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Abstract: Forest understory significantly contributes to matter cycling in ecosystems, but little is
known about its carbon pool. This is especially poorly understood in floodplain forests, one of the
most threatened ecosystems worldwide. We studied seasonal dynamics of biomass and species
composition of understory vegetation in degraded and non-degraded floodplain forests, to improve
our understanding of carbon pools in forest ecosystems. We hypothesized that degraded and
non-degraded floodplain forests will differ in patterns of seasonal variability of biomass and species
composition. The study was conducted in Poznań (W Poland) in two study plots (each with 10
samples) across 22 dates (March–November 2016). In each date, we collected understory aboveground
biomass. We evaluated impact of light availability and soil temperature on biomass and species
composition. Our study revealed high dynamics of biomass production. We found maximum biomass
crop of understory in degraded floodplain forest on 24 April (930.12 ± 48.70 kg ha−1), whereas in
non-degraded floodplain forest the maximum occurred on 30 May (768.99 ± 40.65 kg ha−1). At the
beginning of the growing season, understory biomass was dominated by spring ephemerals and later
these species were replaced by others present for the whole season. Additionally, we confirmed the
positive impacts of light availability and temperature on understory primary production. The pattern
revealed drove species composition shifts and low differences in biomass crop between consecutive
dates. Patterns of understory biomass dynamics differed between degraded and non-degraded plots.
Despite study limitations, we provided rare data about understory biomass dynamics of floodplain
forests, increasing knowledge about carbon accumulation and cycling in floodplain forests, and
contributing to global carbon assessments.

Keywords: productivity; herb layer; seasonality; diffusive non-interceptance; riverine; forbs; soil
temperature

1. Introduction

Floodplain forests are one of the most threatened types of azonal vegetation worldwide [1,2].
Their structure and functioning are strongly driven by the characteristics of river valleys. River
flow influences distribution of species and creates successional gradients across the floodplain:
pioneer ruderal species colonize river banks, while late-successional species (more competitive and
prone to disturbance) occur on the slopes [3,4]. River regulation destroys the equilibrium between
disturbances and succession, shaping the diversity of ecosystem types within the riverine area [1,2,5].
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This phenomenon can lead to biotic homogenization of floodplain vegetation through the extirpation
of specialized species, which are replaced by cosmopolitan species [6–8], as well as to increasing risk
of biological invasions [4,9,10].

In cities, floodplain ecosystems, as well as wetlands and acidophilous forests, are one of the
most endangered habitat types [11–13]. Thus, one of the most severe threats to floodplain forests is
urbanization. Floodplain forest habitats close to settlements are usually cut for fuel and construction
materials [2,5,14]. Moreover, urbanization can cause a lowering of the ground water table, increasing
nitrogen deposition, pH, pollution and temperature [15–17]. Additionally, affinity of urban green areas
and land-use change increases risk of invasive species encroachment [18–20].

Although understory comprises circa 1% of forest ecosystem biomass [21], due to seasonal
dynamics, it is responsible for circa 20% of micro- and macroelement cycling [22–24]. Moreover,
understory is much richer in plant species than overstory. Seasonality of deciduous forest ecosystems
is connected with foliage fall during the autumn and its emergence during spring [24–26]. These
dynamics imply taxonomic and functional diversity of dominants in understory biomass [26–28].
Seasonal dynamics are driven by changes in canopy openness, which allow development of
spring ephemerals during an early spring period of high light availability, followed by decreasing
light availability during late spring and summer [29,30]. Another factor connected with seasonal
variability is temperature [26,31,32]. Additionally, understory biomass is driven by overstory
characteristics [33,34] such as the dominant tree species [35–37]. Moreover, it is also driven by the
temperature [38]. Previous studies have described understory biomass crop as a whole pool [36,39,40],
and only a few of them accounted for proportion of functional groups of plant species, e.g., [37,39,41].

