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Abstract: Research Highlights: Improving the prediction accuracy represents a popular forest
simulation modeling issue, and exploring the optimal maximum entropy (MaxEnt) distribution
is a new effective method for improving the diameter distribution model simulation precision to
overcome the disadvantages of Weibull. Background and Objectives: The MaxEnt distribution is
the closest to the actual distribution under the constraints, which are the main probability density
distributions. However, relatively few studies have addressed the optimization of stand diameter
distribution based on MaxEnt distribution. The objective of this study was to introduce application
of the MaxEnt distribution on modeling and prediction of stand diameter distribution. Materials
and Methods: The long-term repeated measurement data sets consisted of 260 diameter frequency
distributions from China fir (Cunninghamia lanceolate (Lamb.) Hook) plantations in the southern China
Guizhou. The Weibull distribution and the MaxEnt distribution were applied to the fitting of stand
diameter distribution, and the modeling and prediction characteristics of Weibull distribution and
MaxEnt distribution to stand diameter distribution were compared. Results: Three main conclusions
were obtained: (1) MaxEnt distribution presented a more accurate simulation than three-parametric
Weibull function; (2) the Chi-square test showed diameter distributions of unknown stands can be
well estimated by applying MaxEnt distribution based on the plot similarity index method (PSIM)
and Weibull distribution based on the parameter prediction method (PPM); (3) the MaxEnt model
can deal with the complex nonlinear relationship and show strong prediction ability when predicting
the stand distribution structure. Conclusions: With the increase of sample size, the PSIM has great
application prospects in the dynamic prediction system of stand diameter distribution.

Keywords: stand diameter distribution; Weibull distribution; maximum entropy principle; parameter
prediction method; parameter recovery method; plot similarity index method

1. Introduction

The study of stand diameter distribution model provides a scientific basis for determining wood
types structure, the evaluation of forest resources and scheduling for future silviculture treatment [1–3].
Commonly, a diameter distribution model is used to provide information on the frequency distribution
of tree diameter at breast height (1.3 m) (DBH), an empirical height–diameter relationship is used to
estimate the average height per diameter class, and then stand volume can be computed using a tree
two-entry volume equation, and the DBH and height [3].

At present, a variety of probability density distribution functions have been used to describe the
stand diameter structure, such as normal distribution, lognormal distribution, beta distribution [4],
Johnson’s SB distribution [5], distribution and Weibull distribution [2,6–13]. These distribution
functions have demonstrated their respective advantages under different regional conditions and tree
types, among which the Weibull distribution function was characterized by great adaptability and
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flexibility, simple parameter estimation and obvious biological significance of parameters, and has
been widely used in the study of stand diameter distribution modelling [14–23]. The methods widely
used to estimate Weibull parameter distribution model have included the moment method, maximum
likelihood method, percentiles method and nonlinear regression method [20,24–26], in which the
application of nonlinear regression method showed its accuracy and stability [27]. In the dynamic
prediction of stand diameter distribution, the main methods have been parameter prediction method
(PPM) [27–30], parameter recovery method (PRM) [31–33] and generalized linear model [34–36].
However, there are some problems when Weibull is used to fit the diameter distribution data,
such as the iterated function of the three-parametric Weibull distribution not being easy to converge,
and the correlativity between the parameters estimates and the whole stand characteristics becoming
weak [37,38]. Thus, we wish to explore a new diameter distribution model that overcomes the
disadvantages of Weibull and has the advantages of high simulation precision.

Maximum entropy (MaxEnt) distribution is one of the most active machine learning methods
at present. Maximum entropy theory holds that under the action of no external force, the thing with
the maximum entropy is the closest to its real state. Maximum entropy statistical modeling selects
the distribution with the maximum entropy from the distribution meeting the conditions as the best
distribution maximum entropy model. The prominent advantage of the maximum entropy model is
that it can fit the complex response variables composed of multiple function types, and it only needs
the distribution data of a small sample to achieve an improved simulation effect [39,40]. At present,
MaxEnt distribution is mainly applied to macroecological patterns, including spatial distributions
of individuals within species, abundance distributions across species, and distributions of metabolic
rates, however, some studies also have shown that maximum entropy does not universally succeed in
predicting macroecological patterns [41–43].

Additionally, the problem concerning the diameter distribution model is the distribution of
diameter, which means to obtain the frequency distribution histogram or frequency distribution curve
of diameter. The content corresponds to the maximum information entropy principle in the study
of diameter distribution. When different distribution functions are used to describe the diameter
distribution, different information entropy will be obtained. Generally, under the constraint condition,
the distribution function with the largest information entropy is closest to the actual distribution.
Therefore, the maximum entropy principle is suitable for studying diameter distribution.

The objectives of this study were to explore the application of MaxEnt distribution on modeling and
prediction of stand diameter distribution and compare the properties of modeling and prediction for
stands diameter distribution between MaxEnt distribution and three-parametric Weibull distribution,
using the long-term repeated measurement data sets from China fir (Cunninghamia lanceolata) plantations
in southern China Guizhou. It is expected to provide a theoretical basis and technical support for
better development of Chinese fir plantation management in Guizhou.

