Streamlined Life Cycle Assessment of an Innovative Bio-Based Material in Construction: A Case Study of a Phase Change Material Panel

Mohammad Davoud Heidari 1,2, Damien Mathis 1, Pierre Blanchet 1 and Ben Amor 1,2,*

- ¹ NSERC Industrial Research Chair on Ecoresponsible Wood Construction (CIRCERB), Forest and Wood Sciences Department, Université Laval, 2425 rue de la Terrasse, Quebec City, QC G1V 0A6, Canada; md.heidari@usherbrooke.ca (M.D.H.); damien.mathis.1@ulaval.ca (D.M.); pierre.blanchet@sbf.ulaval.ca (P.B.)
- ² Interdisciplinary Research Laboratory on Sustainable Engineering and Eco-design (LIRIDE), Faculty of Engineering, Civil Engineering and Building Engineering Department, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada
- * Correspondence: ben.amor@usherbrooke.ca; Tel.: +1-819-821-8000 (# 65974)

Table S1. Midpoint and endpoint impact categories based on IMPACT 2002+ and ReCiPe methods.

Method						
	IMPACT 2002+		ReCiPe			
	Category	Unit		Category	Unit	
	Carcinogens	kg C2H3Cl-eq		Climate change	kg CO2-eq	
	Non-carcinogens	kg C2H3Cl-eq		Ozone depletion	kg CFC-11-eq	
	Respiratory inorganics	kg PM2.5-eq		Terrestrial acidification	kg SO2-eq	
	Ionizing radiation	Bq C-14 eq		Freshwater eutrophication	kg P-eq	
	Ozone layer depletion	kg CFC-11-eq		Marine eutrophication	kg N-eq	
	Respiratory organics	kg C2H4-eq		Human toxicity	kg 1,4-DB-eq	
	Aquatic ecotoxicity	kg TEG water		Photochemical oxidant formation	kg NMVOC	
	Terrestrial ecotoxicity	kg TEG soil		Particulate matter formation	kg PM10-eq	
Midpoint	Terrestrial acid/nutri	kg SO2-eq	Midpoint	Terrestrial ecotoxicity	kg 1,4-DB-eq	
witapoliti	Land occupation	m ² org.arable	witapoint	Freshwater ecotoxicity	kg 1,4-DB-eq	
	Aquatic acidification	kg SO2-eq		Marine ecotoxicity	kg 1,4-DB-eq	
	Aquatic eutrophication	kg PO4-P-lim		Ionising radiation	kBq U235-eq	
	Global warming	kg CO2-eq		Agricultural land occupation	m²a	
	Non-renewable energy	MJ primary		Urban land occupation	m²a	
	Mineral extraction	MJ surplus		Natural land transformation	m ²	
				Water depletion	m ³	
				Metal depletion	kg FE–eq	
				Fossil depletion	kg oil-eq	
	Human health	DALY		Human Health	DALY	
Endpoint	Ecosystem quality	PDF.m ² .yr	Endpoint	Ecosystems	species.yr	
Enupoint	Climate change	kg CO2-eq	Enapoint	Resources	\$	
	Resources	MJ primary				

Life Cycle Stage	Environmental Concern	Checklist	Score	Matrix Cell	
		Use of toxic materials ($x > 80\%$)	0		
		Few toxic materials ($60\% < x < 80\%$)	1		
	Material Choice	Use toxic and virgin materials ($40\% < x < 60\%$)	2	(1,1)	
		Mostly virgin materials ($20\% < x < 40\%$) *	3		
		Use virgin materials (x < 20%)	4	_	
		Extraction energy use is much more than average ($x > 80\%$)	0		
		Extraction energy use is more than average ($60\% < x < 80\%$)	1		
	Energy Use	Extraction energy is around average (40% < x < 60%)	2	(1,2)	
		Extraction energy use is less than average $(20\% < x < 40\%)$	3		
		Extraction energy use is much less than average ($x < 20\%$)	4		
	Solid Residue	Extraction generates much more solid waste than main product ($x > 80\%$)	0	_	
		Extraction generates more solid waste than main product ($60\% < x < 80\%$)	1		
Pasauraa		Extraction generates solid waste same amount as main product ($40\% < x < 60\%$)	2	(1,3)	
Extraction		Extraction generates less solid waste than main product ($20\% < x < 40\%$)	3		
Extraction		Extraction generates much less solid waste than main product ($x < 20\%$)	4	_	
		Extraction generates much more liquid waste than main product ($x > 80\%$)	0		
		Extraction generates more liquid waste than main product ($60\% < x < 80\%$)	1		
	Liquid Residue	Extraction generates liquid waste same amount as main product ($40\% < x < 60\%$)	2	(1,4)	
		Extraction generates less liquid waste than main product ($20\% < x < 40\%$)	3		
		Extraction generates much less liquid waste than main product ($x < 20\%$)	4		
		Extraction emits dangerous gaseous emissions, combustion emission and CO_2 without exhaustion system (x > 80%)	0	_	
	Gaseous Residue	Extraction emits dangerous gaseous emissions, combustion emission and CO_2 with exhaustion system (60% < x < 80%)	em (60% 1		
		Extraction emits small amount of gaseous emissions $(40\% < x < 60\%)$	2		
		Extraction emits negligible amount of gaseous emissions ($20\% < x < 40\%$)	3		
		Extraction does not emit gaseous emissions ($x < 20\%$)	4		