In contrast to long-term [9,42,43] or spatial variability [5,44,45], patterns of seasonal dynamics
of understory species composition and biomass in riparian forest is largely unknown. Our literature
review in Web of Science (string “(((((“biomass” AND (((understor* OR “herb layer”)) OR
“herbaceous”)) AND ((dynami* OR season*) OR “time seri*”))) AND ((riparian OR riverine) OR
floodplain)))” searched 23 May 2018) revealed 111 studies. Some studies revealed interesting
information about herbaceous plant decomposition [46] or biomass of non-forest vegetation [47,48] or
forest vegetation [40,49]. However, only two studies focused on the seasonal dynamics of herbaceous
biomass. Mabry et al. [50] assessed differences in floodplain forest understory at only two dates (spring
versus summer) and Dunham [51] assessed biomass dynamics of perennial grasslands in the Zambezi
floodplain woodland. Moreover, some authors studied biomass seasonality of individual understory
plant species [26,41,52]. Therefore, there is no information about full seasonal dynamics of understory
biomass in temperate zone floodplain forests. Thus, we aimed to assess seasonal dynamics of biomass
and species composition of understory vegetation in degraded and non-degraded floodplain forests,
to improve our understanding of carbon pools and biodiversity in forest ecosystems. We hypothesized
that a degraded and non-degraded floodplain forest will differ in its pattern of seasonal variability of
biomass and species composition [49], due to former usage, presence of alien species and differences in
tree stand composition [25,36,38]. We also hypothesized that temperature and light availability drive
biomass production and species composition.

2. Materials and Methods

2.1. Study Area

The study was conducted in a floodplain forest of the Warta River Valley in Poznań (W Poland,
52◦24′ N; 16◦57′ E). The climate of Poznań is transitional between maritime and continental with mean
annual temperature of 8.4 ◦C and mean annual precipitation of 521 mm for 1951–2010 [53]. Typical
vegetation types in floodplain forests are chracterized by Salix alba L. and S. fragilis L. (Salicetum albae),
with Populus alba L. (Populetum albae), with Ulmus minor Mill. and Quercus robur L. (Querco-Ulmetum
minoris). Floodplain forests occur in a complex mosaic with deciduous forests dominated by Q. robur,
Tilia cordata Mill. and Carpinus betulus L. (Galio sylvatici-Carpinetum), as well as Pinus sylvestris L.
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plantations and stands of invasive Acer negundo L. Non-forest vegetation types occur in the form of
meadows, reeds and grasslands [4,54].

We undertook our study in floodplain forest dominated by Q. robur and U. minor (Querco-Ulmetum
minoris). This type of floodplain forest usually occurs along the slopes of the river valley that are
not frequently flooded (less than once per decade). The tree canopy is dominated by Q. robur and
U. minor and the understory is composed of species typical to both floodplain forests and non-flooded
hardwood forests [55]. We conducted field reconnaissance in the study area to locate two potential
study plots (Figure S1). The criteria for study plots were understory homogeneity, an area of at least
1000 m2 to provide a representative area for at least 20 sampling dates without double sampling of
the same point and a buffer zone to prevent edge effects (if possible). The number of sample plots
was limited by the high labor demand for sampling during the first dates (i.e., 10 h for each of 10
people for both plots). Although the low number of plots (two) does not meet the criteria for spatial
replicability, our study provides unique insight into seasonal dynamics of understory biomass via
quantitative assessment of biomass throughout the growing season. Also other studies conducted in
single sites may provide an unique opportunities for studying time series of biological phenomena,
such as wood increments, phenology or functional traits variability (e.g., [26,56,57]). We are conscious
that our conclusions are limited to the study area and extrapolation of our findings to other floodplain
forests is limited; however, the temporal nature of our study could provide insights understanding
short-term plant community dynamics and the influence of disturbance on them in floodplain forests
in the region.

