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Abstract: Reduced vegetation growth ultimately induces degradation of the ecosystem and CO2

sequestration. Multiple risks can affect vegetation, but climate change and human influence have
been particularly known to be major risks for deteriorating the ecosystem. However, there is limited
information illustrating comprehensive impact pathways that consider both climatic and human
impacts on vegetation. To promote optimum decision-making, information is required to elucidate
complex cause-and-effect pathways in order to determine how various impacts are related and which
ones are more important. Hence, we identified impact pathways affecting enhanced vegetation index
(EVI) regarding climate and human factors by revealing a causal network using the Bayesian network
approach. Vulnerable vegetation types and the spatial range of impact were evaluated based on
the identified network by analyzing temporal changes in annual average EVI, human-induced land
conversion, and multiple climate extremes from 2002 to 2014 on Jeju Island, South Korea. The results
indicated the high vulnerability of coniferous forests compared with mixed and deciduous forests
were able to elucidate the major impact paths, including human-induced land conversion at lower
elevation, length of frost, degree of heat, and general intensity of wetness (Pearson’s r = 0.58). Existing
policies in the study site have been insufficient to avoid the major paths influencing vegetation
state. This study offers insights into comprehensive impact paths in order to support effective
decision-making for nature conservation.

Keywords: causal network; Bayesian network; EVI; vegetation dynamics; climate change;
human-induced land conversion

1. Introduction

Vegetation is a key component of an ecosystem; hence, sustaining vegetation health is a
fundamental requirement to sustain the benefits of nature. A decrease in vegetation health alters the
quantity and quality of ecosystem services, including decreases in biodiversity, carbon sequestration,
and water conservation [1–5]. Generally, changes in vegetation health are triggered by climatic factors
and human activities on regional and global scales [6–9]. In this respect, the convention of biological
diversity has strongly emphasized the necessity of focusing on climatic and human influences for the
management of ecosystems [10,11].

The impacts of climate factors and human activities on vegetation have been well studied.
A recent assessment report by the IPCC (Intergovernmental Panel on Climate Change) concluded
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that a vegetation shift had occurred over the last decades due to global warming [12,13]. The IUCN
(International Union for Conservation of Nature) has also listed newly threatened plant species in
response to climate change [14]. As for the human impact on vegetation, biophysical and biogeochemical
impacts caused by land conversion (LC) are definite and emphasize their negative influence on
vegetation [15]. However, comprehensive assessments that consider both driving forces are limited [16],
although several attempts have been made for Central Asia [9] and China, including the Loess
plateau [8,17–19]. Therefore, there is a need to enhance our understanding of these two direct hazards
in order to promote sustainable vegetation growth. As common failures in ecosystem management
can arise from disagreements over the best decision [20–22], consideration of the two main risks may
help reduce such disagreements.

However, it is challenging to consider both climate and human impacts on vegetation state
(vegetation growth, coverage, and health). First of all, the characteristics of the two impacts that
affect vegetation state can be different. As for the climate impact, rather than one single climate event,
the occurrence of multiple climate extremes may cause a fatal response in vegetation [23,24], as there
are various aspects of climate extremes (e.g., dryness, coldness) [25]. As such, one or multiple climate
extremes can trigger large vegetation losses [25]. In the case of human activities, human-induced LC of
natural vegetation is linked with unsustainable land management practices, which can quantitatively
reduce or reverse such degradation [26]. Hence, depending on land management decisions, the size
and degree of vegetation degradation can be different. Second, the response of vegetation can differ
depending on the vegetation type (e.g., coniferous or deciduous) and elevation gradient [27,28].
Some vegetation types are vulnerable to climate change while others can respond positively, such as
those used for firewood. Moreover, the occurrence of climate and human impacts can be particularly
high at certain elevations.

In this respect, a systematic understanding of how these impacts occur and which impact is
more important for each vegetation type or elevation is required. Specifically, as multiple factors
exist and there can be various causalities and cascading relationships among each element, we need a
clear understanding of such cause-and-effect paths in order to allocate finite management resources.
However, it is challenging to identify such complex cause-and-effect relationships when considering
multiple impacts. A regression equation cannot consider complex, layered interactions between
multiple climate and human factors [17]. In this context, we applied a Bayesian network (BN) to
elucidate the underlying causal network regarding multiple climate extremes and human-induced
LC regarding vegetation state to systematically measure such causality. BNs are known for their
strength in graphically illustrating various causalities and relative importance with directed acyclic
graphs [29,30]. Machine learning techniques developed for BNs make it possible to automatically
generate the underlying cause-and-effect network, which can indicate the major impacts and main
causal sequences of such impacts [31].

