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Abstract: Nowadays, how to evaluate image quality reasonably is a basic and challenging problem.
In view of the present no reference evaluation methods, they cannot reflect the human visual
perception of image quality accurately. In this paper, we propose an efficient general-purpose
no reference image quality assessment (NRIQA) method based on visual perception, and effectively
integrates human visual characteristics into the NRIQA fields. First, a novel algorithm for salient
region extraction is presented. Two characteristics graphs of texture and edging of the original image
are added to the Itti model. Due to the normalized luminance coefficients of natural images obey the
generalized Gauss probability distribution, we utilize this characteristic to extract statistical features
in the regions of interest (ROI) and regions of non-interest respectively. Then, the extracted features
are fused to be an input to establish the support vector regression (SVR) model. Finally, the IQA
model obtained by training is used to predict the quality of the image. Experimental results show
that this method has good predictive ability, and the evaluation effect is better than existing classical
algorithms. Moreover, the predicted results are more consistent with human subjective perception,
which can accurately reflect the human visual perception to image quality.

Keywords: image quality assessment; no reference; visual perception; support vector regression;
region of interest; generalized Gauss distribution (GGD)

1. Introduction

With the rapid development of information technologies and widespread usage of smart
phones, digital imaging has become a more and more important medium to acquire information
and communicate with other people. These digital images generally suffer impairments during
the process of acquisition, compression, transmission, processing and storage. In addition, these
phenomena have brought us great difficulties in studying images and understanding the objective
world. Because of this, the image quality assessment (IQA) metrics have become a fundamentally
important and challenging work. Effective IQA metrics could play important roles in applications such
as dynamic monitoring and adjustment of image quality, optimizing the parameter settings of image
processing systems, and searching high quality images of medical imaging and so on [1]. For one thing,
high quality images can help doctors to judge the severity of the disease in medical fields. For another,
such as high-definition televisions, personal digital assistants, internet video streaming, and video on
demand, necessitate the means to evaluate the images quality of this information. Therefore, in order
to obtain high quality and high fidelity images, the study of image quality evaluation has important
practical significance [2,3].
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Because human beings represent terminals for the majority of processed digital images, subjective
assessment is the ultimate criterion and reliable image quality assessment method. However, the
subjective assessment methods hinder its application in practice because of its disadvantages, such as
time-consuming, expensive, complex and laborious. Thus, the goal of objective IQA is to automatically
evaluate the quality of images as near to human perception as possible [2].

Based on the availability of a reference image, objective IQA metrics can be classified into full
reference (FR), reduced reference (RR), and no reference (NR) approaches [4]. Only recently did
FR-IQA methods reach a satisfactory level of performance, as demonstrated by high correlations with
human subjective judgments of visual perception. SSIM [5], MS-SSIM [6] and VSNR [7] are examples
of successful FR-IQA algorithms. These metrics are based on measuring the similarity between the
distorted image and its corresponding original image. However, in real-world applications, where
the original is not available, FR metrics are not used. This strictly limits the application domain of
FR-IQA algorithms. In addition, the NR-IQA is the only possible algorithm that can be used in the
practical application. However, a number of NR-IQA metrics have been testified that they do not
always correlate with the perceived image quality [8,9].

Presently, NR-IQA algorithms generally follow one of two trends: The distortion-specific and
general-purpose methods. The former evaluate the distorted image of a specific type while the
latter directly measure the image quality evaluation without knowing the type of image distortion.
Since the result of evaluation ultimately depends on the feeling of the observers, image evaluation with
more perfect and more suitable for the actual quality must be based on human visual, psychological
characteristics and organic combine the subjective and objective evaluation methods. A large number
of studies have shown that: considering the human visual system (HVS) evaluation methods are
better than that without considering the characteristics of HVS evaluation methods [10–13]. However,
existing no-reference image quality assessment algorithms are failed to give full consideration to the
human visual features [10].

At present, there are some problems in the field of image quality assessment:

1. Unable to obtain the original image.
2. Difficult to determine whether the type of distortion of the distorted image exists.
3. Existing methods lack of considering human visual characteristics.
4. How to ensure the characteristics to be not significantly difference caused by the distortion images

with same degree yet different types.

In this paper, based on the existing image quality evaluation methods, we draw the human
visual attention region mechanism and the HVS characteristics into the no reference image quality
assessment method. Then, we propose a universal no-reference image quality assessment method
based on visual perception.

The rest of this paper is organized as follows. In Section 2, we describe the current research about
no reference image quality assessment methods and visual saliency. In Section 3, we introduce the
extraction model of visual region of interest. In Section 4, we provide an overview of the method.
In Section 5, we describe blind/reference image spatial quality evaluator (BRISQUE) algorithm and
the prediction model is provided in Section 6. We present the results in Section 7, and we conclude in
Section 8.

2. Previous Work

Before proceeding, we state some salient aspects of NR-IQA methods. Present day depending
on whether we know the type of distortion image or not, NR-IQA methods can be divided into two
categories: distortion-specific approaches and general-purpose approaches [14].