We established two study plots: degraded (20 m × 60 m) and non-degraded (30 m × 65 m).
Borders of the study plots were marked at the time of the study. The study plots differ in distance
to the river valley (though both are rarely under impact of the river; Figure S1) and vegetation
structure (Table S1). The degraded plot was characterized by a higher proportion of alien species
in both overstory and understory, higher proportions of cosmopolitan and forest edge species in
the understory, lower canopy closure and higher proportion of alien species, both in overstory and
understory. The classification of plots as degraded or non-degraded plots was based on vegetation
surveys of riparian forests in the study area [4,54]. Tree stand basal area was 31.72 m2 ha−1 in the
degraded plot (dominants: Q. robur 59.3% and Tilia cordata + T. platyphyllos 22.3%) and 27.47 m2 ha−1

in the non-degraded plot (dominants: Ulmus spp. 59.3% and Q. robur 38.1%; Figure S2). Both plots
were located within the same soil type–alluvial soils, typical of river valleys. Mean topsoil pH (0–10 cm
depth, five samples per plot) was 6.79 ± 0.34 in the degraded plot and 6.23 ± 0.09 in the non-degraded
plot. Mean leaf litter masses, assumed as proxy for matter cycling rate [58], collected in April were
7056.57 ± 170.06 kg ha−1 and 7788.82 ± 229.28 kg ha−1, respectively.

2.2. Data Collection

We sampled aboveground biomass at 22 dates. At each date, from each plot, we collected
10 circular samples with an area of 0.16 m2. The first harvest date was 19 March 2016, the last–26
November 2016. Due to rapid changes of understory vegetation during spring, the first eight harvests
were conducted at weekly intervals, and further harvests were conducted every two weeks. In total,
we collected 440 samples of understory biomass.

Sample locations were randomly selected by throwing a circular frame within the study plots.
In cases where the frame landed on a previously sampled point, dense shrub layer or animal paths, we
repeated the throw, to avoid impact of these factors. We harvested aboveground parts of all plants
rooted within the frame. If a particular plant was partially within the frame, but the root was outside,
the plant was not harvested. Using this method, we assumed that biomass of plants rooted outside
the frame and partially covering the frame was equal to the biomass of plants rooted inside the frame
and partially covering area outside the frame [27]. In cases of natural regeneration of trees and shrubs,
we harvested only individuals <0.5 m height (assumed as a threshold between understory and shrub
layer). Harvested plants were separated into species in the field, under supervision of the authors
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(NC and MKD) and placed into paper envelopes. All specimens were dried in an oven with forced
air circulation at 65 ◦C (ULE 600, Memmert GmbH + Co. KG, Schwabach, Germany), to a constant
mass. Then, plant material was weighed using BP 210 S (Sartorius, Göttingen, Germany) scales, with
an accuracy of 0.001 g. When the scale showed 0.000 g we assumed that the mass was 0.0005 g.

For forest floor temperature measurements, we used HOBO U23-001 (Onset Computer Corporation,
Bourne, MA, USA) loggers, mounted at the soil surface in the center of each study plot. The loggers
registered temperature each hour from 19 March 2016 to 26 November 2016 (Figure 1a). As a light
availability proxy, we used a diffusive non-interceptance radiation measure (DIFN). At each study plot
and each of the ten dates (Figure 1), we took six series of 20 measurements at randomly selected points.
DIFN was measured using an LAI-2200 (Li-Cor Inc., Lincoln, NE, USA). In total, we measured DIFN
10 times, each second harvest of biomass (from 1 April 2016 to 26 November 2016; Figure 1b, Table S2).
Then, for each harvest date, we interpolated DIFN as mean value of previous and next dates.
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2.3. Data Analysis

For each plant species we determined their Ellenberg’s ecological indicator values (EIV) [59]
and life forms from BiolFlor [60]. EIVs describe species responses to ecological gradients using
a nine-degree scale (with an exception of moisture which uses a 12-degree scale). An exception
was Glechoma hederacea L., which we classified as hemicryptophyte because this species exhibited a
hemicryptophyte life form in the study area rather than a geophyte (listed in BiolFlor). To assess
differences of biomass crop between study plots, for each date we used t-tests, while differences
among study dates were assessed using a generalized additive models (GAMs), using Julian day as an
independent variable. GAMs were implemented in mgcv::gam() function [61]. We also used GAMs to
assess influence of date on species richness. All mean values were followed by standard error (SE).

