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Abstract: We propose a two-stage method to test the robustness of the generalized approximate
message passing algorithm (GAMP). A pursuit process based on the marginal posterior probability
is inserted in the standard GAMP algorithm to find the support of a sparse vector, and a revised
GAMP process is used to estimate the amplitudes of the support. The numerical experiments with
simulation and real world data confirm the robustness and performance of our proposed algorithm.
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1. Introduction

Compressed sensing (CS) has been a research focus in recent years [1]. Given the support of
an unknown K-sparse vector x ∈ RN as S = {j:j ∈ {1, . . . , N}, xj 6= 0}, we consider an under-determined
noisy linear system

y = Ax + n (1)

where y ∈ RM is a compressed sampling observation, n ∈ RM is an additive Gaussian noise,
A ∈ RM×N is the sensing matrix. The object is to reconstruct x from y and A. There are many
reconstruction algorithms to solve the CS problem. The message passing based methods, including
approximate message passing (AMP) algorithm [2] and generalized approximate message passing
(GAMP) algorithm [3], have remained the most efficient ever since they were proposed. They work
very well in the zero-mean Gaussian sensing matrix case, but become unstable and divergent in
the more general sensing matrix case. For example, although an improvement to the non-zero
mean Gaussian sensing matrix case has in a sense been proposed [4], the highly columns-correlated
non-Gaussian sensing matrix case is still a problem. We propose a new GAMP-like algorithm, termed
Bernoulli-Gaussian Pursuit GAMP (BGP-GAMP), to raise the robustness of standard GAMP algorithm.
Our algorithm firstly utilizes the marginal posterior probability of x to sequentially find the support
S, and then estimates the amplitudes on S by a tiny revised GAMP algorithm, termed Fixed Support
GAMP (FS-GAMP) which has been proposed in our previous work [5]. A recent work has been
proposed by Rodger [6], which is similar to our work, but gives another viewpoint from a neural
network statistical model. The numerical experiments verify our idea and show a good performance
and robustness.

The rest of this paper is organized as follows. Firstly, we review the standard GAMP, especially
Bernoulli-Gaussian prior GAMP, algorithm in Section 2. Secondly, we propose the FsGAMP and
BGP-GAMP algorithms in Sections 3 and 4, respectively. Thirdly, experiments are conducted in
Section 5. Finally, we draw a conclusion in the last section.
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2. GAMP Algorithm Review

The GAMP algorithm can be classified to minimum mean error estimation form (MMSE-GAMP)
and maximum posterior estimation form (MAP-GAMP) [3]. We restrict our attention to MMSE-GAMP,
since the problems in the real world are noisy, such that the posterior function has a very complex
shape with details which depend on the observation y. However, MMSE is robust to such fluctuations.

Firstly, GAMP algorithm approximates the true marginal posterior p(zm|y) by the output channel
marginal posterior

pzm|pm(z|p̂m, ν
p
m) ,

pym|zm(ym|z)N (z; p̂m, ν
p
m)∫

pym|zm(ym|z)N (z; p̂m, ν
p
m)dz

, (2)

where zm is the estimation of (Ax)m condition on the observation ym, and pym|zm(ym|z) is the likelihood
of the output channel ym = zm + wm. It is worth noting that wm means a noise, a random variable,
and it corresponds to the estimated random variable zm, instead of the original noise nm in Equation (1).
Therefore, wm is the residual after estimation of (Ax)m. The iterative algorithm computes the
conditional mean and variance of zm. We want to obtain the posterior mean and variance estimates

E{zm|pm = p̂m, ν
p
m} =

∫
zm pzm|pm(zm|p̂m, ν

p
m)dzm (3)

var{zm|pm = p̂m, ν
p
m} =

∫
(zm −E{zm|pm = p̂m, ν

p
m})2 pzm|pm(zm|p̂m, ν

p
m)dzm. (4)