Distortion-specific algorithm is capable of assessing the quality of images distorted by a particular
distortion type, such as blockiness, ringing, blur after compress, and noise generated during image
transmission. In literatures [15–18], the authors proposed some approaches for JPEG compression
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images. In [17], Zhou et al. aimed to develop NR-IQA algorithms for JPEG images. At first, they
not only established a JPEG image database, but also subjective experiments were conducted on the
database. Furthermore, they proposed a computational and memory efficient NR IQA model for JPEG
images, and estimated the blockiness by the average differences across block boundaries. They used the
average absolute difference between in-block image samples and the zero-crossing rate to estimate the
activity of the image signal. At last, subjective experiment results were used to train the model, which
achieved good quality prediction performance. For JPEG2000 compression, distortion in an image is
generally modeled by measuring edge-spread using an edge-detection based approach and this edge
spread is related to quality [5,19–22]. The literatures [23–25] are evaluation algorithms for blur. QingBin
Sang et al. calculated image structural similarity by constructing fuzzy counterpart [20]. Firstly, they
used a low pass filter to blur the original blurred image and produce re-blurred image. Then they
divided the edge dilation image into 8 × 8 blocks. In addition, the sub-blocks were classified into edge
dilation block and smooth block. In addition, the gradient structural similarity index was defined by
different weighs according to the different types of blocks. Finally, the blur average value of the whole
image was produced. The experimental results were shown that the method was more reasonable and
stable than others. However, these distortion-specific methods are obviously limited by the fact that it
is necessary to know the distortion types in advance, which makes their application field limited [3].

Universal methods are applicable to all distortion types and can be used in any occasion. In recent
years, researchers proposed many universal no reference image quality assessment methods. However,
most of these methods relied on the prior knowledge of subjective value and distortion types, and
used machine learning methods to get the image quality evaluation score. Some meaningful universal
methods are reported in the literature [8,26–31]. In [26], the author proposed a new two-step framework
for no-reference image quality assessment based on natural scene statistics (NSS), namely Blind Image
Quality Indices, (BIQI). Firstly, the algorithm estimated the presence of a set of distortions in the image.
Secondly, they evaluated the quality of the image according to those distortions. In literature [27],
Moorthy et al. proposed a blind IQA method based on the hypothesis that natural scenes have some
certain statistical properties. In addition, those properties can make the quality of image degeneration.
This algorithm was called Distortion Identification- based Image Verity and Integrity Evaluation
(DIIVINE) and also was a two-step framework. The DIIVINE mainly consists of three steps. Firstly,
the wavelet coefficients were normalized. Then, they calculated the statistical characteristics of the
wavelet coefficients, such as scale and orientation selective statistics, orientation selective statistics,
correlations across scales and spatial correlation. Finally, the quality of the image was calculated using
those statistical features. The method has achieved a good performance on evaluation. In literature [8],
the authors supposed in Discrete Cosine Transform (DCT) domain the change of image statistical
characteristics can predict image quality, and proposed Blind Image Integrity Notator using DCT
Statistics algorithm (BLIINDS). Subsequently, Saad et al. extended the BLIINDS algorithm, and
proposed an alternate approach that relies on a statistical model of local DCT coefficients which
they dubbed blind image integrity notator using DCT statistic (BLIINDS-II) [28]. To begin with,
they partitioned the image into n × n blocks and computed the local DCT coefficient. Then, they
applied a generalized Gaussian density model to each block of DCT coefficients. Furthermore, they
computed functions of the derived model parameters. Finally, they used a simple Bayesian model
to predict the quality score of the image. In literature [29], Mittal et al. proposed a natural scene
statistic-based NR IQA model that operated in the spatial domain, namely blind/reference image
spatial quality evaluator (BRISQUE). This method did not compute distortion-specific features, but
used scene statistics of locally normalized luminance coefficients to evaluate the quality of the image
instead. Since Ruderman found that these normalized luminance values strongly tend towards a unit
normal Gaussian characteristic [30] for natural images, this method used this theory to preprocess the
image. Then, they extracted features in spatial domain. Those features mainly contain generalized
Gauss distribution characteristics and correlation of adjacent coefficients. Finally, those features were
used to map the quality to human rating via SVR model. Over the course of last few years, a number
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of researchers have devoted time to improving the assessment accuracy of NR IQA methods by taking
advantage of known natural scene statistics characteristics. These methods are failed to give full
consideration to the human visual characteristics [2]. There is also a deviation between the predicted
qualities and the real qualities, since the human visual system is the ultimate assessor of image quality.
In addition, almost all of the no reference image quality assessment methods are based on gray scale
images, and they do not make full use of the color characteristics of the image.

Through above analysis of NR IQA methods, at present, both in distortion-specific and
general-purpose methods, almost all of the methods use statistical characteristics of natural images to
establish quality evaluation model, and have achieved better effect of evaluation. However, considering
the statistical characteristics of natural images can hardly reflect the whole regularities of image quality.
There is still a certain gap with the subjective consistency of human vision.

Since the HVS is the ultimate assessor of image quality, a number of image quality assessment
methods based on an important feature of the HVS, namely, visual perception, are emerging in the
present day [10]. Among them, the research of region of interest (or visual saliency) is a major branch
of the HVS. In the field of image processing, ROI of an image are the areas that differ significantly from
their adjacent regions. They can immediately attract our eyes and capture our attention. Therefore, the
ROI is a very important region in the image quality assessment. On the other hand, how to build a
computational visual saliency model has been attracting tremendous attention in recent years [32].