Hence, in this study, we aimed to identify important driving forces and their critical impact
pathway regarding vegetation state considering climate and human factors by quantifying a causal
network using the BN approach to elucidate a prioritized management agenda. This study aimed
to identify the differences in impact for vegetation state between climate and human factors, as well
as to reveal vulnerable vegetation types and required management actions considering elevation
gradients. To measure changes in the health and growth of vegetation, the enhanced vegetation index
(EVI), a satellite-based vegetation greenness index, was used, since it is one of the most important
data indices in ecosystems research and reflects the growth and status of surface vegetation [28].
To offer evidence-based information, we focused on changes in the annual average EVI and considered
threatening factors from 2002 to 2015. In particular, we focused on Jeju Island in South Korea,
where the whole area is designated as a UNESCO (United Nations Educational, Scientific and Cultural
Organization) biosphere reserve due to its ecological importance.
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2. Materials and Methods

2.1. Study Site and Vegetation for Case Study

The study site, Jeju Island (33.22◦ N, 126.32◦ E/33.37◦ N, 126.53◦ E), is located south of the
Korean Peninsula. It is a volcanic island that contains unique biodiversity features and has various
floristic elements, including temperate forests, arctic–alpine plants, and also deciduous and evergreen
broad-leaved trees [32]. The island is unique as it overlaps four internationally designated areas (IDAs)
due to its outstanding biological importance [33].

In this study site, three vegetation types were considered for analysis (Figure 1). That is, areas with
a minimum of 75% coverage of vegetation for each coniferous, deciduous, and mixed tree species were
evaluated based on the fifth forest type map of the Korea forest service (map.forest.go.kr). Vegetation
located below 500 m above sea level was only considered to avoid vegetation located in high elevations,
as a strictly protected area without any LC is located at upper elevations.

Figure 1. Distribution of sample points on Jeju Island. Random points were equally generated based
on boundaries of classes of age, density, and diameter size under 500 m in the study site.

Random points were generated considering differences in age, density, and diameter based on the
fifth forest type map (map.forest.go.kr). An equal number of random points were distributed regarding
such factors using ArcGIS10.6. [34]. In total, 43,868 random points were considered. The numbers
of random points for coniferous, deciduous, and mixed vegetation were 28,870, 8165, and 6833,
respectively (Figure 1). The random points were later divided based on classified elevation, which were
0–200 m, 201–400 m, and 401–500 m, to elucidate differences in elevation gradient.

2.2. Data Processing for Annual Average EVI (EVIavg)

In this study, the EVI remote sensing vegetation index was used to evaluate vegetation states, as it
reflects vegetation growth, coverage, and health [35,36]. EVI has been recognized to have less sensitivity
to atmospheric effects than NDVI (Normalized Difference Vegetation Index) and can effectively capture
canopy density beyond where NDVI becomes saturated [35,37].

To monitor vegetation states, EVI from 2002 to 2015 from the MODIS13A1.006 product was
acquired through EARTHDATA NASA (earthdata.nasa.gov/). The MODIS13A1.006 product (500 m)
was selected, as the previous version of EVI (Terra-C5 VIs) had lower product quality, particularly
after 2007 [38]. Based on pixel reliability, only pixels of 0–1 with high reliability were selected, and the
remaining low-quality pixels were masked for each satellite image. A Savitzky–Golay (SG) filter [39]

earthdata.nasa.gov/
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was applied to fill the masked pixels and smooth the EVI to avoid biases, since it is known as a robust
filter-based method to replace outliers, spikes, and missing values.

Specifically, every day of year (DOY) in the growing season from DOY81 to DOY289 which
showed no snow in the study site was considered for analysis. Although Jeju Island has evergreen tree
species, as it snows regularly in January and February (Korea meteorological administration, KMA,
www.weather.go.kr), only DOYs in the growing season were considered. To consider temporal changes
in EVI at the study site, this study quantified the annual average EVI values for each year (EVIavg) from
2002 to 2015. Hence, for each random point generated, 14 EVIavg values were acquired. We applied
EVIavg because an average value can avoid further biases by representing a general vegetation state.