To analyze differences in species composition of understory biomass, we used a Detrended
Correspondence Analysis (DCA). This analysis was used due to long environmental gradients
(>3 standard deviations), which in cases of analyses assuming linear (PCA) or short unimodal (CA)
gradients could generate artifacts (arch or horseshoe effects). A DCA was performed using the
vegan::decorana() function [62]. DCA is a method of ordination of points representing species and sites
within reduced space of species. Instead of large, species number-dimensions space, a DCA provides
few axes expressing main dimensions of species composition change across samples. In our study,
each sample was a species composition of understory biomass in particular date in particular plot.
Using vegan::envfit(), we passively (not affecting species and site scores) fitted vectors representing
proportion of main life strategies in biomass, weighted by species biomass EIVs and environmental
parameters–DIFN and forest floor temperature. Statistical significance and coefficients of determination
were assessed using a permutation test (999 iterations). These vectors show the direction of parameters
changes within ordination space, i.e., whether points representing particular sites (i.e., plots and dates)
had low or high values of a particular parameter. To assess the direct relationships between understory
biomass, vegetation type (plot name), mean temperature of the previous two weeks before harvest
and DIFN, we used linear regression. We assessed models using the Akaike Information Criterion to
choose the most informative model. All analyses were conducted using R software [63].

3. Results

3.1. Seasonal Dynamics of Biomass

Our study revealed statistically significant differences both among study dates and study plots
(Table S3; Figure 2). Collection date explained 32.5% and 35.7% of variance, in non-degraded (estimated
degree of freedom = 5.19, F = 16.85, p < 0.001) and degraded plots (estimated degree of freedom = 6.79,
F = 15.66, p < 0.001), respectively. Mean aboveground biomass of understory in the degraded plot was
444.73 ± 10.54 kg ha−1 and was higher than biomass of the non-degraded plot (398.48 ± 9.32 kg ha−1).
In the degraded plot, the highest biomass crop was on 24 April (930.12 ± 48.70 kg ha−1) and the
lowest was on 26 November (74.85 ± 4.83 kg ha−1). In the non-degraded plot, we found the highest
biomass crop on 30 May (768.99 ± 40.65 kg ha−1) and the lowest on 19 March (80.92 ± 3.14 kg ha−1).
Culmination of biomass crop in the non-degraded plot was 35 days later than in degraded plot.
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Figure 2. Changes of understory biomass (mean ± SE) across the growing season 2016 and GAMs
showing relationship between biomass and date (dashed lines represent the range of model SE).

3.2. Dynamics of Species Richness

During the whole study we found 78 plant species (including 56 herbaceous and 23 woody species).
At the single sample level (0.16 m2) species richness ranged from 2 to 19 species (Figure S3). However,
only a few species occurred at high frequency (>40% of samples): Chaerophyllum temulentum L. (found
in 283 samples), Alliaria petiolata L. (280), Impatiens parviflora DC. (239), Glechoma hederacea (179), and
Viola odorata L. (178). The largest differences in species richness was found in the degraded plot on 15
April 2016: species richness ranged from 7 to 17. The lowest richness was on 26 October: from 3 to 5
species. Mean species richness per sample was 8.84 ± 0.02. In the non-degraded plot we found the
highest variability of species richness per sample on 13 May (5 to 15 species), and the lowest on 19
March (4 to 6 species) and on 11 November (2 to 4 species). Mean species richness per sample was
5.99 ± 0.01. Analyzing species richness for all samples from each date, we found that mean species
richness in the degraded plot was 21.31 ± 0.22 and in non-degraded—19.23 ± 0.29 (Figure 3). Species
richness in the degraded plot ranged from 12 (11 November) to 29 (24 April) and in the non-degraded
plot–from 9 (26 November) to 33 (13 May). In both plots we confirmed statistically significant change
of species richness over time with peaks at the spring. However, the peak was more clear in degraded
(estimated degree of freedom = 5.29, F = 9.37, p < 0.001, R2 = 0.74) than non-degraded plot (estimated
degree of freedom = 3.86, F = 4.28, p = 0.011, R2 = 0.47).
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3.3. Dynamics of Life Form Proportions