Secondly, GAMP algorithm approximates the true marginal posterior p(xn|y) by the input channel
marginal posterior

pxn|rn(x|r̂n, νr
n) ,

pxn(x)N (x; r̂n, νr
n)∫

pxn(x)N (x; r̂n, νr
n)dx

(5)

where pxn(x) is the prior of random variable xn in the input channel rn = xn + vn. We want to obtain
the posterior mean and variance estimates

E{xn|rn = r̂n, νr
n} =

∫
xn pxn|rn(xn|r̂n, νr

n)dxn (6)

var{xn|rn = r̂n, νr
n} =

∫
(xn −E{xn|rn = r̂n, νr

n})2 pxn|rn(xn|r̂n, νr
n)dxn. (7)

GAMP algorithm is an intrinsic parallel computing process, since it decouples ym = ∑N
n=1 amnxn +wm

to the input channel rn = xn + vn estimation and the output channel ym = zm + wm estimation.
According to the factor graph theory, the messages are probability measures. They can be classified
to two types: from the variable node to the factor node, and from the factor node to the variable
node. For AMP and GAMP algorithms, all the messages are passed simultaneously between the
factor nodes and variable nodes along the edges on the factor graph. These probability measures
can be approximated as Gaussian density, based on the derivation of AMP and GAMP algorithms.
Therefore, the mean and variance of every entry of x are i.i.d. Gaussian random variable. This intrinsic
parallel computing implies a flaw: if A does not satisfy restricted isometry property (RIP) very well,
For example A has highly correlated columns, GAMP will diverge. In real world problems, such as
radar application, the sensing matrix A may be deterministic, not statistics. Therefore the RIP analysis
can not be applied to this situation, researchers use simulation to find the behavior of this kind of
reconstruction. We will show it in Section 5.

The steps of GAMP are listed in Algorithm 1, where |A|2 is a componentwise magnitude squared,
the elementwise product and division are denoted as � and �, respectively, notation [·] means the
componentwise form of a vector, e.g., a = [ai], and notation |·|means the cardinality of a set, or the
number of non-zero elements of a sparse vector.
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Algorithm 1: Generalized Approximate Message Passing (GAMP).
Input: y, A
Description: x(t + 1), νx(t + 1)

1: x̂(t = 1)← 0; νx(t = 1)← 1; ŝ(t = 0)← 0
2: repeat

3: νp(t)← |A|2νx(t)
4: p̂(t)← Ax̂(t)− ŝ(t− 1)� νp(t)
5: ẑ(t)← [ẑm(t)], where ẑm(t) , E{zm|pm = p̂m(t), ν

p
m(t)}

6: νz(t)← [νz
m(t)], where νz

m(t) , var{zm|pm = p̂m(t), ν
p
m(t)}

7: ŝ(t)← (1� νp(t))� (ẑ(t)− p̂(t))
8: νs(t)← (1� νp(t))� (1− νz(t) � νp(t))
9: νr(t)← 1� ((|A|2)Tνs(t))

10: r̂(t)← x̂(t) + νr(t)� (AT ŝ(t))
11: x̂(t + 1)← [x̂n(t + 1)], where x̂n(t + 1) , E{xn|rn = r̂n(t), νr

n(t)}
12: νx(t + 1)← [νx

n(t + 1)], where νx
n(t + 1) , var{xn|rn = r̂n(t), νr

n(t)}
13: until Terminated

When the prior is a Bernoulli-Gaussian distribution [7]

pxn(x) = (1− λ)δ(x) + λN (x; θ, φ), (8)

where λ is the sparsity-rate K/N, and the mean θ and variance φ are hyper-parameters which are set
to zero and one respectively at the initiation and those parameters do not change in the algorithm
running time. It is called BG-GAMP algorithm. One can obtain the input channel marginal posterior

pxn|rn(x|r̂n, νr
n) =

(
(1− λ)δ(xn) + λN (xn; θ, φ)

)N (xn; r̂n, νr
n)

ζn
(9)