2. Materials and Methods

2.1. Data

Data were obtained from the long-term repeated measurement data sets from China fir plantations
in Guizhou Province measured. Each plot area was 0.0667 ha, and the retest covers the sample plot
data and sample tree data. The main survey factors of the sample plot data included tree species,
origin, average age (AGE), average diameter at breast height (Dg), average tree height (H) and stand
density (N); the sample data was the diameter at breast height (DBH) and the volume of individual
tree in the corresponding sample plot data. The sample tree was measured after DBH reached 5.0 cm.
The diameter classes applied were 2 cm wide, and the number of trees of each diameter class was
counted respectively, calculating the cumulative percentage of each diameter class. Additionally,
the coefficient of variation (DBH_CV), skewness (DBH_SKEW) and kurtosis (DBH_KURT) of each
plot were calculated. The data consisted of 260 measurements, with a 5-year re-measurement interval,
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obtained in 2005 and 2010. In this study, 130 plots (in 2005) were used in the model development,
and another 130 plots (in 2010) for validation. Summary statistics for both data sets are presented in
Table 1.

Table 1. Statistics of stand variables.

Variables
Fit Data Validation Data

Min Max Mean SD CV Min Max Mean SD CV

AGE (years) 12 35 18 5.32 0.2956 17 39 22 4.76 0.2164
Dg (cm) 7.3 24.2 12.5 4.11 0.3288 7.9 26 14.3 4.63 0.3238
D (cm) 7.3 23.2 12.2 3.7 0.3033 7.8 25.9 13.6 4.25 0.3125
H (m) 4.6 19 10.2 3.51 0.3441 4.5 19 10.9 3.59 0.3294

N (trees·ha–1) 495 3493 1414 629.41 0.4451 480 3733 1440 588.02 0.4083

Note: D, arithmetic-mean diameter (cm); SD, standard deviation; CV, coefficient of variation.

2.2. Weibull Distribution of Stand Diameter

In this study, Weibull distributions with two and three parameters were selected to simulate the
diameter distribution of Chinese fir plantation, and the corresponding distribution function forms are
shown in Equations (1) and (2).

f (x; b, c) = 1− exp
[
−

(x
b

)c]
(1)

f (x; a, b, c) = 1− exp
[
−

(x− a
b

)c]
(2)

where, x corresponds to the diameter class value of the upper and lower limit intervals of the diameter
class; f (x) corresponds to the cumulative percentage of the number of trees of each diameter class;
a is the location parameter, referring to the downline of the smallest diameter class of the diameter
distribution; b is the scale parameter, b > 0; and c is the shape parameter, c > 0.

Based on the distribution function, the formulas of tree number for different diameter classes (3)
(4) can be deduced.
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)c]}
(4)

where, ni is the number of trees of diameter class i of the stand; N is the number of trees per unit area
of the stand, trees·ha–1; Ui and Li are the upper and lower limits of diameter class i of the stand.

Weibull distribution parameter estimation can be solved by a variety of mathematical methods.
The nonlinear regression method in SAS software can seek the optimal solution of model parameters
through multiple iterations. This method is selected in this study and Marquardt is chosen as the
iterative method.

2.3. MaxEnt Distribution of Stand Diameter

The maximum entropy principle is applied to the distribution of stand diameter. The maximum
entropy model of stand diameter aims to seek the distribution where entropy reaches the maximum
value under certain constraint conditions:

maxS(p) = −
n∑

i=1

pi ln(pi) (5)

s.t.
∑n

i=1
pidi

(k) = dk (k = 1, 2, , m) (6)
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n∑
i=1

pi = 1 (7)

where i is the order number of diameter class, k = 1,2, . . . ,n; n is the number of diameter classes; pi is
the tree number probability in the ith diameter class of stand; di is the diameter class value in the ith
diameter class of stand; k is the order number of the origin moments of diameter classes, k = 1,2, . . . m;
m is the number of the origin moment of diameter class, and is also the highest order of the origin
moment; di

(k) is the number of trees of diameter class i at origin moment k; dk is the expected value of

the origin moment k, dk =
n∑

i=1
pidi

(k).

The central task of the maximum entropy model is to find out the method of determining pi.
Since entropy function S is a concave function, it can be transformed into a convex programming
problem with separable variables, according to the duality theory of mathematical programming,
and then the global optimal solution of its closed form can be obtained through the standing value
condition of the Lagrange function. Under the constraints of Equations (6) and (7), the maximum of
Equation (5) is solved by Lagrange multiplier method. First, the left side of Equation (6) is multiplied
by λk, and the left side of Equation (7) is multiplied by λ−1, and then these resulting expressions are
added. Then the sum is subtracted from Equation (5) to obtain Lagrange function, Equation (8).

L(p, u) = −
n∑

i=1

pi ln
(
pi

)
− (λ− 1)

n∑
i=1

pi −

m∑
k=1

λk

 n∑
i=1

pidi
(k)

 (8)

The first order partial derivative of pi is obtained by using Lagrange function Equation (8),
and when it is equal to zero, Equation (9), and Equation (10) are obtained. By combining Equations
(10), (2) and (3), then Equations (11) and (12) can be obtained. Equation (12) is a system of non-linear
equations about λk, and the numerical method is used to solve λk. Equation (11) is substituted by λk to
get λ, Equation (10) is substituted by λk and λ to get pi, and Equation (5) is substituted by pi to get S,
thus completing the task of solving pi and S.