Table S2. The guideline of the environmental performance scoring for the environmental concerns at resource extraction stage in the PCM panel system.

* The bold option and its corresponding score have been selected.

Life Cycle Stage	Environmental Checklist Concern		Score	Matrix Cell
		Use of toxic materials (x > 80%)	0	
		Few toxic materials (60% < x < 80%)	1	
	Material Choice	Use toxic and virgin materials (40% < x < 60%)	2	(2,1)
		Mostly virgin materials (20% < x < 40%)*	3	
		Use virgin materials (x < 20%)	4	_
		Manufacturing energy use is much more than average ($x > 80\%$)	0	
		Manufacturing energy use is more than average ($60\% < x < 80\%$)	1	
	Energy Use	Manufacturing energy is around average ($40\% < x < 60\%$)	2	(2,2)
		Manufacturing energy use is less than average ($20\% < x < 40\%$)	3	
		Manufacturing energy use is much less than average (x $<$ 20%)	4	_
	Solid Residue	Manufacturing generates much more solid waste than main product ($x > 80\%$)	0	
		Manufacturing generates more solid waste than main product ($60\% < x < 80\%$)	1	
Droduct		Manufacturing generates solid waste same amount as main product (40% < x < 60%) Manufacturing generates less solid waste than main product (20% < x < 40%)		(2,2)
Manufacturing				(2,3)
Manufacturing		Manufacturing generates much less solid waste than main product ($x < 20\%$)	4	_
		Manufacturing generates much more liquid waste than main product ($x > 80\%$)	0	
		Manufacturing generates more liquid waste than main product ($60\% < x < 80\%$)	1	
	Liquid Residue	Manufacturing generates liquid waste same amount as main product ($40\% < x < 60\%$)	2	(2,4)
		Manufacturing generates less liquid waste than main product ($20\% < x < 40\%$)	3	
		Manufacturing generates much less liquid waste than main product (x $< 20\%$)	4	_
		Manufacturing emits dangerous gaseous emissions, combustion emission and CO2 without exhaustion system	0	
		(x > 80%)	0	
		Manufacturing emits dangerous gaseous emissions, combustion emission and CO2 with exhaustion system	1	
	Gaseous Residue	(60% < x < 80%)	1	(2,5)
		Manufacturing emits small amount of gaseous emissions ($40\% < x < 60\%$)	2	
		Manufacturing emits negligible amount of gaseous emissions ($20\% < x < 40\%$)	3	
		Manufacturing does not emit gaseous emissions (x < 20%)	4	

Table S3. The guideline of the environmental performance scoring for the environmental concerns at manufacturing stage in the PCM panel system

* The bold option and its corresponding score have been selected.

Life Cycle	Environmental	Checklist	Score	Matrix
Stage	Concern	Chekhist	50010	Cell
		Use of toxic materials ($x > 80\%$)	0	
		Few toxic materials (60% < x < 80%)	1	
	Material Choice	Use toxic and virgin materials (40% < x < 60%)	2	(3,1)
		Mostly virgin materials (20% < x < 40%)	3	
		Use virgin materials (x < 20%)	4	_
		Transportation energy use is much more than average ($x > 80\%$)	0	
		Transportation energy use is more than average ($60\% < x < 80\%$)	1	
	Energy Use	Transportation energy is around average (40% < x < 60%)	2	(3,2)
		Transportation energy use is less than average $(20\% < x < 40\%)$	3	
		Transportation energy use is much less than average ($x < 20\%$)	4	_
	Solid Residue	Transportation generates much more solid waste than main product (x > 80%)	0	_
		Transportation generates more solid waste than main product ($60\% < x < 80\%$)	1	
Due due et		Transportation generates solid waste same amount as main product ($40\% < x < 60\%$)	2	(2.2)
Product		Transportation generates less solid waste than main product $(20\% < x < 40\%)$	3	(3,3)
Denvery		Transportation generates much less solid waste than main product ($x < 20\%$)	4	
		Transportation generates much more liquid waste than main product ($x > 80\%$)	0	-
		Transportation generates more liquid waste than main product ($60\% < x < 80\%$)	1	
	Liquid Residue	Transportation generates liquid waste same amount as main product $(40\% < x < 60\%)$	2	(3,4)
	-	Transportation generates less liquid waste than main product $(20\% < x < 40\%)$	3	
		Transportation generates much less liquid waste than main product (x < 20%)	4	
		Transportation emits dangerous gaseous emissions, combustion emission and CO2 without exhaustion system (x	0	-
		> 80%)	0	
		Transportation emits dangerous gaseous emissions, combustion emission and CO2 with exhaustion system (60%	1	
	Gaseous Residue	< x < 80%)	1	(3,5)
		Transportation emits small amount of gaseous emissions $(40\% < x < 60\%)$	2	
		Transportation emits negligible amount of gaseous emissions $(20\% < x < 40\%)$	3	
		Transportation does not emit gaseous emissions (x < 20%)	4	