2.3. Data Processing for Land Conversion

As for LC, this study used the 500 m MODIS (Moderate Resolution Imaging Spectroradiometer)
land cover product MCD12Q1. From 2001 to 2015, the MCD12Q1 was acquired through EARTHDATA
NASA (earthdata.nasa.gov/). A land cover map based on international geosphere–biosphere
programme (IGBP) classification was used in this study. Though we investigated the quality control
(QC) layer to avoid classification errors, only LC from natural and planted vegetation to crop land,
urban area, and barren land was considered. We note that such LC does not belong to illogical
transitions, which are occasionally found in MCD12Q1 (see Peng et al. [40]). Accordingly, annual
statistics on LC from natural and planted vegetation to crop land, urban area, and barren land were
generated from 2001/2002 to 2014/2015 in each 500 m × 500 m grid. The quantification was conducted
using Rstudio [41] applying the raster and rgdal packages.

2.4. Climate Extreme Indices

The team on climate change detection and indices (ETCCDI) developed a set of meteorological
indices that represents regularly occurring climate extremes (see Zhang et al. [42]). Each index reflects
cut tails on the distribution of precipitation or temperature. As it only considers “daily minimum
temperature, maximum temperature, and precipitation”, mean temperature was excluded from the
quantification process of such indices. Though the original ETCCDI indices do not include indices
related to heat wave (HW) and heavy rain (HR) days, this study additionally considered HW and HR,
as Jeju regularly has such climate extremes annually. Furthermore, to reflect the aspect of drought,
this study also considered the annual average standardized precipitation–evapotranspiration index
(SPEI)12 index from the global SPEI database based on Beguería et al. [43]. In summary, a total of eight
climate extreme indices were considered (Table 1).

Table 1. List of climate extreme indices.

Name Full Name Definition

GSL Growing season length
Annual count between first span of at least 6 days with TG > 5 ◦C

and first span after July 1 of 6 days with TG < 5 ◦C
(TG: Temperature for growing season)

SU25 Summer days Annual count when TX (daily maximum) > 25 ◦C
FD Frost days Annual count when TN (daily minimum) < 0 ◦C

HW Heat wave days Annual count when TX (daily maximum) > 33 ◦C

SDII Simple daily intensity
index

Annual total precipitation divided by the number of wet days
(defined as precipitation ≥ 1.0 mm) in the year

HR Heavy rain days Annual count when PRCP ≥ 80 mm

RX5 Maximum consecutive
5-day precipitation

Let RRkj be the precipitation amount for the 5-day interval ending k,
period j. Then, the maximum 5-day values for period j are

Rx5dayj = max (RRkj)

SPEI12 Standardized precipitation-
evapotranspiration index

A site-specific drought indicator of deviations from average water
balance (precipitation minus potential evapotranspiration).

www.weather.go.kr
earthdata.nasa.gov/
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This study used 1 km × 1 km grid meteorological information acquired from the Korea
meteorological administration (KMA, www.kma.go.kr). There are few meteorological stations in
our study site, so we used modeled grid climate data based on the MK-prismv1.2. climate model
developed by the KMA. To validate such grid information, we quantified and compared the climate
extreme index with observed data using the R package climdex.pcic (http://cran.r-project.org/web/

packages/climdex.pcic/). As the grid information has high reliability (Pearson’s r = 0.93, p < 0.001) with
the observed climate (Figure S1), we used such information to reflect the multiple climate extremes
indicated in Table 1.

2.5. Construction of Bayesian Network

A BN was applied to analyze the causal path between various climate extreme indices and
human-induced LC regarding changes in EVIavg (Figure 2). In this study, a Gaussian BN was applied,
which accounted for continuous variables with numeric values (BN for continuous values) [44].
To build an evidence-based network structure and its conditional path, we employed a learning-based
BN by applying the bnlearn package using Rstudio. bnlearn supports the construction of a BN with
several algorithms related to a conditional independence test and network scores measuring goodness
of fit for structuring layered relationships [44]. Specifically, we first confirmed the appropriateness
of the selected multiple variables (measured VIF (Variance Inflation Factor) < 6) [45] by identifying
multicollinearity by performing a VIF test using the car package. To select a suitable algorithm to
develop the BN, we also compared the accuracy of relevant algorithms. K-fold cross-validation (number
of folds = 10) was performed for the entire sample dataset (n = 614,152), and the expected log-likelihood
loss in structuring the optimal causal structure was quantified. Between the max-min hill-climbing
(mmhc) and restricted maximization (rsmax2) algorithms, the performances were similar (expected
loss = 9.20–9.21), but this study applied the mmhc algorithm (expected loss = 9.20) to construct the
Gaussian BN. mmhc is an algorithm that constructs a skeleton of the BN with constraint-based and
search-and-score techniques [46,47].