Nowadays, a number of computational models to simulate human visual attention have been
studied by scholars and some powerful models have been proposed. For further details of ROI refer
to [9–12,32–36]. In [33], Itti et al. proposed a visual saliency model which was the first influential
and best known visual saliency model. In this paper, we call it Itti model. Itti model mainly contains
two aspects. Firstly, they introduced image pyramids for feature extraction, which makes the visual
saliency computation efficient. Secondly, Itti et al. proposed the biologically inspired “center-surround
difference” operation to compute feature dependent saliency maps across scales [32]. This model
effectively breaks down the complex problem of scene understanding by rapidly selecting. Following
the Itti model, Harel et al. proposed the graph-based visual saliency (GBVS) model [37]. The GBVS was
introduced a novel graph-based normalization and combination strategy, and was a new bottom-up
visual saliency model. It mainly consists of two steps. The first step is forming activation maps on
certain feature channels. In addition, the second step is normalizing them in a way which highlights
salient and admits combination with other maps. Experimental results show that the GBVS predicts
ROI more reliably than other algorithms.

In this paper, we mainly study the human visual characteristics, extract the region of interest,
and combine the statistical characteristics of the natural image as the measurement index of the
distortion image. Finally, do experiments on the database LIVE [38], the experimental results show
that the features extraction and the learning method are reasonable, and correlate quite well with
human perception.

3. Extraction Model of Visual Region of Interest

With the increasingly development of information technology, images have become the main
media of information transmission. How to analyze and deal with a large number of image information
effectively and accurately is an important subject. Then, researchers have found that the most important
information in the image is often focusing on a few key areas. They call these key areas salient regions
or regions of interest. We will greatly improve the efficiency and accuracy of image processing and
analyzing with extracting these salient regions accurately. So far, there are many regions of interest
extraction algorithms. The detection technology of the ROI, which has been based on interaction and
detection technology, has gradually developed into based on visual feature technology. The salient map
model proposed by Itti is the most typical ROI detection, based on visual features [33]. This method
only considers the bottom-up signal, simple and easy to implement. It is the most influential visual
attention model.
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3.1. The Principle of Itti Model

In 1998, Itti et al. proposed an algorithm based on salient map model. The algorithm defines the
color, brightness and direction of three kinds of visual characteristics, and uses Gaussian pyramid
building scale space. The model uses the center-surround of the compute strategy to form a set of
feature maps, and then these collections are normalized and merged to create salient map. It includes
three processes of features acquisition, salient map computation, selection and transfer of the region of
interest [34–36]. Figure 1 is the implementation process of Itti Koch model.
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3.2. Algorithm Improvement

In this paper, we propose an improved model based on the idea of Itti model. We add texture
feature and edge structure characteristics to the original model. The model block diagram is shown in
Figure 2.
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3.2.1. Texture Feature Extraction

Texture is an important visual cue, which is a common and difficult feature in the image.
The texture feature is consistent with human visual perception process and plays an important role in
the region of interest. There are many methods to extract texture features of images currently, such
as wavelet extraction methods, gray level co-occurrence matrix (GLCM) extraction methods and so
on. In recent years, the wavelet methods have been widely used in many fields. In literatures [39,40],
the authors introduced the wavelet method into the medical field and had achieved considerable
success. In the former article, the authors used the discrete wavelet packet transform (DWPT) to
extract wavelet packet coefficients from MR brain images. In the latter article, to help improve the
directional selectivity impaired by discrete wavelet transform, they proposed a dual-tree complex
wavelet transform (DTCWT), which was implemented by two separate two-channel filter banks.
DTCWT obtained directional selectivity by using approximately analytic wavelets. At each scale of a
two dimensions DTCWT, it produces in total six directionally selective sub-bands (±15◦, ±45◦, ±75◦)
for both real and imaginary parts. The method can obtain more information about the direction of
the images. However, Gabor wavelet is an important method of texture feature extraction. It not
only can extract texture features effectively, but also eliminate redundant information. In addition,
the frequency and direction of Gabor filter that close to the human visual system for frequency and
direction, and they were used for texture representation and description. A series of filtered images can
be obtained by convolution of the image with the Gabor filter, and the information of each image on
the scale and direction is described in each image [41]. In this paper, we use Gabor wavelet to extract
texture features of each filter image. Two dimensional Gabor function g(x, y) can be expressed as:

g(x, y) =
[

1
2πσxσy

]
exp
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where W is Gaussian function of polyphonic system frequency. According to the accordance with
human visual system, W = 0.5. The Fourier transform of g(x, y) can be expressed as:
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In order to get a set of self-similar filters, we use g(x, y) as the generating function, and do
moderate scale expansion and rotation transformation on it. That is, Gabor wavelet:

gmn(x, y) = a−mg(x′, y′) (3)

where a > 1, m, n are integer. x′ = a−m(x cos θ + y sin θ), y′ = a−m(−x sin θ + y cos θ),

a = (Uk/UM)
1

M−1 , where θ = nπ/k, and k is the number of direction. m, n are scale and direction
respectively, n ∈ [0, k]. Figure 4 are four different directions of the Gabor wavelet. Then we use the
Gabor wavelet transform to extract the texture features of the image. For an image I(x, y), its Gabor
wavelet transform can be defined as:

Tm,n(x, y) = ∑
x1

∑
y1

I(x, y)gmn ∗ (x− x1, y− y1) (4)

where, ∗ represents the conjugate complex, and the texture features are calculated as shown in
Formula (5). In the model, the center-surround is implemented as the difference between fine and
coarse scales. The center represent a pixel at scale c ∈ {2, 3, 4}, and the surround represent the
corresponding pixel at scale s = c + δ, δ ∈ {3, 4}. The across-scale difference (denoted “Θ” below)
between two maps is acquired by interpolation to the finer scale and point-by-point subtraction.

