exploration-exploitation dilemma in the whole search space during the
evolutionary process of the optimization algorithm, a new meta-heuristic optimization algorithm
MCPDE for solving real-parameter optimization problems over continuous space is proposed in this
paper. An effective parameter adaptation approach and the inertia factor are introduced into the
modified cloud particles differential evolution algorithm. Moreover, the opposition mechanism and
the orthogonal crossover are employed to increase the search ability during the evolutionary process.
Then, the proposed algorithm is applied to 28 benchmark functions from the CEC2013 benchmark suite.
The experimental results indicate that MCPDE performs much better than the compared algorithms
for most benchmark problems. Thus, the proposed algorithm MCPDE is effective.

Future work will focus on how to design reasonable topological structures to make the algorithm
more efficient and applied to constrained and multi-objective optimization problems. Moreover,
it is expected that MCPDE will be used to tackle some practical engineering problems and real
word applications.
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