Figure 2. Conceptual framework for developing the BN (Bayesian network). Pathways of impact were
analyzed by identifying the causal network. LC: Land conversion.

The Gaussian BN was made with several user-defined principles. The whitelisting function in
bnlearn supports the logical structure by reflecting predefined linkages to avoid illogical linkage.
Using the whitelisting function, this study whitelisted linkages from nine considered variables to
EVIavg for understanding the magnitude of the impact that multiple driving forces have on EVIavg.

www.kma.go.kr
http://cran.r-project.org/web/packages/climdex.pcic/
http://cran.r-project.org/web/packages/climdex.pcic/
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The layered relationships between each factor were learned by an iteration process while finding the
optimal network structure.

Specifically, the BN was generated per vegetation type (coniferous, mixed, and deciduous).
The magnitude of impact per factor was measured from the generated Gaussian BN. To analyze the
differences in impact for each elevation that reflected differences in EVI per elevation and spatial range
of this impact, a Gaussian BN was additionally generated for 0–200 m, 201–400 m, and 401–500 m per
vegetation type, separately.

2.6. Validation of Developed Bayesian Networks

To validate and investigate the accuracy of the BN, a dataset for each vegetation type was
partitioned to train and test data with ratios of 0.75 and 0.25, which was conducted for all the random
points considered. A BN was generated and fitted with training data (ratio = 0.75) for each vegetation
type; thus, three BNs were first constructed. As for the second step, three test datasets (ratio = 0.25) for
each BN were applied to the developed BN from the training dataset to quantify the predicted EVIavg
values. Among the predicted and actual EVIavg in the test dataset, Pearson correlation analysis was
performed to inspect the accuracy of the BNs.

3. Results

3.1. Temporal Changes in EVI

For the three vegetation types evaluated, the EVIavg tended to generally exhibit an increasing
pattern from 2002 to 2015 (Figure 3). However, representative decreasing patterns in EVIavg were
equally observed for 2009–2010 and 2014–2015 (Figure 3). Though the temporal pattern of EVIavg
generally exhibited an ascending trend, for all random points considered, EVIavg was reduced in 2015
compared with EVIavg in 2002, showing a broad distribution pattern. This shows that there are certain
widely distributed locations or time periods which have exhibited decreased EVI over a 14-year period.
For all the evaluated points for coniferous, mixed, and deciduous forests, the percentages that showed
a decreased EVIavg between 2002 and 2015 were 19%, 11%, and 12%, respectively (Figure 3).

Figure 3. Temporal changes in annual average EVI (EVIavg) from 2002 to 2015. (a) The figure shows
the range of EVIavg in the growing season (March–October) from 2002 to 2015. (b) The points indicate
a decrease in EVIavg in 2015 compared with 2002. It shows the locations of negative value, when we
calculate ‘EVIavg in 2015′ minus ‘EVIavg in 2002′.
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3.2. Temporal Changes in Human-Induced Land Conversion and Climate Extremes

Figure 4 shows the changes in the rate of human-induced LC and the occurrence of multiple
climatic factors. For all 43,868 points considered, 1.22%, or 537 points, had experienced human-induced
LC. As for 12 random points among all the locations considered, such human-induced land cover
change occurred twice from 2002 to 2015. A significant increase in such human influence was observed
in 2007 and 2004. However, the occurrences of human-induced LC showed a decreasing pattern overall
(Figure 4).

Figure 4. Trend in the occurrence of human-induced land conversion and climatic extremes. For all
sample points, occurrences from 2002 to 2015 are indicated.

In the meantime, each climate index had a distinct pattern in terms of annual average values.
Rather than having clear decreasing or increasing trends, they had a zig-zag pattern but illustrated
peak points. That is, the occurrence of climate extremes showed high variation from 2002 to 2015.
Climate-related extremes for frost days (FD), growing season length (GSL), HW, and summer days
(SU) exhibited wide variances. However, precipitation-related extremes, which were HR, maximum
consecutive 5-day precipitation (RX5), simple daily intensity index (SDII), and SPEI12, showed more
agreement than climate-related extremes.