Table S4. The guideline of the environmental performance scoring for the environmental concerns at product delivery stage in the PCM panel system.

Life Cycle Stage	Environmental Concern	Checklist	Score	Matrix Cell	
		Use of toxic materials ($x > 80\%$)	0		
		Few toxic materials (60% < x < 80%)	1		
	Material Choice	Use toxic and virgin materials (40% < x < 60%)	2	(5,1)	
		Mostly virgin materials (20% < x < 40%)	3		
		Use virgin materials (x < 20%)	4	_	
		Product usage energy use is much more than average ($x > 80\%$)	0	-	
		Product usage energy use is more than average $(60\% < x < 80\%)$	1		
	Energy Use	Product usage energy is around average (40% < x < 60%)	2	(5,2)	
		Product usage energy use is less than average ($20\% < x < 40\%$)	3		
		Product usage energy use is much less than average ($x < 20\%$)	4		
	Solid Residue	Product usage generates much more solid waste than main product ($x > 80\%$)	0	-	
		Product usage generates more solid waste than main product (60% < x < 80%)	1		
		Product usage generates solid waste same amount as main product (40% < x < 60%)	2	(F 2)	
Product use		Product usage generates less solid waste than main product $(20\% < x < 40\%)$	3	(5,3)	
		Product usage generates much less solid waste than main product (x < 20%)	4		
	Liquid Residue	Product usage generates much more liquid waste than main product ($x > 80\%$)	0	-	
		Product usage generates more liquid waste than main product $(60\% < x < 80\%)$	1		
		Product usage generates liquid waste same amount as main product (40% < x < 60%)	2	(5,4)	
		Product usage generates less liquid waste than main product $(20\% < x < 40\%)$			
		Product usage generates much less liquid waste than main product (x < 20%)	4		
		Product usage emits dangerous gaseous emissions, combustion emission and CO ₂ without exhaustion system ($x > 80\%$)	0	_	
	Gaseous Residue	Product usage emits dangerous gaseous emissions, combustion emission and CO ₂ with exhaustion ous Residue system $(60\% < x < 80\%)$		(5,5)	
		Product usage emits small amount of gaseous emissions $(40\% < x < 60\%)$	2		
		Product usage emits negligible amount of gaseous emissions (20% < x < 40%)	3		
		Product usage does not emit gaseous emissions (x < 20%)	4		

Table S5. The guideline of the environmental	performance scoring for th	ne environmental concerns a	at use stage in the PCM	panel system.

Table S6. The guideline of the environmental	performance scoring	g for the environmental conce	erns at end of life stage in the PCM	panel system.
()	· · · · · · · · · · · · · · · · · · ·	1	<i>(</i>)	

Life Cycle Stage	Environmental Concern	Checklist	Score	Matrix Cell
		Use of toxic materials ($x > 80\%$)	0	
Refurbishment		Few toxic materials ($60\% < x < 80\%$)	1	
Recycling,	Material Choice	Use toxic and virgin materials $(40\% < x < 60\%)$	2	(5,1)
Disposal		Mostly virgin materials (20% < x < 40%)*	3	
		Use virgin materials (x < 20%)	4	