At the beginning of the study (19 March; Figure 4), we found the highest proportion of
phanerophytes (51%) and geophytes (23%) in the degraded plot. From 24 March to 29 April geophytes
comprised over 45% of aboveground biomass in the understory with the proportion of therophytes
increasing until August where they comprised 30% of plant biomass. The proportion of phanerophytes
ranged from 9% (15 April) to 51% (19 March). The proportion of hemicryptophytes increased from
30% on 24 June reaching 68% on 14 October (Figure 4).

In the non-degraded plot at the beginning of the study (19 March) proportions among all life
forms groups (phanerophytes, geophytes, hemicryptophytes, therophytes) ranged from 15% to 25%.
At the first three dates (up to 1 April), we noticed an increase in proportion of geophytes from 23%
to 54%. Then, on 24 April it was slightly over 40% and started decreasing. Maximal proportion of
phanerophytes reached 26% (26 November) and that for therophytes was 21% (10 June). Understory
biomass was dominated by hemicryptophytes, the proportion of which exceeded 30% from 24 April
until the end of the study. Their highest proportion occurred on 14 October (84%). From 30 May to 11
November hemicryptophytes compromised over 50% of understory biomass.
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Figure 4. Proportion of biomass of species from life strategies: phanerophytes (woody species > 0.5 m
height), geophytes (perennial species with regeneration buds belowground), hemicryptophytes
(perennial species with regeneration buds at the ground level) and therophytes (annual species).

3.4. Impact of Environmental Factors on Understory Biomass Species Composition Dynamics.

The DCA revealed that environmental factors influenced understory biomass species composition
and seasonal dynamics in each plot differently (Figure 5, Table 1). The two plots were strongly
separated in ordination space; the main direction of compositional shifts during the growing season
in degraded plots followed the DCA1 axis, i.e., points representing earlier dates were located in
lower part of the DCA space while later dates were located in higher parts. In contrast, changes
in the non-degraded plot understory followed the DCA2 axis. However, in both plots, points
representing the first and last dates were closer than points representing intermediate dates. The vector
representing proportion of phanerophytes was directed into the part of ordination space occupied by
the degraded plot, where its proportion was higher than in the non-degraded plot, similar to vectors
representing proportions of alien species and therophytes. The vector representing moisture EIV was
directed into the ordination space occupied by the non-degraded plot, indicating higher values of
moisture EIV. Vectors representing day of year, proportion of hemicryptophytes, species richness, DIFN
and proportion of geophytes were directed along the DCA2 axis, indicating the seasonal dynamic
within both plots. We found that DCA2 axis was negatively correlated with vectors representing
species richness, DIFN and proportion of geophytes, while positively with Julian day of the year and
proportion of hemicryptophytes.
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Figure 5. Result of Detrended Correspondence Analysis (DCA) for each study plot and study date.
Each point represents pooled biomass from 10 samples. The big dots represent the first and last harvest,
and the lines subsequent harvest dates. Eigenvalues: DCA1 = 0.7204, DCA2 = 0.3935. Abbreviations
and fitting parameters of vectors are given in Table 1.

Table 1. Parameters of environmental variables fitted to the DCA analysis.