∂L
∂pi

= −1− ln(pi) − λ+ 1−
m∑

k=1

λkdk
i = 0 (9)

where λ, Lagrange multiplier; λk, k-order moment coefficients.

pi = exp

−λ− n∑
i=1

(
λkdk

i

) (10)

λ = ln
(∑n

i=1
exp(−

∑m

k=1
(λkdk

i ))
)

(11)

n∑
i=1

exp
(
−

m∑
k=1

(
λkdk

i

))
∗

(
dk

i − dk
)
= 0 (12)

In the problem of determining the value of m, if the value of m is small, the constraint equations
are few and the calculation amount is small, but the constraint conditions described may not be
comprehensive enough. If the value of m is large, there are many constraint equations, and the
constraint conditions described are relatively comprehensive, but the computational work is large.
When m is large enough, its contribution to the accuracy of the description model becomes smaller
and smaller. Therefore, exploring the value of m can, not only make the model accurately describe the
actual distribution, but also make the calculation amount moderate. Considering that the minimum
number of sample diameter class interval in this paper was 6 (MIN (sample size) = 6), the maximum
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number of model parameters was 5 when fitting. In this paper, the range of m from 1 to 4 was explored.
The diameter distribution model corresponding to m = 1 to 4 and its parameters are given in Table 2.

Table 2. Maximum entropy (MaxEnt) model of stand diameter distribution.

m Value Model Parameter

m = 1 pi = exp(−λ− λ1d1
i ) λ, λ1

m = 2 pi = exp
(
−λ− λ1d1

i − λ2d2
i

)
λ, λ1, λ2

m = 3 pi = exp
(
−λ− λ1d1

i − λ2d2
i − λ3d3

i

)
λ, λ1, λ2, λ3

m = 4 pi = exp
(
−λ− λ1d1

i − λ2d2
i − λ3d3

i − λ4d4
i

)
λ, λ1, λ2, λ3, λ4

The algorithm flow of solving parameters is as follows: Step1, take m = 3 as an example,
the corresponding MaxEnt model pi = exp

(
−λ− λ1d1

i − λ2d2
i − λ3d3

i

)
, the model is fitted using SAS

PROC MODEL (SAS Institute 2010), the estimates coefficients of each plot are λ, λ1, λ2 and λ3;
Step2, taking λ1, λ2, λ3 as initial values, the numerical solution of the system of non-linear

Equations (13) are solved, the predicted values of the parameters are PREλ1, PREλ2 and PREλ3;

n∑
i=1

exp
(
−λ1d1

i − λ2d2
i − λ3d3

i

)
∗

(
d1

i − d1
)
= 0

n∑
i=1

exp
(
−λ1d1

i − λ2d2
i − λ3d3

i

)
∗

(
d2

i − d2
)
= 0

n∑
i=1

exp
(
−λ1d1

i − λ2d2
i − λ3d3

i

)
∗

(
d3

i − d3
)
= 0

(13)

Step3, substitute PREλk (λ1, λ2 and λ3) into Equation (11) to obtain PREλ. Step4, substitute PREλk
and PREλ into Equation (10) to get pi prediction formula.

The obtained parameters are substituted into Equation (10), and the theoretical probability value is
obtained. In other words, the theoretical probability distribution is obtained. The diameter distribution
model is obtained by Chi-squared test of the theoretical distribution.

2.4. Dynamic Prediction of Stand Diameter Distribution

In the dynamic prediction of stand diameter distribution in this paper, the Weibull diameter
distribution results were predicted by the PPM and the PRM. The MaxEnt diameter distribution used
the PPM and the PSIM to realize the prediction of the unknown stand diameter distribution.

When the PPM was applied, two cases were considered: (1) the regression relationship between
the parameters and 8 factors including stand characteristic factor (t, D, Dg, H and N) and stand DBH
characteristic factor (DBH_KURT, DBH_SKEW and DBH_CV) was established; (2) the regression
relationship between the parameters and 5 stand characteristic factors (t, D, Dg, H and N). By stepwise
regression analysis, the parameter prediction model was established.

When the PRM was applied, the following two key parts are implemented: First, with the help
of key points on the distribution curve, the recovery equation of model parameters was established.
The three parameter recovery equations are shown below:

0.333 = 1− exp
{
−[(D0.333 − a)/b]c

}
DI = b

(
1− 1

c

) 1
c + a

0.9 = 1− exp
{
−[(D0.9 − a)/b]c

} (14)

Second, the correlation equation of stand factor and diameter at key points on the distribution
curve (recovery model) were established. Relevant studies [44,45] have shown a power function
relationship between the diameter of the key points and Dg, so Equation (15) was used to estimate
the diameter of key points in this paper. Therefore, the diameter of the key points was calculated by
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using the Equation set (14), and the regression relationship between them and the stand factor was
established to form a complete prediction system. If the stand factor is known, the prediction of the
diameter distribution of the unknown stand can be realized:

Di = mDn
g (15)

where Di refers to the corresponding diameter of the key point i, the three key points are 0.333, 0.9 and
the longitudinal coordinates of the inflection point of the equation; D0.333 D0.9 and DI are the diameters
corresponding to the key points; m and n are the parameters to be estimated.