3.3. Causal Network among EVIavg, Climate Extremes, and Human-Induced Land Cover Change

3.3.1. Climate and Human Impacts per Vegetation Type

A BN was developed for each vegetation type regarding changes in EVIavg, rate of human-induced
LC, and multiple climate extremes (Figure 5). The causal network showed that each vegetation type
exhibited different causal relationships for the climate and human influence factors considered for
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vegetation states. The accuracy generated by the constituted BN showed relatively vulnerable
vegetation types that were most affected by the driving forces considered. The accuracy was
generated by comparing the predicted EVIavg from the BN developed and the actual EVIavg from the
MODIS13A1.006 product in the test dataset. Coniferous forests were the most vulnerable vegetation
type regarding the factors considered (Pearson’s r = 0.58). Mixed forests exhibited moderate accuracy
within the driving forces considered (Pearson’s r = 0.34), whereas, in the case of deciduous forest,
it showed the lowest correlation among predicted and actual EVIavg (Pearson’s r = 0.17). As a result,
regarding climate and human impacts, coniferous forests were evaluated as the most influenced
vegetation type, followed by mixed forests.

Figure 5. Identified causal network per vegetation type. The Bayesian network revealed the major
causal linkages among the considered climate and human factors for coniferous, mixed, and deciduous
forests: LC: Human-induced land cover change; FD: Frost days; GSL: Growing season length; HR:
Precipitation over 80 mm; RX5: Maximum 5-day precipitation; SDII: Simple daily precipitation intensity;
SPEI12: Drought index (standardized precipitation-evapotranspiration index); SU: Summer days.

Table 2 shows the degree of relative influences on changes in EVIavg. Overall, the results showed
that coniferous and mixed forests exhibited changes in EVIavg due to the combined effect of climatic and
human factors rather than one particular factor. As for deciduous and mixed forests, the strong impact
of human-induced LC was more distinct (conditional density = −0.53 and −0.34) than climatic factors.

Table 2. Conditional densities of multiple factors on annual average EVI. If conditional density is high,
it indicates higher influences on changes in annual average EVI in the study site 1.

LC FD GSL HR HW SU RX5 SDII SPEI12

CON −0.27 0.46 0.05 0.01 −0.20 0.03 −0.13 0.29 −0.02
MIX −0.34 0.19 0.02 0.08 −0.08 −0.09 −0.08 −0.07 −0.04
DEC −0.53 −0.01 −0.05 −0.05 −0.06 −0.11 −0.03 −0.06 −0.03

1 CON: Coniferous forest; MIX: Mixed forest; DEC: Deciduous forest; LC: Human-induced land cover change; FD:
Frost days; GSL: Growing season length; HR: Precipitation over 80 mm; HW: Heat wave days; SU: Summer days;
RX5: Maximum 5-day precipitation; SDII: Simple daily precipitation intensity; SPEI12: Drought indices.
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3.3.2. Critical Impact Path Regarding Human-Induced LC

Though the magnitude of impact regarding human-induced LC was different for the three
vegetation types, it exhibited a consistently negative relationship with changes in EVIavg. Specifically,
changes in land cover reduced the EVIavg for coniferous, mixed, and deciduous forests with a
conditional density of−0.27,−0.34, and−0.53, respectively (Table 3). As for causal networks individually
developed per level of elevation, it showed that a negative impact due to human-induced LC was
particularly obvious at 0–200 m (Table 3). Only coniferous forests were affected by human-induced LC
at 201–400 m. Overall, the results indicated that human-induced LC mainly influenced the vegetation
state in lower areas (~200 m). Moreover, coniferous forests were affected by human-induced LC to a
broader spatial extent than other vegetation types.

Table 3. Conditional density regarding human-induced land conversion affecting EVIavg per elevation
gradient. Considering differences in elevation, the magnitude of the impact of human-induced land
conversion on EVIavg is indicated 1.

Elevation CON MIX DEC

TOTAL −0.27 −0.34 −0.53
0–200 m −0.31 −0.34 −0.44

201–400 m −0.10 NA NA
401–500 m NA NA NA

1 CON: Coniferous forest; MIX: Mixed forest; DEC: Deciduous forest.

Meanwhile, the concurrence of two driving forces, climate and human factors, was rarely observed.
A linkage between climate and human factors was found for coniferous and mixed forests (Figure 5)
but not deciduous forests. Specifically, as for coniferous forests, even though HR and HW exhibited
causality with EVIavg, the rate of conditional density was slight (HW: 0.004, HR: −0.0007), indicating a
low rate of co-occurrence between climate and human risks.