T(c, s) = |T(c)ΘT(s)| (5)

The above feature maps are combined to get the texture salient map. They are obtained through
across-scale addition, “⊕”, which consists of reduction of each map to scale four and point-by-point
addition. The combined formula is as follow.

T =
4
⊕

c=2

c+4
⊕

s=c+3
N(T(c, s)) (6)
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3.2.2. Edge Structure Feature Extraction

Edge is the most important feature of the image. Currently, there are many kinds of edge
detection methods, such as Roberts operator detection method, Sobel operator detection method,
Prewitt operator detection method and so on. However, because of the noise, the Canny method is
not easy to be disturbed, or to detect the real weak edges. The advantage is that the two different
thresholds are used to detect strong edges and weak edges. Weak edges are included in the output
image when the weak edges and strong edges are connected. In this paper, we use Canny edge
detection algorithm to extract the edge structure features of the image. Steps are as follows:

(1) We use Gauss filter to smooth image. Canny method firstly uses two-dimensional Gauss’s
function to smooth the image:

G(x, y) =
1

2πσ2 exp
∣∣∣∣− x2 + y2

2σ2

∣∣∣∣ (7)
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Its gradient vector is ∇G =

[
∂G/∂x
∂G/∂y

]
. Where σ is distributed parameter of Gauss filter.

(2) We calculate the magnitude and direction of the gradient, and suppress the amplitude of
the gradient.

(3) We perform a dual threshold method to detect and connect edges. E(x, y) is the final edge
structure map.

The edge structure characteristic is calculated as:

E(c, s) = |E(c)ΘE(s)| (8)

The above feature maps are combined to get the edge structure salient map. The combined
formula is as:

E =
4
⊕

c=2

c+4
⊕

s=c+3
N(E(c, s)) (9)

In the end, the final image salient region is obtained by linear addition of 5 salient maps, and the
formula is shown below:

S =
1
5
(N(I) + N(C) + N(O) + N(T) + N(E)) (10)

where, I, C and O represent intensity, color and orientation feature respectively.

4. Overview of the Method

Currently no reference image quality evaluation algorithm can be divided into two categories:
distortion-specific methods and universal methods. However, the distortion-specific methods are
limited in the practical application because the prior need to determine the type of the distorted images.
The general-purpose methods do not depend on the type of distorted images, and have prospect
of practical application. However, the existing algorithms are almost to extract natural statistical
characteristics of image, and rarely take into account the visual characteristics of the human eye. Thus,
in practical application, there is a deviation between the evaluation result and the result of the human
eye perception. As shown in Figures 5 and 6, due to the visual characteristics of the human eye, in
the same picture, different regions (such as interest and non interest areas) in the same image quality
damage degree will make the human eye produce different visual experience. Under the same Gauss
fuzzy, the visual observation effect of Figure 5 is better than Figure 6.
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formula is as: 

4 4

2 3
( ( , ))

c

c s c
E N E c s

+

= = +
= ⊕ ⊕  (9) 

In the end, the final image salient region is obtained by linear addition of 5 salient maps, and the 
formula is shown below: 

1 ( ( ) ( ) ( ) ( ) ( ))
5

S N I N C N O N T N E= + + + +  (10) 

where, I, C and O represent intensity, color and orientation feature respectively. 

4. Overview of the Method 

Currently no reference image quality evaluation algorithm can be divided into two categories: 
distortion-specific methods and universal methods. However, the distortion-specific methods are 
limited in the practical application because the prior need to determine the type of the distorted 
images. The general-purpose methods do not depend on the type of distorted images, and have 
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the human eye, in the same picture, different regions (such as interest and non interest areas) in the 
same image quality damage degree will make the human eye produce different visual experience. 
Under the same Gauss fuzzy, the visual observation effect of Figure 5 is better than Figure 6. 
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In the observation of the image, human eye will be the first to pay attention to the visual
characteristics of the more prominent areas. Although the image suffered the same damage, because
of the different regions, the human eye subjective feelings are different. Based on the background,
this paper proposes a method of image quality evaluation based on visual perception. Firstly, we
extract the region of interest. Secondly, extract the features from the regions of interest and regions
of non-interest. Finally, the extracted features are fused effectively, and the image quality evaluation
model is established. The proposed approach we called region of interest blind/reference image spatial
quality evaluator (ROI-BRISQUE). Figure 7 is the framework of the proposed method in this paper.
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The method of this paper is described as follows:
Firstly, the LIVE image database is divided into two categories: training images and testing

images. In addition, we extract the region of interest and features on the training images. Then, we
use the feature vectors as the input of the ε-SVR, the DMOS of the corresponding image as the output
target to train the image quality evaluation model. Finally, the image quality prediction model is used
to predict the quality of the distorted image.