According to the characteristics of maximum entropy model belonging to the machine learning
algorithm, this paper presents a dynamic prediction method of stand diameter distribution by plot
similarity index method. The idea is to find a similar sample plot in the fitting data set, match
the prediction parameters of the unknown stand diameter distribution, and realize the prediction
of the unknown stand diameter distribution. Since skewness and kurtosis can evaluate the shape
characteristics of stand diameter distribution, the variation coefficient can indicate the diameter
distribution range. Equation (16) was used to calculate the similarity index of two places through these
three variables. For each plot in the test data set, put the corresponding value into Equation (16) to
calculate the similarity index of plot, and seek the minimum value, and the corresponding plot is the
similar plot. In this way, the maximum entropy model parameters of similar plots were used to predict
the diameter distribution of stands in the test data:

PSI =
√
(DBH_KURTF −DBH_KURTV)

2 + (DBH_SKEWF −DBH_SKEWV)
2 + (DBH_CVF −DBH_CVV)

2 (16)

where, PSI represents the similarity index of the diameter class distribution of the two plots;
DBH_KURTV, DBH_SKEWV and DBH_CVV represent the kurtosis, skewness and coefficient of
variation of a plot in the validation data set; DBH_KURTF, DBH_SKEWF and DBH_CVF represent the
kurtosis, skewness and coefficient of variation of a plot in the fit data set.

2.5. Comparison of the Models

The application effect of two-parametric and three-parametric Weibull function was examined
by comparing the residual sum of square (RSS) and coefficient of determination (R2). The results of
maximum entropy model fitting were tested by RSS and mean square error (MSE).

RSS =
n∑

i=1

(yi − ŷi)
2 (17)

R2 = 1−

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − yi)

2 (18)

MSE =
1
n

n∑
i=1

(yi − ŷi)
2 (19)

where, yi is the observed value for the ith observation, ŷi is the predicted value for the ith observation,
yi is the mean of the yi, and n the number of observations in the dataset.

We used the Chi-squared (χ2) [3,6,7,9–11,21–23] and Fisher’s test as goodness-of-fit measures for
the diameter distribution estimations that an estimated distribution corresponds to the real distribution.
P-values of less than 0.05 were considered statistically significant. According to the total sample size of
each plot (n) and the theoretical number of each diameter class (T), the following three situations can
be divided [46]:
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1. When T ≥ 5 and n ≥ 40 then Pearson Chi-square was used.

χ2 =
dmax∑

j=dmin

(di − d̂i)
2

d̂i
(20)

2. When T< 5 but T ≥ 1 and n ≥ 40 then the Chi-square of continuity correction was used.

χ2 =
dmax∑

j=dmin

(∣∣∣di − d̂i
∣∣∣− 0.5

)2

d̂i
(21)

3. When T< 1 or n< 40 then Fisher’s test was used.

where, di is the observed diameter class value in the ith diameter class of stand; d̂i is the estimated
diameter class value in the ith diameter class of stand; in accordance with the reliability α = 0.05,
if χ2 < χ2

0.05, the distribution status of the current stand data was consistent with the corresponding
distribution function.

Using the Wilcoxon’s nonparametric ranked sum (or Mann–Whitney–Wilcoxon, MWW) test,
we can decide whether the population distributions are identical without assuming that they follow
the normal distribution [47]. It is also an effective goodness-of-fit measure for the diameter distribution
estimations. A two-sided probability value of less than 0.05 was considered to be statistically significant.
The statistical analysis was performed in SAS PROC NPAR1WAY (SAS Institute 2010).

3. Results

3.1. Modeling Results of MaxEnt Distribution and Weibull distribution

Table 3 shows the mathematical characteristics of parameters and statistics for MaxEnt distribution
and the Weibull distribution derived from the 130 plot measurements. For Weibull distribution,
the estimates of parameters were all greater than 1 (>0), which was identical to the empirical
distribution range mentioned in Equations (1) and (2). The small floating range of parameter a, b or
c showed that these parameters were both stable. Although the precision of the two models were
both high, the three-parametric Weibull distribution presented a more accurate simulation than the
two-parametric Weibull function, in view of RSS and R2. For the MaxEnt distribution equation, it can
be seen from the RSS and MSE that the fitting results of the two-parameter MaxEnt model (m = 1) and
the three-parameter MaxEnt model (m = 2) were poor, and that the fitting results of the four-parameter
MaxEnt model (m = 3) and five-parameter MaxEnt model (m = 4) were good.

Table 3. The mathematical characteristics of parameters and statistics for Weibull distribution and
MaxEnt distribution derived from the 130 plot measurements.

Equations
The Range of Parameters RSS R2

a b c Range Mean Range Mean

Weibull (2 parameters) —- 7.6686–20.7509 1.5408–5.0178 0.0001–0.0243 0.0067 0.9592–0.9998 0.991
Weibull (3 parameters) 0.0133–5.4343 2.4871–14.6102 0.7116–4.2106 0.0001–0.013 0.0029 0.9866–0.9999 0.9962

Equations
The range of parameters

RSS MSE
λ λ1 λ2 λ3 λ4

MaxEnt (m = 1) −0.9300–2.9833 −0.0329–0.2929 — — — 3.6593 0.0031
MaxEnt (m = 2) −1.6946–18.4703 −2.7981–0.4815 −0.0107–0.1129 — — 1.2810 0.0011
MaxEnt (m = 3) −43.3154–30.9342 −4.7104–15.2403 −1.6574–0.4722 −0.0142–0.0583 — 0.9135 0.0008
MaxEnt (m = 4) −69.0675–144.4718 −63.0193–27.2593 −3.7168–10.0934 −0.6991–0.2128 −0.0044–0.0177 0.5794 0.0005

To further evaluate the fitting effect of Weibull distribution and MaxEnt distribution of stand
diameter distribution of Chinese fir plantation, the estimated diameter distributions were compared
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with the observed diameter distributions using χ2 + Fisher’s test (p = 0.05) and MWW test in Table 4.
MWW test showed the four equal acceptance rate 100%, which roughly concluded that the observed
and estimated diameter class values of each sample plot were not significantly different, and their
population distributions were identical without assuming that they followed the normal distribution.
As for χ2 + Fisher’s test, results indicated that the acceptance rate of the four distribution equations
reached 90%, which showed that the simulated stand diameter distribution of Chinese fir plantation was
good, and that the MaxEnt distribution was better than the Weibull distribution. The three-parameter
Weibull distribution was slightly better than the two-parameter weibull distribution. In the MaxEnt
distribution, the four-parameter (m = 3) and five-parameter (m = 4) had the same highest acceptance
rate (95.38%). Under the same acceptance rate, a four-parameter maximum entropy distribution model
with few parameters was selected.