3.3.3. Critical Impact Path Regarding Climate Extremes

As shown in Table 2, there were dominant causalities between climate extremes and EVIavg.
However, as deciduous forests showed distinctly low causality regarding climatic factors, the cases of
coniferous and mixed forests are presented.

Specifically, in the case of temperature-related climate extremes, FD was the dominant factor
increasing the EVIavg (Table 4). In other words, the reduction of frost days in winter, which means
a warmer winter, was shown to negatively influence the EVIavg. The EVIavg of coniferous forests
and mixed forests tended to increase along with the increase in FD, showing a conditional density of
0.49 and 0.19, respectively. Regarding the entire causal network, FD was analyzed to reduce the GSL
(Figure 6), but the results still demonstrated the importance of adequate chilling rather than the length
of the growing season. As for BN per elevation, in the case of coniferous forests, the influence of FD
was particularly dominant at lower elevation in the study site.

Furthermore, SU and HW dominantly exhibited negative causality for vegetation states across a
broader elevation gradient than FD (Table 4). Though two indices indicated different levels of heat,
they showed a similar influence on EVIavg but with different magnitudes of impact per elevation
gradient (Table 4). However, a constant negative effect (conditional density = −0.09 to −0.27) was
observed based on the primary factors affecting EVIavg per elevation (Table 4).

In the case of precipitation-related climate extremes, rather than other factors, SDII was the
major factor that increased the EVIavg. SDII had associations with other precipitation-related factors,
including HR, RX5, and SPEI12 (Figure 6), but solely exhibited a dominant impact on EVIavg. Further,
except for such precipitation-related factors, SDII also indicated causalities with other climate extremes,
including FD and SU. However, it demonstrated weak linkages, with a conditional density under 0.1.
In summary, Table 4 shows that, rather than high extreme values reflecting extremely high precipitation
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or the occurrence of drought, average daily precipitation on rainy days was a more influential factor
for changes in EVIavg at the study site.

Table 4. Top 1 and Top 2 influential climate extremes for total area and classes on elevation. The table
shows major influential climate factors on changes in EVIavg. The results of eight Bayesian networks
are indicated for coniferous and mixed forests 1.

Elevation Top 1 Top 2

CON

TOTAL FD 0.46 SDII 0.29
0–200 m FD 0.27 HW −0.27

201–400 m SDII 0.46 FD 0.19
401–500 m SDII 0.27 SU −0.16

MIX

TOTAL FD 0.19 SU −0.09
0–200 m HW −0.15 HR 0.15

201–400 m SDII 0.33 GSL 0.11
401–500 m SDII 0.18 SU −0.17

1 CON: Coniferous forest; MIX: Mixed forest; FD: Frost days; GSL: Growing season length; HR: Precipitation over
80 mm; HW: Heat wave days; SU: Summer days; SDII: Simple daily precipitation intensity.

Figure 6. Causality among climate extremes for coniferous and mixed forests. The figure indicates
the underlying causal relationships among climate extremes. Numeric values indicate the degree of
conditional density. The red color indicates negative causality and the blue color indicates positive
causality between two nodes. The solid line reflects a strong relationship (conditional density > 0.25),
and the dotted line reflects a weak relationship (conditional density ≤ 0.25): GSL: Growing season
length; FD: Frost days; SU: Summer days; HW: Heat wave days; SDII: Simple daily precipitation
intensity; HR: Precipitation over 80 mm.

4. Discussion

Understanding the influences of climate extremes and human factors on vegetation states is
critical, as such factors have distinct direct impacts that threaten the ecosystem [9,11,18,19]. However,
there have been few attempts to elucidate such multiple causal impacts and their pathways [48]; thus,
limited information is available on the relationship between vegetation health and various climate and
human factors. In this regard, this study confirmed the notable impact of human-influenced land cover
change and certain climate extremes on EVIavg on Jeju Island. The identified BN revealed the causal
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pathways of how and which climate and human factors had influenced changes in the vegetation
state over the 14-year period on Jeju Island. The results in this study may offer insights for decision
makers to discern management priorities by offering information on critical impact paths considering
multiple risks.