= (1− πn)δ(xn) + πnN (xn; γn, µn) (10)

with the normalization factor

ζn ,
∫

pxn(x)N (x; r̂n, νr
n)dx = (1− λ)N (0; r̂n, νr

n) + λN (0; r̂n − θ, νr
n + φ) (11)

and (r̂n, νr
n, λ, θ, φ)-dependent variables

πn ,
1

1+
(

λN (r̂n;θ,νr
n+φ)

(1−λ)N (0;r̂n,νr
n)

)−1 (12)

γn ,
r̂n/νr

n + θ/φ

1/νr
n + 1/φ

(13)

µn ,
1

1/νr
n + 1/φ

, (14)

where πn is the input channel marginal posterior support probability Pr{xn 6= 0|r̂n, νr
n}, according to

Equation (10), and then Pr{xn = 0|r̂n, νr
n} = 1−πn. Substituting Equation (10) to Equations (6) and (7),

we have

x̂n = πnγn + (1− πn)θ (15)

νx
n = πn(|γn|2 + µn) + (1− πn)|θ|2 − |x̂n|2. (16)

The hypothesis of Bernoulli-Gaussian data x is sparse. Sparsity-rate λ has been set to K/N.
Although the sparsity K is unknown in practice, we can choose a small K value and an error bound,
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and then we do the recovery algorithm. If the recovery result makes the final reconstruction error
lower than the bound, this result can be accepted, otherwise we decrease the K value and do the
recovery again until the bound has been achieved. This procedure is like the Least Angle Regression
(LARS) algorithm which tests all the regularization hyper-parameters.

3. Fixed Support GAMP Algorithm

According to the belief propagation theory, if the number of cycles on a factor graph is low, then
the robustness of message passing will be enhanced [8]. Therefore, we have an idea that the message
passing can be restricted just on the support Λ if Λ has been determined in some way. That is the
meaning of FS-GAMP. The steps of FS-GAMP are listed in Algorithm 2. It is very similar to the GAMP
algorithm, but the major difference between FS-GAMP and GAMP is that the entries which do not
belong to the support Λ are assigned to 0 directly.

Algorithm 2: Fixed Support GAMP (FS-GAMP).
Input: y, A, Λ
Description: x(t + 1), νx(t + 1)

1: x̂Λ(t = 1)← 0|Λ|×1; νxΛ(t = 1)← 1|Λ|×1; ŝ(t = 0)← 0
2: repeat

3: νp(t)← |A:,Λ|2νx
Λ(t)

4: p̂(t)← A:,Λx̂Λ(t)− ŝ(t− 1)� νp(t)
5: {(line 5)–(line 8) of GAMP}
6: νr

Λ(t)← 1� ((|A:,Λ|2)Tνs(t))
7: r̂Λ(t)← x̂Λ(t) + νr

Λ(t)� (AT
:,Λŝ(t))

8: x̂Λ(t + 1)← [x̂i(t + 1)], where i ∈ Λ, x̂i(t + 1) , E{xi|ri = r̂i(t), νr
i (t)}

9: νx
Λ(t + 1)← [νx

i (t + 1)], where i ∈ Λ, νx
i (t + 1) , var{xi|ri = r̂i(t), νr

i (t)}
10: until

4. Bernoulli-Gaussian Pursuit GAMP Algorithm

The hypothesis of FS-GAMP algorithm is a known support Λ, but we do not know it. Now
back to BG-GAMP, Equations (15) and (16) use the marginal posterior probability πn to weight the
non-zero estimation part (γn, µn) and the zero prior part θ. At each iteration of BG-GAMP, when πn

is greater than zero-one switch threshold ζ = 0.5, the non-zero estimation part takes over the major
contribution. In this research we suppose that the non-zero prior probability of every entry in x is 0.5.
That implies the maximal entropy assumption. Therefore, the zero-one switch threshold is also set
to 0.5 in accordance with the maximal entropy assumption. For a matrix which does not meet RIP
conditions very well, we observe that the mean and the variance of one πn > ζ entry shows no sign of
convergence, while some entries’ πj < ζ, j 6= n already increase fast. When they are greater than ζ, the
means and the variances of these entries also show no sign of convergence. This phenomenon spreads
to more and more entries, causing all entries to be totally diverged.