Table 4. Acceptance statistic of Weibull distribution and MaxEnt distribution of fitted results for
130 plots.

Equations Total Number χ2 + Fisher’s Test
Acceptance (%)

MWW Test
Acceptance (%)

Weibull (2 parameters) 130 90.00% 100%
Weibull (3 parameters) 130 92.31% 100%

MaxEnt (m = 3) 130 95.38% 100%
MaxEnt (m = 4) 130 95.38% 100%

3.2. Analysis of Dynamic Prediction Results of Stand Diameter

3.2.1. Weibull Distribution Prediction Effect of PPM and PRM

Analyzing the relationship between parameters a, b, c and stand factors, the relevant literature [46]
has shown that the Pearson coefficient is more convincing when measuring the linear correlation
between variables, while the Spearman coefficient is typically used to measure the non-linear correlation
between variables. Table 5 shows the Pearson correlation coefficient and the Spearman correlation
coefficient of three parameters Weibull and stand factors. Results indicate that parameter a had a
significant correlation with stand density (N), skewness (DBH_SKEW) and the coefficient of variation
(DBH_CV), and the linear relationship of N was greater than the non-linear relationship. The parameter
b was highly correlated with stand age (AGE), average diameter at breast height (Dg), arithmetic mean
diameter (D) and stand average height (H), and the nonlinear correlation with Dg and D reached more
than 80%. The correlation between parameter c and stand density N was not significant at 0.05 level,
but significant for other stand factors.

Table 5. Pearson correlation coefficient and Spearman correlation coefficient between parameters and
stand factors.

Parameters Correlation
Stand Factors

AGE Dg H N P_DBH DBH_KURT DBH_SKEW DBH_CV

a Pearson −0.07289 −0.18313 −0.20914 −0.4309 *** −0.01966 0.2400. 0.3599 ** 0.3102 *
Spearman −0.0727 −0.2524. −0.1916 −0.4215 ** −0.1146 0.2422. 0.3640 ** 0.3282 *

b
Pearson 0.4073 ** 0.7894 *** 0.7521 *** 0.12525 0.8441 *** −0.3430 ** −0.5225 *** −0.3997 **

Spearman 0.3711 ** 0.8207 *** 0.7222 *** 0.1411 0.8688 *** −0.2306. −0.5180 *** −0.4159 **

c Pearson 0.0596 0.3865 ** 0.4539 *** 0.3752 ** 0.4026 ** −0.2992 * −0.5849 *** −0.7369 ***
Spearman 0.0588 0.4766 *** 0.4396 *** 0.3685 ** 0.4648 *** −0.2748 * −0.6286 *** −0.7569 ***

Note: Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In combination with the above correlation analysis, the power function and logarithm form were
used to represent the nonlinear relationship. Taking the complexity (number of variables) and accuracy
of the equation into consideration, the parametric prediction model of the Weibull distribution equation
with three parameters was obtained by stepwise regression analysis, as shown in Table 6. On the whole,
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the parameter prediction method with 8 factors was better than that with 5 factors, mainly because
there were many stand factors used in the parameter prediction, and R2 of the parameter prediction
model was larger. However, considering that some of the 8 factors were not easy to master for the
unknown stands, the prediction model of 5 factors, which was key to stand growth and commonly
used, was selected here, and the prediction effect was good.

Table 6. Parametric prediction models and their prediction effects.

Factor Parametric Prediction Model R2 Number

8 factors
â = −0.00067174∗N− 0.5642∗DKURT + 1.47489 ∗ 3.765416∗DKURT

0.105997 + ε 0.9236 A
b̂ = 0.86528 ∗ 0.185573 D1.544666

− 0.68411 ∗ ln(DKURT) + ε 0.9688 B
ĉ = −0.09176∗DCV + 1.14257 ∗ ln

(
Dg

)
+ 0.32042 ln(N) + ε 0.9505 C

5 factors
â = −0.39343∗Dg − 0.00115∗N + 4.42011 ∗ ln(D) + ε 0.8885 D
b̂ = 0.00306∗N + 0.68681 ∗ 0.185573 ∗D ∗ ∗1.544666 + 6.39048∗ ln

(
Dg

)
− 2.6553 ∗ ln(N) + ε 0.9755 E

ĉ = 0.10801∗Dg + 0.000692∗N− 1.20507 ∗ ln(AGE) + 1.24915 ∗ ln(D) + ε 0.9201 F

Notes: 8 factors, Stand Characteristic Factor and Stand DBH Characteristic Factor; 5 factors, Stand
Characteristic Factor.