Our results showed that human-induced disturbance, LC, had uniformly negative effects on
the EVIavg (Table 2). Danneyrolles et al. [49] also demonstrated the dominant negative impact of
human influence, rather than climate change, on a century scale in northern forests. Though the overall
occurrence rate of LC indicated a decreasing pattern from 2002 to 2015 in the study site (Figure 4),
the direct impact of LC reducing the EVIavg was evident for all vegetation types considered.

Compared with the uniform direct impact of human-induced LC, the influence of multiple climate
extremes on EVIavg showed considerable differences across vegetation types. Coniferous forests,
in particular, exhibited more susceptibility to climate extremes than mixed and deciduous forests,
for which there was high accuracy in the BN constructed considering multiple elements (Pearson’s r
= 0.58). On the other hand, deciduous forests tended to be mostly impacted by human-induced LC
rather than the combination of climate and human factors. Though each plant species could have
had different levels of vulnerability to climatic factors, in the overall trend among vegetation types,
coniferous forests had higher vulnerability than others. In line with that, Wan et al. [50] reported
the high vulnerability of temperate needleleaf forests among a wide variety of forest types in China.
Moreover, several authors expect deciduous trees to be less vulnerable to climate change than conifer
species [51–53]. The evidence found in this study points out the necessity of specifically prioritizing
the coniferous tree species on Jeju when considering climate change adaptation plans. Moreover, as for
human influence, this study once more stressed the importance of considering all vegetation types for
setting landscape management decisions.

Furthermore, differences in the constituted BNs along with the elevation gradients indicated
different spatial ranges for the impact of climate and human factors. The results showed that the
influence of human-induced LC on vegetation state was primarily found at lower elevations on
Jeju (Table 3). However, the influence of climate extremes was observed at a broader spatial range,
which indicated the risk of climate change stimulating large losses of plant growth. In line with that,
researchers have emphasized the large-scale impact of climate change. For instance, more than half of
the plant species in Europe were projected with niche models in 2005 to be vulnerable or threatened
by 2080 [54], and the global terrestrial ecosystem was projected to face a transformation in structure
and composition without massive mitigation efforts [55]. Accordingly, we demonstrated the broader
impact of climatic factors over the past 14 years, particularly for coniferous forests, even beyond the
influence of human-induced LC on Jeju.

To gather elaborate information on such vulnerabilities, the Gaussian BN we used was a powerful
tool to elucidate the complex impact pathways among climate extremes, human factors, and vegetation
states (Figure 5). Before applying the BN, we found that though the overall trend of EVIavg (median
value) was observed to be increasing on Jeju, there were certain periods (2009–2010 and 2014–2015)
and locations that showed a decrease in EVIavg (Figure 3). In fact, it was difficult to link the patterns
of occurrence for multiple climate factors and the decrease in EVIavg, even though, in particular, FD,
GSL, and HW showed distinct increasing or decreasing patterns for 2009–2010 and 2014–2015, during
which EVIavg generally decreased (Figure 4). However, from the results of the BN, it was possible
to quantitatively elucidate the major climate extremes that affect the variation in EVIavg. In fact,
in general, an increasing trend of terrestrial vegetation growth was recently observed globally [56].
However, as there are constant threats that reduce vegetation greenness [12,13], the need to conduct
systematic evaluation is emphasized.

According to the results, the most influential climatic threats could be suggested as the three
subjects related to length of frost days, increase in heat, and general intensity of precipitation on
wet days. Specifically, though the susceptibility of vegetation to frost is known to differ by species
and conditions [57], a recent study emphasizes the threat of warmer winters and longer growing
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seasons, which enhances susceptibility to frost damage [58]. In regard to such findings, in the case
of Jeju, coniferous species exhibited great susceptibility to changes in frost days, though the increase
in frost negatively affected the length of the growing season. However, such an impact was only
observed at an elevation of 0–400 m in the study site. Furthermore, an increase in heat also negatively
influenced the EVIavg, and HW and SU mainly had a negative impact on vegetation health for different
elevations and vegetation types. There is evidence that extreme heat waves in summer can induce
foliar and stem mortality in temperate forests [59,60]. However, the degree of response and impact
can differ by species and region, and this study demonstrated the negative influence of increasing
heat on Jeju’s vegetation. While the study site is one of the hottest regions in South Korea, having
monthly maximum temperatures of 29.1–30.1 ◦C for 1980–2010 (KMA, data.kma.go.kr), as optimal
photosynthesis generally peaks at ~30 ◦C, the increasing heat seems to have negatively affected the
EVIavg on Jeju Island. However, compared with such temperature-related climate extremes, a direct
causal relationship regarding precipitation was not seen in this case study. Though there is much
evidence about the relationship between drought and vegetation health [61,62], such a relationship was
not strong in the study site. That is, rather than extreme values such as drought, simple daily intensity
of precipitation on wet days was more significant to the EVIavg. As noted by Stocker et al. [63],
soil moisture can be an influential factor that indicates changes in vegetation health. Hence, there may
have been some bias with the applied precipitation-related index, and further inspection of vegetation
health related to soil moisture may be required.