This paper focuses on the image region of interest extraction. The traditional Itti model calculates
the salient region of the image by extracting the underlying features of the image color, brightness
and direction. It can search out the attention region. However, there are still some shortcomings, for
instance, the contour of the salient region is not clear. In order to extract the region of interest more
accurately, we add texture and edge structure features to the Itti model. Then, we use the improved
model to extract the region of interest and region of non-interest, and use BRISQUE algorithm to
extract the natural statistical features of the image respectively. Moreover, the characteristics of the
region of interest and region of non interest are fused to get the measure factor of the image. We train
the image quality evaluation model, which the measure factor as the input and the DMOS value of
corresponding image as the output target of SVR. Finally, the quality of the distorted image is predicted
by the trained evaluation model.
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5. Feature Extraction of BRISQUE Algorithm

Ruderman [30] found that the normalized luminance coefficients of natural images obey the
unit generalized Gauss probability distribution. He believes that the image distortion will change
the statistical characteristics of the normalized coefficient. By measuring the change of the statistical
features, the distortion types can be predicted and the visual quality of the image can be evaluated.
Based on this theory, Mittal et al. proposed a BRISQUE algorithm based on spatial statistical
features [29]. This spatial method to NR IQA that they have developed can be summarized as follows.

5.1. Image Pixel Normalization

Given an image which possibly distorted, we compute locally normalized luminances via local
mean subtraction and divisive normalization. Formula (11) may be applied to a given intensity image
I(i, j) to produce:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + c
(11)

µ(i, j) =
K

∑
k=−K

L

∑
l=−L

ωk,l I(i + k, j + l) (12)

σ(i, j) =

√√√√ K

∑
k=−K

L

∑
l=−L

ωk,l [I(i + k, j + l)− µ(i, j)]2 (13)

where I(i, j) represents the gray value of the original image, I ∈ {1,2, . . . , M}, j ∈ {1,2, ..., N}. M and N
are the image height and width respectively; c is a small constant, in order to prevent the stability of
calculated results when the denominator closes to 0. µ(i, j) and σ(i, j) are weighted mean and variance.
ω = {ωk,l|k = −K, . . . , K, l = −L, . . . , L} is a two-dimensional circularly symmetric Gaussian weighting
function. They called the normalized brightness value of Î(i, j) is MSCN (Mean Subtracted Contrast
Normalized) coefficients.

5.2. Spatial Feature Extraction

The existence of distortion will destroy the regularity between the adjacent MSCN coefficients.
The characteristics of the normalized coefficients include the generalized Gauss distribution features
and the correlation of the adjacent coefficients.

(1) Generalized Gauss distribution characteristics:

The model formula can be expressed as Formula (14).

f (x; a, σ2) =
a

2βΓ(1/a)
exp

(
−
(
|x|
β

)a)
(14)

where β = σ
√

Γ(1/a)
Γ(3/a) , Γ(·) is gamma function. The shape parameter α controls the shape of the

generalized Gauss model, and σ2 is the variance. This article uses the literature [42] fast matching
method to estimate (a, σ2) as the features of generalized Gauss distribution.

(2) Correlation of adjacent coefficients:

We obtain correlation images from the horizontal, vertical, diagonal and diagonal four
directions [43], and use Asymmetric Generalized Gaussian Distribution (AGGD) to fit the images.
We use fast matching method [44] to estimate parameters (η, ν, σl, σr) for each direction. Thus, we utilize
the 16 estimation parameters of four directions as the correlation feature of the adjacent coefficients.

However, due to multiscale statistical characteristics of natural images, the author found that it
is much more reasonable to extract two generalized distribution characteristics and 16 neighboring
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coefficients of correlation characteristics at two scales. Therefore, the total extracted features are
(2 + 16) × 2 = 36.

6. Prediction Model

Through being established the relationship between image features and subjective evaluation
values of image in this paper, we propose a model of objective image quality evaluation model based on
ROI-BRISQUE. We utilize measure factor of distortion image (Vall) which obtained from feature vectors
effective fusion between region of interest feature vector (Vroi) and region of non-interest feature vector
(Vnon-roi) as the input of the SVR model. Moreover, we use the subjective quality evaluation value of
the corresponding image as the output target to establish image quality evaluation model based on
visual perception. The calculation formula is given by Formula (15).

Vall = λVroi + (1− λ)Vnon−roi (15)

The parameter λ is the weight of the image region of interest. Through training on the LIVE
image database, the experimental results show that the model has a good learning accuracy and
predictive ability.

7. Results and Discussion

7.1. Experimental Results of the Region of Interest

In this paper, we select some pictures from image database to test the improved Itti model.
Meanwhile, in order to compare the experimental results, saliency maps of Itti and GBVS are also
listed, the results as shown in Figures 8–10:

In Figures 8–10, (a) is the original image, (b), (c) and (d) are salient overlap maps of Graph-Based
Visual Saliency (GBVS) model, Itti model and this paper’s model respectively. (e), (f) and (g) are
salient maps of GBVS model, Itti model and this paper’s model respectively. The white areas represent
region of interest, and the black areas represent the region of non-interest. The higher the brightness
of the white part is, the higher the degree of interest of the human eye becomes. From figures of
(b), (c) and (d), we can see the regions of interest which obtained from the method of this paper are
more accurate than others. The regions are consistent quite well with human perception and human
visual process.