Table 7 shows the recovery model and its prediction effect between the diameter and Dg of the
three key points. The results show that the recovery model at the key points of 0.333 and 0.9 had good
prediction effect, while the prediction effect at the inflection point was slightly worse. Simultaneous
parameter recovery equations were established, and the predicted values of Weibull parameters a, b
and c were obtained by solve function in MATLAB.

Table 7. Recovery equations and their prediction effects.

Diameter at Key Point Recovery Equation R2 Number

D0.333 D̂0.333 = 1.2617 ∗D0.7807
g 0.7415 G

DI D̂I = 0.9570 ∗D0.8961
g 0.4988 H

D0.9 D̂0.9 = 1.0434 ∗D1.0802
g 0.8756 I

3.2.2. MaxEnt Distribution Prediction Effect of PPM and PSIM

The relationship between the MaxEnt model parameters and each stand factor was analyzed.
Table 8 showed the Pearson correlation coefficient and Spearman correlation coefficient of the
four-parameter MaxEnt model parameters and the stand factor. Four parameters (λ, λ1, λ2 and
λ3) had a relatively weak correlation with forest stand factors, parameter λwas significantly correlated
with H and DBH_CV, parameter λ1 was correlated in a non-linear way with variation coefficient
DBH_CV at 0.1 level, parameter λ2 was non-linear and positive with DBH_KURT and DBH_SKEW at
0.1 level, and parameter λ3 had a negative nonlinear correlation with DBH_KURT and DBH_SKEW at
0.1 level. Through stepwise regression analysis, the parametric prediction models of the four-parameter
MaxEnt distribution equations were obtained respectively, as shown in Table 9. Results indicated
that the fitting effect of the MaxEnt distribution parameter prediction model considering 8 factors
was worse than that of the 5 factors, and the 8 factors prediction model, which was a little better,
was selected in this study.
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Table 8. Pearson correlation coefficient and Spearman correlation coefficient between parameters and stand factors.

Parameters Correlation
Stand Factors

AGE DBHOB THGT D_N P_DBH DBH_KURT DBH_SKEW DBH_CV

λ
Pearson –0.0487 0.1636. 0.1755 * 0.0678 0.1400 0.0556 –0.0418 –0.2257 **
Spearman −0.1068 0.1283 0.1782 * 0.0552 0.0544 0.1114 –0.0382 –0.3216 ***

λ1
Pearson 0.0711 –0.1061 –0.1013 –0.0600 –0.0445 –0.0790 –0.0445 0.1127
Spearman 0.1225 –0.0029 –0.0511 –0.0263 0.0848 –0.1448 –0.1064 0.1645.

λ2
Pearson –0.0563 0.1062 0.0848 0.0367 0.0413 0.0864 0.0827 –0.0308
Spearman –0.1163 –0.0317 –0.0113 –0.0277 –0.1192 0.1519. 0.1663. –0.0500

λ3
Pearson 0.0260 –0.1370 –0.1015 –0.0159 –0.0855 –0.0782 –0.0827 –0.0132
Spearman 0.0805 0.0209 0.0343 0.0885 0.1027 –0.1577. –0.2079* −0.0398

Note: Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 9. Parametric prediction models and their prediction effects.

Factor Parametric Prediction Model R2 Number

8 factors

λ̂ = 0.63419 ∗Dg − 0.16079 ∗DBH_CV + ε 0.3779 J
λ̂1 = 0.41956 ∗ cos(AGE) + 0.36605 ∗ sin(AGE) + 0.4716 ∗ sin(THGT) − 0.45175 ∗ sin(DBH_KURT) + ε 0.1679 K
λ̂2 = −2.9E− 05 ∗N− 0.03831 ∗ cos(AGE) − 0.03067 ∗ sin(AGE) − 0.04325 ∗ sin(THGT) + 0.05867 ∗ sin(DBH_SKEW) + ε 0.1450 L
λ̂3 = 1.01E− 06 ∗N + 0.02158 ∗DBHSKEW − 0.00093 ∗ cos(THGT) + 0.00179 ∗ sin

(
Dg

)
− 0.0478 ∗ sin(DBH_SKEW) + ε 0.1676 M

5 factors

λ̂ = 0.20106 ∗ THGT + ε 0.1599 N
λ̂1 = 0.00011397 ∗N − 0.53401 ∗ cos(THGT) + 0.56427 ∗ sin(DBHOB) + 0.23477 ∗ sin(D) + ε 0.0571 O
λ̂2 = −2.9E− 05 ∗N− 0.03831 ∗ cos(AGE) − 0.03067 ∗ sin(AGE) − 0.04325 ∗ sin(THGT) + 0.05867 ∗ sin(DBH_SKEW) + ε 0.0914 P
λ̂3 = 1.01E− 06 ∗N + 0.02158 ∗DBHSKEW − 0.00093 ∗ cos(THGT) + 0.00179 ∗ sin

(
Dg

)
− 0.0478 ∗ sin(DBH_SKEW) + ε 0.1389 Q

Notes: 8 factors, Stand Characteristic Factor and Stand DBH Characteristic Factor; 5 factors, Stand Characteristic Factor.
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The dynamic prediction of diameter distribution of MaxEnt stand based on sample plot similarity
index method was encapsulated into a macro program in SAS according to its algorithm example (SAS
code in Appendix A). Input is the unknown sample plot data which needs to be predicted, and the
output is the predicted values of MaxEnt model parameters (λ, λ1, λ2 and λ3).