	End of life energy use is much more than average ($x > 80\%$)	0	
	End of life energy use is more than average $(60\% < x < 80\%)$		
Energy Use	End of life energy is around average ($40\% < x < 60\%$)	2	(5,2)
	End of life energy use is less than average ($20\% < x < 40\%$)	3	
	End of life energy use is much less than average (x $< 20\%$)	4	_
	End of life generates much more solid waste than main product ($x > 80\%$)	0	-
	End of life generates more solid waste than main product (60% < x < 80%)	1	
Solid Residue	End of life generates solid waste same amount as main product $(40\% < x < 60\%)$	2	(5.2)
	End of life generates less solid waste than main product $(20\% < x < 40\%)$		(5,3)
	End of life generates much less solid waste than main product ($x < 20\%$)	4	
	End of life generates much more liquid waste than main product ($x > 80\%$)	0	-
	End of life generates more liquid waste than main product ($60\% < x < 80\%$) End of life generates liquid waste same amount as main product ($40\% < x < 60\%$) End of life generates less liquid waste than main product ($20\% < x < 40\%$)		
Liquid Residue			(5,4)
	End of life generates much less liquid waste than main product ($x < 20\%$)	4	
	End of life emits dangerous gaseous emissions, combustion emission and CO2 without	0	-
	exhaustion system (x > 80%)	0	
Comme	End of life emits dangerous gaseous emissions, combustion emission and CO2 with	1	
Gaseous	exhaustion system ($60\% < x < 80\%$)	1	(5,5)
Residue	End of life emits small amount of gaseous emissions $(40\% < x < 60\%)$		
	End of life emits negligible amount of gaseous emissions ($20\% < x < 40\%$)	3	
	End of life does not emit gaseous emissions ($x < 20\%$)	4	

* The bold option and its corresponding score have been selected.

	Unit	Wood ^a	PCM	Energy ^b	Other ^c
Carcinogens	kg C2H3Cl-eq	3.6E-02	2.8E-02	6.9E-03	7.3E-03
Non-carcinogens	kg C2H3Cl-eq	2.1E-02	9.9E-02	1.3E-02	5.6E-04
Respiratory inorganics	kg PM2.5-eq	1.3E-03	2.2E-03	1.6E-03	6.3E-05
Ionizing radiation	Bq C-14-eq	4.9E+00	4.8E+00	3.3E+01	3.7E-01
Ozone layer depletion	kg CFC-11-eq	7.3E-08	5.6E-08	4.3E-08	4.4E-09
Respiratory organics	kg C ₂ H ₄ -eq	7.0E-04	1.2E-03	1.8E-04	8.2E-05
Aquatic ecotoxicity	kg TEG water	1.2E+02	2.8E+02	1.1E+02	3.3E+00
Terrestrial ecotoxicity	kg TEG soil	4.0E+01	2.0E+02	3.2E+01	5.6E-01
Terrestrial acid/nutri	kg SO2-eq	1.9E-02	5.8E-02	2.5E-02	9.1E-04
Land occupation	m ² org.arable	1.9E-01	2.2E+00	2.8E-02	4.6E-04
Aquatic acidification	kg SO2-eq	4.6E-03	9.8E-03	1.0E-02	2.9E-04
Aquatic eutrophication	kg PO4 P-lim	1.7E-04	6.6E-04	2.8E-04	1.0E-05
Global warming	kg CO2 eq	6.8E-01	1.1E+00	1.5E+00	6.6E-02
Non-renewable energy	MJ primary	1.2E+01	1.0E+01	1.8E+01	2.3E+00
Mineral extraction	MJ surplus	4.3E-02	7.6E-02	7.2E-03	1.7E-03

 Table S7. Midpoint assessment of a PCM panel, considering IMPACT 2002+ method.

a. including MDF and HDF panels; b. including heating and electricity energies; c. including plastic bag, glue and waste scenarios.

Table 56. Wildpoint assessment of a 1 Civi panel, considering ReCir e 11, method.					
	Unit	Wood ^a	PCM	Energy ^b	Other ^c
Climate change	kg CO2-eq	7.1E-01	1.2E+00	1.6E+00	7.3E-02
Ozone depletion	kg CFC-11-eq	7.3E-08	5.6E-08	4.3E-08	4.4E-09
Terrestrial acidification	kg SO2-eq	4.4E-03	1.1E-02	9.3E-03	2.6E-04
Freshwater eutrophication	kg P-eq	2.2E-04	4.3E-04	7.4E-04	1.2E-05
Marine eutrophication	kg N-eq	1.9E-04	1.2E-02	3.0E-04	3.0E-05
Human toxicity	kg 1,4-DB-eq	3.1E-01	6.3E-01	5.3E-01	2.1E-02
Photochemical oxidant formation	kg NMVOC	3.7E-03	5.4E-03	4.2E-03	3.0E-04
Particulate matter formation	kg PM10-eq	2.2E-03	4.1E-03	3.1E-03	1.1E-04
Terrestrial ecotoxicity	kg 1,4-DB-eq	1.2E-04	1.4E+00	4.9E-05	6.2E-06
Freshwater ecotoxicity	kg 1,4-DB-eq	7.3E-03	2.5E-01	1.4E-02	1.8E-03
Marine ecotoxicity	kg 1,4-DB-eq	7.0E-03	3.9E-02	1.4E-02	1.7E-03
Ionising radiation	kBq U235-eq	4.8E-02	4.7E-02	3.1E-01	3.6E-03
Agricultural land occupation	m²a	1.7E+00	2.3E+00	1.9E-01	1.5E-03
Urban land occupation	m²a	2.4E-02	2.2E-02	1.1E-02	3.8E-04
Natural land transformation	m ²	2.3E-04	2.9E-03	3.4E-04	8.8E-06
Water depletion	m ³	1.6E-02	2.5E-01	2.9E-02	1.0E-03
Metal depletion	kg FE–eq	5.7E-02	1.1E-01	1.1E-02	1.8E-03
Fossil depletion	kg oil-eq	2.5E-01	2.2E-01	3.3E-01	4.8E-02