To verify the accuracy of the region of interest which is better obtained by the improved Itti model,
we use eye-tracking data [45]. It was collected in order to better understand how people look to images
when assessing image quality. This database consists of 40 original images. Each original image was
further processed to produce four different versions, which resulted in a total of 160 images used in
the experiment. Participants performed two eye-tracking experiments: one with a free-looking task
and one with a quality assessment task. With the eye tracker it was possible to track the eye movement
of the viewers and map the salient regions for images given different tasks and with different levels
of image quality. Some meaningful progress in the design of eye-tracking data is reported in the
literature [46].
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Since recording eye movements is so far the most reliable ways for studying human visual
attention [10], it is highly desirable to use these “ground truth” visual attention data for the
model of extract ROI. We use the images of the eye-tracking database to extract the region of
interest, and compare with the results of eye-tracking database. The resulting ROI are illustrated
in Figures 11 and 12. (e) as an example a saliency map derived from eye-tracking data obtained in
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experiment I (free looking task) for one of the original images, and the (i) obtained in experiment II
(scoring task) for the same image. It can be seen that the improved Itti model achieves comparable
testing results and approaches the performance of the eye-tracking data. This model is able to
successfully predict ROI in close agreement with human judgments.
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7.2. Experiments and Relate Analysis of Image Quality Evaluation

7.2.1. LIVE IQA Database

We use the LIVE IQA database2 [38] to test the performance of ROI-BRISQUE method.
The database consists of 29 reference images and 779 distorted images spanning various distortion
categories, JPEG compresses images (169 images), JPEG2000 compressed images (175 images), Gaussian
blur (145 images) and Rayleigh fading channel (fast fading 145 images). Further, each distorted image
has an associated difference mean opinion scores (DMOS), which represents the perceived quality of
the image.
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In order to calibrate the relationship between the extracted features and the ROI, as well as
DMOS, the ROI-BRISQUE method requires two subsets of images. We randomly divide the LIVE IQA
database2 into two non-overlapping sets −80% training and 20% testing. We do this to make sure that
the experiment results do not depend on features extracted from known distortion images, which can
improve performance of the ROI-BRISQUE method. Further, in order to eliminate performance bias,
we repeat this random 80% train and 20% test procedure 1000 times and compute the mean value of
the performance. In the following text, the figures reported here are the median values of performance
across these 1000 iterations.

In this paper, we use four commonly used performance indexes to evaluate the IQA algorithms.
They are Spearman’s rank ordered correlation coefficient (SROCC), Kendall rank order correlation
coefficient (KROCC), Pearson’s linear correlation coefficient (PLCC) and Root Mean Squared Error
(RMSE). The first two indexes can measure the prediction monotonicity of an IQA algorithm. The other
two indexes are computed after passing the algorithmic value through a logistic nonlinearity as in [47].

7.2.2. Performance Analysis

In this paper, all the procedures are performed using the Matlab (R2011a) toolbox. We use the
LIBSVM package [48] to implement the SVR and the radial bias function (RBF) kernel for regression.
The operating environment is Intel® CoreTM i5 and 2.67 GHz processor with 6 GB of RAM.

First of all, in order to make the method proposed in this paper can get better results in
performance, we need to choose a reasonable weight value of λ in formula (15). We use different
values of λ to test the proposed model. The results are shown in Table 1. As observed from Table 1, we
can see the experimental results obtained by the Formula (15) are relatively good when the λ = 0.7.
In addition, we also utilize ITTI and GBVS model to extract the ROI of the image and test the proposed
model. The performance indices are tabulated in Tables 2 and 3 respectively. In these two tables, since
Itti and GBVS model cannot accurately describe the scope of the region of interest, these performances
are inferior to the improved Itti model.

In order to test the proposed algorithm performance better, we report the performance of two FR
IQA algorithms peak-signal-to-noise-ratio (PSNR), and the structural similarity index (SSIM). Since the
two algorithms have a good performance in FR IQA, they have been used as a benchmark for many
years. We also select three NR IQA algorithms BLIINDS-II, DIIVINE and BRISQUE to compare the
performance, because these three methods are general-purpose methods and have a good performance
in DCT, wavelet and spatial domain respectively. These performance indices are tabulated in Table 4.

As seen from Table 4, ROI-BRISQUE performs quite well in terms of correlation with human
perception, beating present day full-reference and no-reference image quality assessment indices.

Table 1. Performance of ROI-BRISQUE which ROI extracted by the improved Itti model. The numbers
in bold are the best values.

λ KROCC RMSE SROCC PLCC

0.0 0.7674 7.9544 0.8805 0.8818
0.1 0.7692 7.7801 0.8936 0.8958
0.2 0.7725 6.9801 0.9169 0.9220
0.3 0.7802 6.2725 0.9234 0.9267
0.4 0.7816 5.9544 0.9303 0.9352
0.5 0.7899 5.5036 0.9439 0.9459
0.6 0.7907 5.0113 0.9443 0.9450
0.7 0.8021 4.7825 0.9495 0.9494
0.8 0.7981 4.9130 0.9493 0.9482
0.9 0.7910 5.1800 0.9454 0.9444
1.0 0.7841 5.5767 0.9413 0.9396
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Table 2. Performance of ROI-BRISQUE which ROI extracted by Itti model. The numbers in bold are
the best values in the corresponding column.

λ KROCC RMSE SROCC PLCC

0.0 0.7452 7.0713 0.9059 0.8998
0.1 0.7585 6.6507 0.9175 0.9119
0.2 0.7714 6.3002 0.9269 0.9214
0.3 0.7829 5.9391 0.9352 0.9304
0.4 0.7926 5.7110 0.9407 0.9354
0.5 0.7916 5.7155 0.9412 0.9353
0.6 0.7849 5.7062 0.9378 0.9356
0.7 0.7848 5.6635 0.9376 0.9365
0.8 0.7736 5.9682 0.9299 0.9294
0.9 0.7572 6.3446 0.9196 0.9200
1.0 0.7509 6.4869 0.9145 0.9162

Table 3. Performance of ROI-BRISQUE which ROI extracted by GBVS model. The numbers in bold are
the best values.