This observation inspires us to maintain the current computing status until one πn > ζ entry
has converged, and then continue the next entry (or entries). In other words, we introduce a pursuit
process of lines (4)–(6) in Algorithm 3 to sequentially find the support of x, and then estimate the
amplitudes on this support by FS-GAMP. BGP-GAMP means BG-GAMP with an intrinsic pursuit
process. The steps of BGP-GAMP are listed in Algorithm 3. Note that the initial input parameters of
FS-GAMP in line (7) are the output parameters of GAMP in line (3).

The computational complexity of GAMP part in BGP-GAMP algorithm is the same as the standard
GAMP, that is O(MN), at each iteration. The computational complexity of the FS-GAMP part
in BGP-GAMP is O(M|Λ|) at each iteration. Because |Λ| ≤ K, the computational complexity of
BGP-GAMP at each iteration is less than O(M(N + K)).
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Algorithm 3: Bernoulli-Gaussian Pursuit GAMP (BGP-GAMP).
Input: y, A
Description: x(t + 1), νx(t + 1)

1: x̂(t = 1)← 0; νx(t = 1)← 1; ŝ(t = 0)← 0; Λ← ∅
2: repeat

3: {(line 3)–(line 12) of GAMP}
4: π(t + 1)← [πn(t + 1)], where πn(t + 1) obtained from (12)
5: J ← {j : πj(t + 1) > 0.5}
6: Λ← Λ∪ J
7: {FS-GAMP}
8: until Terminated.

5. Experiments

We investigate the performance of BGP-GAMP by three experiments. Four benchmark algorithms
are adopted to compare with BGP-GAMP. Orthogonal matching pursuit (OMP) [9] and basis
pursuit (BP) by interior point method to solve linear programming [10] are the most robust `0 and
`1 optimization algorithms, other algorithms (old or new) are weaker than them in robustness.
AMP and GAMP are not only the root cause of the robust problem, but also the basis of our
method. The implementation of OMP comes from (http://www.cmc.edu/pages/faculty/DNeedell),
BP comes from l1magic (http://users.ece.gatech.edu/justin/l1magic), AMP comes from Kamilov’s
work (http://people.epfl.ch/ulugbek.kamilov) and GAMP comes from gamplab (http://eeweb.poly.
edu/srangan/index.html).

We do Q = 100 trials in each experiment, and use the relative mean square error (RMSE)
ξ = 1/Q×∑Q

l=1 ‖x̂
l − xl‖2/‖xl‖2 as the performance metric. Given N/M = 3, M/K = 5, we set

N = 256, and then M = 86, K = 18. Choose K locations at random as the support of x, and the
amplitude of each non-zero entry xi is independently drawn fromN (0, 1). We set the signal-to-noise
ratio (SNR) to 25 dB.

The first experiment, termed γ test, investigates non-zero mean Gaussian sensing matrix case.
We create two types of sensing matrix: type 1 means A(:, j) = γ/N + aj/

√
N; type 2 means

A(:, j) = γ/N + aj/‖aj‖2, where each entry of aj is i.i.d. drawn from N (0, 1). Set the range of γ