3.2.3. Comparison of Dynamic Prediction Results of Weibull Distribution and MaxEnt Distribution

It was encouraging that MaxEnt distribution was found to have lower RSS and higher acceptance
rate than the three-parametric Weibull function (e.g., Tables 3 and 4). Data from 130 evaluation subplots
provide an opportunity to further analyze and compare the accuracy of the MaxEnt distribution and
three-parametric Weibull function. In these calculations, two parameter estimation methods (PPM and
PRM) of three-parametric Weibull model and two parameter estimation methods (PPM and PSIM) of
four-parameter MaxEnt model were used. The MWW test results for PRM in MaxEnt distribution had
a 9.23% acceptance rate, suggesting significant differences between theoretical values and observed
values, which come from different populations. Three other dynamic prediction models from the
Weibull and MaxEnt distribution showed the population distributions were identical. The acceptance
rate of χ2+ Fisher’s test for PPM and PRM in Weibull distribution was 53.85% and 26.09%, respectively,
and the acceptance rate of χ2 + Fisher’s test for PPM and PSIM in MaxEnt distribution was 20.77% and
51.54%, respectively. Overall, for the three-parametric Weibull function, the precision of PPM is far
higher than PRM in view of the total R2 (Table 10). The four-parameter MaxEnt distribution from PSIM
both have provided a good fit for all the stands analyzed, and the four-parameter MaxEnt distribution
from PPM provided a relatively bad fit.

Table 10. The statistics of different evaluation methods for MaxEnt distribution and the three-parametric
Weibull function derived from the 130 stands used for goodness-of-fit tests.

Equations Modeling Prediction Related Equations Total Number χ2 + Fisher’s Test
Acceptance (%)

MWW test
Acceptance (%)

Weibull (3
parameters)

PPM D,E,F 130 53.85% 98.46%
PRM G,H,I 23 26.09% 100%

MaxEnt (m = 3) PPM J,K,L,M 130 20.77% 9.23%
PSIM Appendix A 130 51.54% 100%

Figure 1 shows both the actual data distribution (histogram), the estimated MaxEnt distribution
shapes from PPM (purple dashed line) and PSIM (purple solid line), the estimated Weibull distribution
obtained from PPM (blue solid line) and PRM (blue dashed line) for a selection of stands from different
planting densities, stand ages and quadratic mean DBH. In general, MaxEnt distribution from PSIM
and Weibull distribution from PPM both provided a good fit for all the stands analyzed, and MaxEnt
distribution from PPM provided a relatively bad fit. In comparison, MaxEnt distribution from PSIM is
more stable than Weibull distribution from PPM, which can be seen from the application of the two
distributions to stand A-F.
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Figure 1. Examples of dynamic prediction of stand diameter distributions. The histograms are the
observed is distribution. The MaxEnt distribution (purple dashed line), Weibull distribution obtained
from parameter prediction method (PPM) (blue solid line), Weibull distribution obtained from PRM
(blue dashed line) and MaxEnt distribution obtained from plot similarity index method (PSIM) (purple
dashed line). The information of the six given stands (A–F) include planting density, stand age and
quadratic mean DBH in sequence. (A: 1364 stems/ha, 17 a, 16.5 cm; B: 2264 stems/ha, 17 a, 16.0 cm;
C: 1244 stems/ha, 22a, 17.3 cm; D: 2384 stems/ha, 21a, 14.2 cm; E: 1349 stems/ha, 27 a, 16.2 cm;
F: 2249 stems/ha, 26, 15.2cm).

Considering that the sample-PSIM relies on the sample size of the fitted data set, the larger the
sample size is, the more accurate the prediction of PSIM is. Therefore, the PSIM of MaxEnt distribution
has great application prospects in the dynamic prediction system of stand diameter distribution.

4. Discussion

In the study of stand diameter structure, the probability density function method has played an
important role in combination with the general rule of stand diameter structure (the number of trees
with medium size accounts for the majority, and the number of trees gradually decreases to the diameter
class at both ends). Among the various probability density functions, the most widely used are the
normal distribution, Gamma distribution and Weibull distribution. Mathematicians [48,49] obtained
several famous typical distributions in statistics from some common constraints, such as Gaussian
distribution (Normal distribution), Gamma distribution and Exponential distribution, and proved that
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these common distributions in nature are actually special cases of maximum entropy principle. Jaynes
proved mathematically that the probability of the maximum entropy prediction is the predominance in
all the predictions of random events [49–51]. In the physical sense, the maximum entropy principle
reveals the internal rules of the information system. From the perspective of mathematical model,
the maximum entropy principle takes the statistical moment of each diameter class of known data as
the constraint condition to describe the distribution of small sample of diameter structure. Therefore,
the maximum entropy principle has a very broad application prospect in the simulation of stand
diameter distribution.

In practice, the future values of the probability distribution parameters for the diameter distribution
is determined or estimated from stand characteristics (e.g., density, age, and mean tree size). In the
study of dynamic prediction of stand diameter structure based on probability distribution, two main
methods of PPM and PRM have been applied for predicting these parameters in different tree species
and forest types over the last 45 years [18,52]. However, when the correlation between parameter
estimation and the whole stand characteristics was weak, the accuracy of dynamic prediction of
stand diameter distribution by these two methods was not high. Machine learning algorithm can
well simulate nonlinear relations, and has the characteristics of fault tolerance, self-learning and
self-adaptability, so it has obvious advantages in prediction accuracy. In this research area, artificial
neural network(ANN)models have been considered as an alternative to traditional tree diameter
Weibull distribution models [53–58]. In this research, MaxEnt which can be regarded as a probability
distribution optimization algorithm, has been shown to have potential for solving problems requiring
strong nonlinear modeling ability. Compared with PPM, PSIM also has higher prediction accuracy in
dynamic prediction of stand diameter distribution.