 Table S8. Midpoint assessment of a PCM panel, considering ReCiPe H, method.

a. including MDF and HDF panels; b. including heating and electricity energies; c. including plastic bag, glue and waste scenarios.

		Environmental Concern					
		Material Choice	Energy Use	Solid Residue	Liquid Residue	Gaseous Residue	Total
	Resource Extraction	3	2	3	3	3	14
	Product Manufacturing	3	1	2	3	2	11
Life Stage	Product Delivery *	-	-	-	-	-	0
Stage	Product Use *	-	-	-	-	-	0
	Refurbishment Recycling, Disposal	3	3	2	3	3	14
	Total (max: 12)	9	6	7	9	8	39

Table S9. Environmental Responsible Product Assessment for PCM panel.

* The use and delivery stages were not considered at this study.

ReCiPE- Midpoint- H		<u> </u>	IMPACT 2002+			BilanProduit		
Impact category	Unit	Total	Impact category	Unit	Total	Impact category	Unit	Total
Climate change	kg CO2 eq	3.54	Global warming	kg CO2 eq	3.31	GWP, 100 years	kg CO2-eq	1.73
Terrestrial acidification	kg SO2 eq	0.02	Terrestrial acid/nutri	kg SO2 eq	0.10	Acidification	kg SO2 eq	0.00
-	-	-	Aquatic acidification	kg SO2 eq	0.02	-	-	-
Freshwater eutrophication	kg P eq	0.00	Aquatic eutrophication	kg PO4 P-lim	0.00	Eutrophication (air, water, soil)	kg PO4-eq	0.00
Marine eutrophication	kg N eq	0.01	Carcinogens	kg C2H3Cl eq	0.08	-	-	-
Freshwater ecotoxicity	kg 1,4-DB eq	0.27	Non-carcinogens	kg C2H3Cl eq	0.13	-	-	-
Marine ecotoxicity	kg 1,4-DB eq	0.06	Aquatic ecotoxicity	kg TEG water	500.41	Aquatic ecotoxicity	kg 1,4-DB eq	0.28
Terrestrial ecotoxicity	kg 1,4-DB eq	1.44	Terrestrial ecotoxicity	kg TEG soil	269.79	-	-	-
Ozone depletion	kg CFC-11 eq	0.00	Ozone layer depletion	kg CFC-11 eq	-	-	-	-
Human toxicity	kg 1,4-DB eq	1.31		-	-	Human Toxicity	kg 1,4-DB eq	0.83
Photochemical oxidant formation	kg NMVOC	0.01	Respiratory organics	kg C2H4 eq	0.00	Photochemical pollution	kg C ₂ H ₄	0.00
Particulate matter formation	kg PM10 eq	0.01	Respiratory inorganics	kg PM2.5 eq	0.01	-	-	-
Ionising radiation	kBq U235 eq	0.14	Ionizing radiation	Bq C-14 eq	14.44	-	-	-
Agricultural land occupation	m²a	4.92	Land occupation	m²org.arable	2.48	-	-	-
Urban land occupation	m²a	0.06	Non-renewable energy	MJ primary	37.47	Non-Renewable Energy	MJ eq	47.65
Natural land transformation	m ²	0.00	Mineral extraction	MJ surplus	0.12	Resource consumption	kg Sb eq	0.02
Water depletion	m ³	0.29						
Metal depletion	kg Fe eq	0.17						
Fossil depletion	kg oil eq	0.80						

Table S10. The comparison of results of the full LCA and simplified LCA tool (BilanProduit) for a PCM panel.