λ KROCC RMSE SROCC PLCC

0.0 0.7490 6.7257 0.9175 0.9102
0.1 0.7592 6.3346 0.9258 0.9207
0.2 0.7709 6.0183 0.9321 0.9288
0.3 0.7938 5.5164 0.9432 0.9401
0.4 0.7991 5.3783 0.9453 0.9433
0.5 0.7938 5.5856 0.9439 0.9392
0.6 0.7918 5.5501 0.9429 0.9399
0.7 0.7890 5.5012 0.9400 0.9409
0.8 0.7880 5.5172 0.9404 0.9405
0.9 0.7804 5.6695 0.9371 0.9372
1.0 0.7745 5.8075 0.9341 0.9345

Table 4. Performance comparison of some IQA methods and the method of this paper. Italicized
algorithms are NR IQA algorithms, others are FR IQA algorithms.

KROCC RMSE SROCC PLCC

PSNR 0.6674 11.2795 0.8873 0.8866
SSIM 0.7410 10.5723 0.9201 0.9110

BLIINDS-II 0.7619 9.8894 0.9123 0.9145
DIIVINE 0.7643 8.1542 0.9265 0.9283

BRISQUE 0.7768 6.5468 0.9314 0.9377
ROI-BRISQUE 0.8021 4.7613 0.9522 0.9465

Usually we hope the scatter plot should define a cluster, that means the subjective score and
objective evaluating score are tightly correlative since the ideal IQA algorithm should accurately reflect
the subjective score, such as the DMOS [49]. The scatter plots of different IQA models are shown in
Figure 13, where each point represents one test image, with its vertical and horizontal axes representing
its predict score and the given objective quality score, respectively. We can see the scatter plots of
full reference methods PSNR and SSIM are scattered, while the scatter plots of no reference methods
DIIVINE, BLIINDS-II and BRISQUE are evenly distributed along the curve in the low distortion.
The prediction is relatively accurate. When the degree of distortion of the image is too large, there is
a deviation between the prediction results and the true value, scatter points more dispersed. In this
paper, the method can accurately predict the image with different degree of distortion. We can see the
distributions cluster along the curve.
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In order to verify the accuracy of the method proposed in this paper further, we test five categories
image distortion of LIVE image respectively. In addition, 100 images of various types are randomly
selected to experiment. We list the median performance parameters for each distortion category and
the overall parameters as well. The results are shown in Table 5.

Table 5. Performance comparison of different distortion types.

JPEG JP2K BLUR WN FF ALL

RMSE
ROI-BRISQUE 2.5975 3.9836 2.2188 2.6453 3.9494 4.7613

BRISQUE 4.0339 5.4350 4.0374 3.3340 5.6078 6.5468

KROCC
ROI-BRISQUE 0.8071 0.7927 0.8384 0.8933 0.7398 0.8021

BRISQUE 0.7691 0.7619 0.8286 0.8792 0.7237 0.7768

PLCC
ROI-BRISQUE 0.9867 0.9693 0.9801 0.9927 0.9719 0.9465

BRISQUE 0.9551 0.9090 0.9498 0.9903 0.9148 0.9377

SROCC
ROI-BRISQUE 0.9858 0.9690 0.9865 0.9908 0.9561 0.9522

BRISQUE 0.9647 0.9139 0.9479 0.9843 0.9053 0.9314

As a whole it is obvious that ROI-BRISQUE performs well in terms of correlation with human
perception, and is competitive with the BRISQUE across distortion types. From Table 5, it can be
seen that the ROI-BRISQUE algorithm outperforms the BRISQUE indices in the five different types of
distortion. This is a remarkable result, as it shows that algorithms that operate without any reference
information can offer performance competitive with the predominant IQA algorithm over the last
decades. Figure 14 is scatter plots of five categories. It can be shown that the proposed method has
higher accuracy and stability than conventional image quality evaluation methods.

We also listed the median correlation values of ROI-BRISQUE as well as other PSNR, SSIM
DIIVINE, BLIINDS-II and BRISQUE algorithms. Although the experiment results show some
differences according to the median correlation, in this part we evaluate if these differences in
correlation is statistically significant. To visualize the statistical significance of the comparison, we
show error bars of the distribution of the SROCC values for each of the 1000 experimental trials.
The error bars indicate the 95% confidence interval for each algorithm [50]. Plots are shown in
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Figure 15. Obviously, the lower the confidence interval with a higher median SROCC, the better
the performance is. The plots show that the ROI-BRISQUE is not statistically significantly different
in performance. In addition, in order to evaluate the statistical significance of performance of each
algorithm, we use one-sided t-test between those correlation values [50]. We tabulate the results of
such statistical analysis in Table 6. The null hypothesis is that the mean correlation for the row is equal
to the mean correlation for the column at the 95% confidence level [51]. The other hypothesis is that
the mean correlation of the row is greater or lesser than the mean correlation of the column. In the
Table 6, the value of “1” indicates that the row method is statically superior to the column method,
“−1” indicates that the row method is inferior to the column method, and “0” indicates that the row
and the column methods are equivalent.
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Table 6. Results of one-sided t-test performed between SROCC values of various IQA algorithms.
The value of “1” indicates that the row algorithm is statically superior to the column algorithm;
“−1” indicates that the row is inferior to the column; “0” indicates that the row and the column
methods are equivalent. Italics indicate No-reference algorithms.