5. Conclusions

Based on analysis of the disadvantages of the Weibull function, this study develops a promising
distribution function (MaxEnt distribution), which is a new and essential exploration in the study
of parametric methods. We conclude that: (1) MaxEnt distribution (R2 = 0.9538) has a more
accurate simulation than the three-parametric Weibull function (R2 = 0.9231) while modeling diameter
distributions of Chinese fir plantations; (2) the goodness-of-fit test showed the diameter distributions
of unknown stands can be accurately estimated by applying four-parameter MaxEnt distribution
and with regards to modeling precision and theoretical interpretation, PSIM (Table 10) may be the
most suitable choice due to its good convergence, high precision; (3) with the increase of the fitted
sample size, the more accurate the prediction of MaxEnt distribution PSIM is, it has a great application
prospect in the dynamic prediction system of stand diameter distribution.
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Appendix A

The plot similarity index method (PSIM) example of the SAS code used to validate the MaxEnt
model for China fir. DBH.P6 is fitting data, DBH.P7 is validation data. Lines (1) to (20) are used to
process raw data sets, adding the serial number ID. Lines (21) to (28) simulate the four-parameter
MaxEnt model by fitting data sets, saving parameter information in DBH.MAXENT_fit. Lines (29) to
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(76) use macro to find the most similar sample plot for each sample plot in the validation set, and obtain
the parameter prediction values and save them in DBH.MAXENT_P.

(1) PROC SQL
(2) CREATE TABLE DBH.Maxent_6 AS
(3) SELECT DISTINCT PLOT, DBH_KURT, DBH_SKEW, DBH_CV
(4) FROM DBH.P6
(5) ORDER BY PLOT
(6) RUN
(7) DATA DBH.Maxent_6P
(8) SET DBH.Maxent_6
(9) ID = _N_
(10) RUN
(11) PROC SQL
(12) CREATE TABLE DBH.Maxent_7 AS
(13) SELECT DISTINCT PLOT AS PLOT7, DBH_KURT AS DBH_KURT7, DBH_SKEW AS

DBH_SKEW7, DBH_CV AS DBH_CV7
(14) FROM DBH.P7
(15) order by plot
(16) RUN
(17) DATA DBH.Maxent_7P
(18) SET DBH.Maxent_7
(19) ID = _N_
(20) RUN
(21) ODS OUTPUT ResidSummary = DBH.REIDS3_fit
(22) PROC MODEL DATA=DBH. P6 CONVERGE = 0.000001 METHOD=MARQUARDT
(23) Pi = EXP(−b0-b1*di−b2*di**2−b3*di**3)
(24) FIT Pi /OLS OUTEST = DBH. MAXENT_fit OUT = DBH.MAXENT_RESIDUAL3
(25) BY PLot
(26) RUN
(27) QUIT
(28) ODS OUTPUT CLOSE
(29) DATA DBH.MAXENT_P
(30) STOP
(31) RUN
(32) %let n = 130
(33) %MACRO PSI ()
(34) %do i = 1%to &n
(35) proc sql
(36) create table DBH.MAXENT_P7Ai as
(37) select *
(38) from DBH.MAXENT_7P
(39) where ID7 = & i
(40) run
(41) data DBH.MAXENTp67
(42) MERGE DBH.MAXENT_6P DBH.MAXENT_P7Ai
(43) run
(44) data DBH.MAXENTp67a



Forests 2019, 10, 859 15 of 18

(45) set DBH.MAXENTp67
(46) retain ID1 TIME1 PLOT1 DBH_KURT1 DBH_SKEW1 DBH_CV1 AGE1
(47) if ID7ˆ =. then ID1 = ID7
(48) if TIME7ˆ =. then TIME1 = TIME7
(49) if PLOT7ˆ =. then PLOT1 = PLOT7
(50) if DBH_KURT7ˆ =. then DBH_KURT1 = DBH_KURT7
(51) if DBH_SKEW7ˆ =. then DBH_SKEW1 = DBH_SKEW7
(52) if DBH_CV7ˆ =. then DBH_CV1 = DBH_CV7
(53) if AGE7ˆ =. then AGE1 = AGE7
(54) keep ID TIME PLOT DBH_KURT DBH_SKEW DBH_CV ID1 TIME1 PLOT1 DBH_KURT1

DBH_SKEW1 DBH_CV1
(55) run
(56) data DBH.MAXENTp67b
(57) set DBH.MAXENTp67a
(58) PSI = SQRT((DBH_KURT-DBH_KURT1) **2 + (DBH_SKEW-DBH_SKEW1) ** 2 + (DBH_CV −

DBH_CV1) ** 2)
(59) RUN
(60) proc sql
(61) create table DBH.MAXENTp67C as
(62) select*, MIN(PSI) AS MIN_PSI
(63) from DBH.MAXENTp67b
(64) run
(65) proc sql
(66) create table DBH.MAXENTp67d as
(67) select*
(68) from DBH.MAXENTp67c
(69) where PSI = MIN_PSI
(70) run
(71) data DBH.MAXENT_P
(72) set DBH.MAXENT_P DBH.MAXENTp67d
(73) run
(74) % end
(75) % MEND PSI
(76) % PSI ()
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