Parameter Abbreviation DCA1 DCA2 R2 p

Day in year day 0.28602 0.95822 0.6060 0.001
Temperature temp 0.07346 0.99730 0.1524 0.065
DIFN DIFN −0.27537 −0.96134 0.4247 0.001

Proportion of life forms
- phanerophytes lf_ph −0.65970 0.75153 0.6717 0.001
- geophytes lf_g 0.15727 −0.98756 0.7070 0.001
- hemicryptophytes lf_h 0.31312 0.94971 0.7278 0.001
- therophytes lf_t −0.97844 −0.20653 0.3683 0.002

Ellennberg’s ecological indicator values
- soil fertility N 0.74511 0.66694 0.0876 0.216
- moisture M 0.72399 −0.68981 0.6979 0.001
- soil reaction SR 0.27500 −0.96144 0.0473 0.466
Shannon diversity index shan −0.74938 −0.66214 0.4589 0.001
Species richness rich −0.44518 −0.89544 0.2129 0.023
Proportion of alien species alien −0.92770 −0.37331 0.3378 0.002

An analysis of temperature and DIFN impacts on biomass revealed a quadratic relationship with
DIFN and linear relationship with temperature of the last two weeks (R2 = 0.248; Table 2). Type of
vegetation (difference between study plots) was not included in the final model.
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Table 2. Linear regression model of understory biomass.

Parameter Estimate SE t Value Pr (>|t|)

(Intercept) −349.930 241.110 −1.451 0.155
mean temperature of previous two weeks 43.860 12.190 3.597 0.001

DIFN2 −5155.920 2373.290 −2.172 0.036
DIFN 3158.170 1322.740 2.388 0.022

AIC = 563.001; AIC of null model (intercept-only) = 601.502, R2 = 0.248.

4. Discussion

4.1. Limitations of the Study

Our study seemed to suffer from a lack of replicability–each forest type was represented only
by one large study plot, where subsamples were randomly selected. However, numerous studies
based on only one study site often provide unique results, which are crucial for further studies. Such
examples are phenological observations, tree ring research or detail spatial analyses of forest structures
(e.g., [56,57,64]). Although it is not possible to infer results for all floodplain forests, even floodplain
forests representing the Querco-Ulmetum minoris plant association. Potential replication treatments
would need to cover forests with similar light availability and tree stand species composition, as well as
distance from river and elevation. Lower number of samples could be applied to increase the number
of study plots. In our opinion, if one expanded the number of plots, one could decrease the number
of samples to six. On the other hand, biomass dynamics studies demand high amounts of labor in
both the field and the lab. For that reason, other studies are also usually limited in number of plots,
e.g., [50] with eight 0.25 m2 plots at two dates. Another sampling limitation is a necessity for a large
homogenous area, which allows for both random sampling at each date, as well as preventing edge
effects and random disturbances. Despite these drawbacks, according to our knowledge and searched
literature data, we provided the first data about seasonal dynamics of biomass in floodplain forests.