PSNR SSIM BLIINDS-II DIIVINE BRISQUE ROI-BRISQUE

PSNR 0 −1 −1 −1 −1 −1
SSIM 1 0 1 −1 −1 −1

BLIINDS-II 1 −1 0 −1 −1 −1
DIIVINE 1 1 1 0 −1 −1

BRISQUE 1 1 1 1 0 −1
ROI-BRISQUE 1 1 1 1 1 0

As observed from the Table 6, we can see that the ROI-BRISQUE is statistically better than other
IQA methods listed in the Table 6.

7.2.3. Database Independence

Since ROI-BRISQUE algorithm is evaluated only on the LIVE IQA database2, we cannot make sure
that the performance of ROI-BRISQUE maintains its superiority in other IQA database. To show this,
we apply the ROI-BRISQUE to the alternate TID2013 database [52]. The TID2013 database contains
25 reference images and 3000 distorted images (25 reference images × 24 types of distortions × 5 levels
of distortions). Further, although it has 24 distortion categories, we test the ROI-BRISQUE only on
these categories which has been trained for JPEG, JP2k (JPEG2000 compression), BLUR (Gaussian
Blur), and WN (Additive white noise). TID2013 database does not contain FF (Fast Fading) distortion.
The results of testing on TID2013 database are shown in Table 7. Compared with PSNR, SSIM,
BLIINDS-II, DIIVINE and BRISQUE, the correlation with subjective perception of ROI-BRISQUE
remained consistently competitive.

Table 7. SROCC results obtained by training on the LIVE IQA database and testing on the TID2013
database. Italicized algorithms are NR IQA algorithms, others are FR IQA algorithms.

JP2K JPEG WN BLUR All

PSNR 0.8250 0.8760 0.9180 0.9342 0.8700
SSIM 0.9630 0.9354 0.8168 0.9600 0.9016

BLIINDS-II 0.9157 0.8901 0.6600 0.8500 0.8442
DIIVINE 0.9240 0.8660 0.8510 0.8620 0.8890

BRISQUE 0.8320 0.9240 0.8290 0.8810 0.8960
ROI-BRISQUE 0.8534 0.9276 0.8488 0.8965 0.8993

In addition, to study whether the algorithm is database dependent, we also test ROI-BRISQUE on
a portion of the CSIQ image database [53]. The database consists of 30 original images, each distorted
using one of six types of distortions, each at four to five different levels of distortion. The database
contains 5000 subjective ratings from 35 different observers, and the ratings are reported in the form
of DMOS (the value is in the range [0, 1], where 1 denotes the lowest quality). The distortions used
in CSIQ are: JPEG compression, JPEG2000 compression, global contrast decrements, additive pink
Gaussian noise, and Gaussian blurring. In total, there are 866 distorted images. We test ROI-BRISQUE
on the CSIQ database over 4 distortion categories in common with the LIVE database: JPEG, JPEG2000,
Gaussian noise, and Gaussian blurring. The experimental results are reported in Table 8. It is obvious
that the performance of ROI-BRISQUE does not depend on the database. The correlations are still
consistently high.



Algorithms 2016, 9, 87 19 of 21

Table 8. SROCC results obtained by training on the LIVE IQA database and testing on the CSIQ
database. Italicized algorithms are NR IQA algorithms, others are FR IQA algorithms.

JP2K JPEG WN BLUR All

PSNR 0.8905 0.8993 0.9173 0.8620 0.8810
SSIM 0.9606 0.9546 0.8922 0.9609 0.9420

BLIINDS-II 0.9057 0.8809 0.6956 0.8653 0.8452
DIIVINE 0.8084 0.8673 0.8594 0.8312 0.8472

BRISQUE 0.8662 0.8394 0.8253 0.8625 0.8509
ROI-BRISQUE 0.8869 0.8404 0.8277 0.8689 0.8553

8. Conclusions

With the development of information technology, digital images have been widely used in every
corner of our life and work, the research of image quality assessment algorithm also has very important
practical significance. In this letter, we describe a framework for constructing an objective no-reference
image quality assessment measure. The framework is unique, since it absorbs the features of human
visual system. On the basis of human visual attention mechanism and BRISQUE method, this paper
proposes a new NR IQA method based on visual perception, which we named as ROI-BRISQUE. First,
we detailed the algorithm and the extraction model of ROI, and demonstrated the ROI consistent quite
well with human perception. Then, we used BRISQUE method to extract image features and evaluated
the ROI-BRISQUE index in terms of correlation with subjective quality score, and demonstrated that
algorithm is statistically better than some state of the art IQA indices. At last, we demonstrated that
ROI-BRISQUE performs consistently across different databases with similar distortions.

Further, the experimental results show that the new ROI-BRISQUE algorithm can be easily trained
for a LIVE IQA database. In addition, it may be easily extended beyond the distortions considered
here making it suitable for general-purpose blind IQA problems. The method correlates highly with
visual perception of quality, and outperforms the full-reference PSNR and SSIM measure and the
recent no-reference BLIINDS-II, DIIVINE indexes, and excels the performance of the no-reference
BRISQUE index.

In the future, we will make further efforts to improve ROI-BRISQUE, such as further exploring
human visual system and extracting the region of interest accurately.
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