Comparing relevant policies on climate change and landscape management decisions (Table 5),
there are some distinct discrepancies between the focus on such existing policies and the major
threatening sequence identified in this study. Specifically, Jeju’s “climate change adaptation action plan
(2012–2016)” (Jeju, www.jeju.go.kr) contains 90 action plans. However, there is no specific action plan
for the major climate extremes identified. Considering major climate extremes related to length of frost
days, increase in heat, and general intensity of precipitation on wet days, adaptation actions such as
planting alternative species suitable for a warmer climate, appropriate watering to reduce susceptibility
to climate extremes, sanitation thinning, and changes in rotation length are worth considering [64].
In the case of impacts due to human-induced LC, Jeju actively regulates increases in LC by applying
the concept of “biodiversity offset”. As this aims to balance devastation and restoration [65], such a
direction in regulation is a promising way to promote sustainable landscape management decisions.
However, this study’s results suggest the necessity of focusing on LC at lower elevations and all
vegetation types on Jeju.

Table 5. Relevant polices in Jeju municipalities regarding climate change and biodiversity conservation.
Only directly related policies for vegetation management or restriction of development area were posed.

Relevant Policies Planned Project or Regulation

Jeju climate change adaptation action plan
(2012–2016)

Afforestation of tree species having economic benefit
Monitoring on protected area

Maintenance of blight for Pinus species
Prevention of and action on forest fires

Research on forest succession

Biodiversity offset scheme
Restrict development based on quality of biodiversity

in spatial context
Landscape management decision-making

considering the concept of biodiversity offset

In this study, though multiple factors were comprehensively studied, further analysis is required
by adding more factors that affect a variety of vegetation types. As for changes in EVI, major driving
forces, such as elevation of CO2, can be analyzed compared to the impact of climate and human factors.
There is evidence that the impact of CO2 has increased the greenness of vegetation for decades [66,67],
which explains 40% of the global trend of NDVI from 1982 to 2006 within changes in temperature and

www.jeju.go.kr
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precipitation [68]. In this study, the impact of CO2 could not be reflected due to a lack of regional
data. However, to better discuss the major driving forces and their impact pathways regarding
changes in vegetation growth, future consideration of CO2 and advances in monitoring data regarding
satellites and flux towers [69] are required. Furthermore, as for human influences, other considerations
(e.g., fire) can be made with advances in monitoring data on human impacts. However, though
there are limitations, the BN developed can be used to promote science-based adaptation policies by
offering comprehensive information on impact pathways considering multiple threats and informative
graphical illustrations of the multiple causalities.

5. Conclusions

To reflect vulnerable vegetation and to identify which prioritized risks need to be confronted,
multiple influences and their critical impact pathways must be considered. Applying a Bayesian
network is a powerful tool to illustrate the multiple causalities affecting vegetation health when
considering both climate and human influences. We confirmed that coniferous forests on Jeju
exhibited high vulnerability compared with mixed and deciduous forests and showed particularly
high susceptibility to the duration of frost, the degree of heat, and the general intensity of precipitation.
Such climatic influences are spatially broader compared with the impact of human-induced LC,
but human impacts clearly reduced the health of all three vegetation types. Existing policies on
Jeju have tended to have little consideration of identified critical climatic extremes and vulnerable
vegetation. Landscape management directions for LC are adequate, but it is necessary to emphasize the
threat to vegetation at lower elevation. To conclude, the elucidation of a causal network is particularly
useful to offer comprehensive information on multiple impacts and their relative importance to guide
the sustainable management of ecosystems.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/11/947/s1,
Figure S1: Validation of grid climate data.
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