4.2. Biomass Crop and Its Change over Growing Season

Our study revealed differences between study dates and study plots. Previous studies on
dynamics of biomass production usually confirmed this effect [27,28], however, see [41] for an
exception. In our study, the culmination of understory biomass crop lasted from the end of April to
the end of June, despite compositional shifts. This indicates the high rate of matter cycling [23,24].
Additionally, other studies reported high biomass crops in floodplain ecosystems. For example,
riparian forests in northern France and Belgium had median biomass of 80–90 kg ha−1 [65], which
did not differ along a flooding gradient. Canadian floodplain forest summer understory biomass
varied among tree stand types and ranged from 2640 (beneath Betula populifolia Marsch.) to 30 kg
ha−1 (beneath Thuja occidentalis L.) [36]. In a Quercus alba L. and Q. rubra L. floodplain forest in
Iowa, USA, spring and summer biomasses were 600.0 and 981.2 kg ha−1, respectively, whereas in a
Celtis occidentalis L. -Juglans nigra L. -Prunus serotina Ehrh. forest they were 228.8 and 241.2 kg ha−1,
respectively [50]. In the Sierra Madre mountains (Wyoming, WY, USA), herbaceous understory biomass
ranged from 0.4 to 2 kg ha−1 [40]. In an Amazonia riparian forest, understory biomass was estimated
at 400–1800 kg C ha−1 [49], which, assuming carbon content of 50% of biomass, corresponded to
800–3600 kg ha−1. Thus, the mean biomass of understory provided by our study is comparable
with other studies on riparian forests understory biomass worldwide. For comparison, deciduous
forests from European countries (including alluvial forests) varied in understory biomass from 1 to
2868 kg ha−1, depending on soil pH and tree layer cover [38].
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Other studies describing seasonal dynamics also showed an increases in herbaceous biomass
in the spring. Tremblay and Larocque [41] found low seasonal dynamics of understory biomass in
four types of forests. However, this resulted from high proportions of woody species in biomass in
the cited study. Seasonal dynamics of biomass revealed by us resembled those of hardwood forests
with Quercus robur, Carpinus betulus and Tilia cordata [27,28]. These dynamics were driven by both
different dates of particular species emergence, as well as different seasonal dynamics of biomass
production [26,30,41]. The latter is also connected with increasing foliage efficiency (higher specific
leaf area) when light availability decreases [26]. Additionally, Axmanová et al. [38] revealed a negative
correlation between light availability and understory biomass. However, they used cover of the tree
layer (estimated visually) instead of direct measurements.

4.3. Differences between Non-Degraded and Degraded Floodplain Forest

Our study revealed different compositional trajectories of understory biomass of degraded
and non-degraded floodplain forests. This is similar to Mabry et al. [50], who found almost three
times more differences in aboveground understory biomass between intact (higher biomass) and
disturbed floodplain forests in spring. However, these differences in summer were low and statistically
insignificant. In the cited study, higher spring biomass in the intact site was caused by the presence of
spring ephemerals. In our study, these plants were more present in the degraded forest. This was also
affected by the presence of Eranthis hyemalis Salisb.–a naturalized geophyte reaching high biomass in
March and April.

Differences in understory biomass between the forests studied (degraded versus non-degraded)
resulted from different species composition, which is driven by tree species. Different tree species
create different light availability [66], which also affects soil temperature and transpiration [31,67].
Ulmus spp. Especially, contributed to shading as they have a high leaf area index [62], which results in
lower light availability in the non-degraded forest (Figure 2). Despite the presence of shading, Tilia spp.
and Acer spp. in the degraded plot, lower canopy closure (Figure S2), caused higher light availability.
Tree species effects on understory biomass were also noted by other studies [36,38,41].

4.4. Dynamics of Life-Forms Proportions

Similar to our results, a study from Canadian forests [41] showed more or less constant proportions
of woody species in understory biomass. This may be connected with high emergence of seedlings with
low individual biomass and high mortality in spring [58]. The highest proportion of phanerophytes
at the beginning of our study may have resulted from the emergence of high number of woody
species seedlings.

The main source of variation in biomass was connected to the seasonal dynamics of the
geophytes (mostly spring ephemerals). This group is an important driver of biomass in other fertile
broadleaved forests. For example, in Małopolska (S Poland), the maximum understory biomass in
a Quercus-Carpinus-Tilia forest with geophytes reached up to 660 kg ha−1, whereas in Fagus sylvatica
forests without geophytes, it only reached 49 kg ha−1 [68]. This impact was also noted by other
authors [27,28,41]. The impact of therophytes was connected mainly with the occurrence of invasive
Impatiens parviflora, which is the most frequent alien species in European forests [69–71]. This species
reached the highest individual biomass between spring and summer [72,73].