to [0, 1, 1.8, 1.9, 1.95, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Figure 1a shows that GAMP violently diverges at γ = 2,
AMP fast diverges at γ = 5. The severely sharp divergence of GAMP and AMP comes from the phase
transition property of compressed sensing. Although BGP-GAMP also begins to diverge at γ = 5,
the deterioration speed is slower than AMP. Furthermore, the RMSE of BGP-GAMP is always less
than that of AMP. When γ < 4, the RMSE of BGP-GAMP is a little less than that of OMP, and when
γ < 6, the RMSE of BGP-GAMP is obviously less than that of BP. Figure 1b shows that AMP violently
diverges at γ = 1.95, GAMP violently diverges at γ = 3, but BGP-GAMP just begins to diverge at
γ = 8. The RMSE of BGP-GAMP is always less than that of BP, and less than that of OMP until
γ = 8. Moreover, Figure 1a,b shows that BGP-GAMP outperforms OMP slightly in performance
over a parameter range γ < 2. In summary, our proposed algorithm obtains better robustness
compared with the standard AMP/GAMP algorithms, at the same time our proposed algorithm
achieves performance advantage over a suitable parameter range compared with the standard OMP
and BP algorithms.

The second experiment, termed α test, investigates the highly correlated columns sensing matrix
A case. The elements of A are neither normal nor i.i.d distributed. Create two types of sensing matrix:
type 1 means A = (1/N)PQ, pmr, qrn ∼ N(0, 1), where P ∈ RM×R, Q ∈ RR×N , and R , αN; type 2
means A = PQ like type 1, but normalizes each column of A. We know that A is low rank for α < M/N.
Set the range of α to [0.2 0.3 . . . 1.0]. Since GAMP totally diverges at every α with type 1 and type 2
cases, it is not visible in Figure 2a,b. AMP also totally diverges at every α with type 2 case, therefore it

http://www.cmc.edu/pages/faculty/DNeedell
http://users.ece.gatech.edu/justin/l1magic
http://people.epfl.ch/ulugbek.kamilov
http://eeweb.poly.edu/srangan/index.html
http://eeweb.poly.edu/srangan/index.html
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is also not visible in Figure 2b. The two figures show that BGP-GAMP remains stable even in a low
rank scenario α ≈ 0.4, and its performance is obviously better than AMP and BP, and a little better
than OMP.
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Figure 1. Reconstruction performance comparison of the Non-zero mean sensing matrix. (a) Type-1
sensing matrix; (b) Type-2 sensing matrix.
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Figure 2. Reconstruction performance comparison of the highly column correlations sensing matrix.
(a) Type-1 sensing matrix; (b) Type-2 sensing matrix.

It is worth noting that the threshold 0.1 in Figures 1 and 2 is the relative mean square error,
not absolute mean square error, which means the average error amplitude is just 1/100 of the
original signal amplitude. These figures show, for instance, that the standard AMP algorithm and BP
algorithm are approaching this threshold. Therefore, it is not a poor performance. We do not consider
MAP-GAMP since MAP estimation is not general as MMSE estimation, please see [11] Section 3.6.3 for
more discussion.

The last experiment uses real world data, namely, a segment of music by Mozart. The data
has 81,000 sample points, and it is segmented to 54 blocks, each block has N = 1500 sample points.
The compressed sampling rate is set to 1/3, therefore, the measurement number is M = 500. We create
the sensing matrix by DCT transform: A(i, :) = (1/N)(DCT(Φ(i, :)))T, where every element of Φ is
drawn from N (0, 1), and then multiplied a scale factor 1/

√
M to it. Figure 3a shows the modulus
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of DCT coefficients of the original signal, and Figure 3b shows the modulus of DCT coefficients of
the recovered signal. We can see that the major energy has been recovered from the compressed
measurements.

Original Audio Signal
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Recovered Signal, relative MSE = -13.0734 dB
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Figure 3. Recover the audio signal by Bernoulli Gaussian Pursuit GAMP. (a) Spectra of the original
signal; (b) Spectra of the recovered signal, major signal energy has been restored but lost some detail.

6. Conclusions

In this paper we propose a new compressed sensing algorithm, the two-stage method.
This algorithm pursues the support of a sparse vector sequentially, an meanwhile estimates the
amplitudes of the sparse vector by the FS-GAMP process. Numerical experiments with simulation and
real world data confirm that our new algorithm performs very well in correctness and robustness.
In future work we plan to analyze the variation rate of the marginal posterior probability π to obtain
better results.
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