5. Conclusions

Our study revealed highly dynamic species composition and biomass of understory vegetation in
floodplain forests over the course of the growing season. However, the amount of biomass was more
or less constant across the peak of the growing season, with larger changes occurring at the beginning
and end of the growing season. At the start of spring ephemerals contributed to high biomass
pool, however, this was a transient peak in biomass that did not persist across the growing season.
This dynamic influenced species composition shifts and small differences in biomass crop between



Forests 2019, 10, 22 12 of 16

constitutive dates. Additionally, we found differences in patterns of understory biomass dynamics
between degraded and non-degraded plots, connected with the lower proportion of spring ephemerals
and therophytes in the latter. The main understory biomass components comprised spring ephemerals
(mainly geophytes) contributing to quick biomass increments during spring and species present during
the whole season (mainly hemicryptophytes and woody species). We also quantified the impacts of
light availability and temperature on understory primary production. Biomass crops increased with
increasing light availability and temperature. Light availability also influenced species composition.

Although the inferences that can be made are limited due to the study design, they provide
a novel and important insight into understory primary production. Accounting for limitations in
inference, we may conclude that changes in understory biomass of floodplain forests are rapid and
contribute strongly to matter cycling in these ecosystems. For that reason, our study increased the
knowledge about carbon accumulation and cycling in floodplain forests [26,40,74]. The degradation
influences the pattern studied by alteration of understory species composition, especially proportion
of functional guilds.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/1/22/s1.
Figure S1: Locality of the study plots: a. locality at the background of satellite imaginary, b. locality of study
plots at the background of the borders of Poznań city (W Poland; 52◦24′ N; 16◦57′ E). Plot no. 1–degraded
floodplain forest, plot no. 2–non-degraded floodplain forest. Figure S2: Tree stand species composition–basal
area of particular tree species in tree stand layer (trees > 7 cm diameter at breast height). Figure S3: Boxplots
representing species richness per sample (10 samples per date). Box represents interquartile range, bar inside
box–median, whiskers–range of minimum and maximum excluding outliers (points). Table S1: Phytosociological
table for degraded and non-degraded floodplain forests at two dates and conducted in three 100 m2 subplots per
study plot. Plant communities represent the Querco-Ulmetum minoris association. Table S2: Seasonal variation in
DIFN among 22 dates and between plots. Differences among terms within each plot were assessed using one-way
ANOVA (dates marked with the same letters did not differ statistically significantly at p = 0.05). Differences
between study plots within the same date were assessed using t-test. Table S3: Seasonal variation in understory
biomass (Mean ± SE biomass (kg/ha)) among 22 dates and between plots. Differences between study plots within
the same date were assessed using t-test. Response variable was log transformed prior to analyses.
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study of the city of Plzeň. Flora 2003, 198, 366–376. [CrossRef]

12. Knapp, S.; Kühn, I.; Stolle, J.; Klotz, S. Changes in the functional composition of a Central European urban
flora over three centuries. Persp. Plant Ecol. Evol. System. 2010, 12, 235–244. [CrossRef]

13. Jarošík, V.; Pyšek, P.; Kadlec, T. Alien plants in urban nature reserves: From red-list species to future invaders?
NeoBiota 2011, 10, 27–46. [CrossRef]

14. Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and Flow Regulation of the World’s Large
River Systems. Science 2005, 308, 405–408. [CrossRef] [PubMed]

15. Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environm. Poll. 2011, 159, 1974–1983.
[CrossRef]

16. Swan, C.M.; Pickett, S.T.A.; Szlavecz, K.; Warren, P.; Willey, K.T. Biodiversity and Community Composition in
Urban Ecosystems: Coupled Human, Spatial, and Metacommunity Processes. In Urban Ecology; Breuste, J.H.,
Elmqvist, T., Guntenspergen, G., James, P., McIntyre, N.E., Eds.; Oxford University Press: Oxford, UK, 2011;
pp. 179–186. ISBN 978-0-19-956356-2.
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