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Abstract: Pinus massoniana and P. hwangshanensis are two conifer species located in southern China,
which are of both economic and ornamental value. Around the middle and lower reaches of the
Yangtze River, P. massoniana occurs mainly at altitudes below 700 m, while P. hwangshanensis can be
found above 900 m. At altitudes where the distribution of both pines overlaps, a natural introgression
hybrid exists, which we will further refer to as the Z pine. This pine has a morphological character
that shares attributes of both P. massoniana and P. hwangshanensis. However, compared to the other
two pines, its reproductive structure, the pinecone, has an ultra-low ripening rate with seeds that
germinate poorly. In this study, we aimed to find the reason for the impaired cone maturation by
comparing transcriptome libraries of P. massoniana and Z pine cones at seven successive growth
stages. After sequencing and assembly, we obtained unigenes and then annotated them against
NCBI’s non-redundant nucleotide and protein sequences, Swiss-Prot, Clusters of Orthologous
Groups, Gene Ontology and KEGG Orthology databases. Gene expression levels were estimated
and differentially expressed genes (DEGs) of the two pines were mined and analyzed. We found
that several of them indeed relate to reproductive process. At every growth stage, these genes are
expressed at a higher level in P. massoniana than in the Z pine. These data provide insight into
understanding which molecular mechanisms are altered between P. massoniana and the Z pine that
might cause changes in the reproductive process.
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1. Introduction

Gymnosperms have their own unique way of reproduction. Microspores grow into pollen
carrying sperm cells, while megaspores develop into the megagametophyte. The archegonium forms
during development of the megagametophyte. Then, pollen enter ovule through micropyle, they move
towards the egg by way of extending a pollen tube, after which fertilization occurs. Finally, the embryo
is formed and develops into a gymnosperm seed.

Conifers possess a series of properties that makes exploring their molecular biology through a
genomics approach challenging, such as a long life cycle, a reproductive process lasting months or
even years, a gigantic genome size and so forth [1,2]. We aimed to explore the molecular mechanism
of conifer reproduction by generating transcriptome data through RNA-seq, of successive stages of
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the developing pinecone. RNA-seq technology has advanced to the stage where it is highly efficient,
sensitive and accurate.

By studying the expression dynamics of differentially expressed genes (DEGs) in pinecones,
we sought to gain insight into the relevant genes that control the reproductive process of conifers.
Previous empirical studies have suggested several genes linked to reproduction, such as DAL [3],
MADS-box [4,5], MYB [6] and MSI [7] and so forth. However, studies of the determinants of
development and regulation of reproduction have concentrated on model angiosperm species so
far, while gymnosperms remain largely understudied.

We centered our studies around two types of conifers, naturally occurring in China. First,
Pinus massoniana, also known as the masson pine, is an economically important conifer species. It is
mainly distributed in various southern Chinese provinces, at altitudes below 700 m around the middle
and lower reaches of the Yangtze River. It offers wood and pulp for manufacturing furniture and paper
and also supplies natural resin, which can be further manufactured into ‘resin,’ a crucial product used
in the maintenance of instrument strings and as an ingredient in medicine. Furthermore, P. massoniana
fulfills a significant ecological role by replacing or compensating natural forest destruction due to its
fast growth and abundant biomass.

The second, Pinus hwangshanensis, primarily grows in southeastern China. It grows most
abundantly at an altitude above 900 m around the middle and lower reaches of the Yangtze River.
Growing at a higher altitude limits its speed of growth, as well as accumulation of biomass and the
resin compared to P. massoniana. P. hwangshanensis is often viewed as luxurious and graceful, making it
an ideal ornamental tree.

Mountain Lushan (Figure 1a) is located within the distribution area of both conifer species.
Its peak has an altitude of 1474 m and it supports both P. massoniana and P. hwangshanensis vegetation at
the afore mentioned altitudes. Where P. massoniana and P. hwangshanensis distribution overlaps,
a natural introgression hybrid of both species occurs, sharing phenotypic characters of both its
parents (Figure 1b) [8,9]. Due to the hybrid not being named yet, we refer to it as the ‘Z pine’ in
this article. The Z pine has an extremely low germination and ripening rate compared to both
P. massoniana and P. hwangshanensis [10]. These characters could indicate that the Z pine displays
genetic incompatibilities during fertilization and/or even embryonic development. What causes this
phenomenon is still unknown.

In this study, we collected seven successive development stages of open-pollinated cones
P. massoniana and the Z pine, respectively. Then we characterized the transcriptome of these cones using
Illumina high-throughput sequencing technology and forty two cDNA libraries were constructed.
A series of experiments was performed to mine candidate genes, focusing on differential expression
patterns between these two species. Moreover, differentially expressed genes related to fertilization
and embryonic development were determined and analyzed in both taxa. This study could help
explaining the defect of the Z pine of its unusual low ripening rate and germination rate, comparing
to P. massoniana and may provide an approach to understanding difference between species and its
introgressive hybrid at the transcriptome level.
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Figure 1. (a) Location of Mountain Lushan. Mt. Lushan lies in Jiujiang City, Jiangxi Province, China. 
The Great Han Yang Peak, the highest point of the mountain, is 1,474 m high. The local climate is 
humid, subtropical; (b) Schematic diagram of main distribution area of P. hwangshanensis, the Z pine 
and P. massoniana on Mt. Lushan. 

2. Materials and Methods 

2.1. Sample Collection 

Differently staged, openly pollinated cones of P. massoniana and the Z pine were collected on Mt. 
Lushan, Jiujiang, China (Table 1, Figure 2). Due to complex environment of forest land and wind-

Figure 1. (a) Location of Mountain Lushan. Mt. Lushan lies in Jiujiang City, Jiangxi Province, China.
The Great Han Yang Peak, the highest point of the mountain, is 1474 m high. The local climate is
humid, subtropical; (b) Schematic diagram of main distribution area of P. hwangshanensis, the Z pine
and P. massoniana on Mt. Lushan.

2. Materials and Methods

2.1. Sample Collection

Differently staged, openly pollinated cones of P. massoniana and the Z pine were collected on
Mt. Lushan, Jiujiang, China (Table 1, Figure 2). Due to complex environment of forest land and
wind-pollinated way of pine, sampled individuals (especially the Z pine) may possess different level of
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introgressive background. In order to minimize the different between them, we assigned five maternal
trees of each taxa (P. massoniana or the Z pine) in its sample plot. Experience tells us that P. massoniana
carries out its pollination at around 10 April while the Z pine at around 20 April at sample plots.
Aware of this condition, we conducted our first sample collection on 27 April (Table 1), when both
P. massoniana and the Z pine are already pollinated. The cones were packed with aluminum-foil shortly
after collection and then immediately submerged in liquid nitrogen, after which they were stored in a
−80 ◦C freezer until RNA extraction.

Table 1. Information on the geographical sites of sample collection of P. massoniana and the Z pine.

Species

Sample Code Location

Open Pollinated Cones of the
1st Year

Open Pollinated Cones of
the 2nd Year Longitude

(E)
Latitude

(N)
Altitude

(m)APR.
27

MAY
25

JUL.
27

SEPT.
25

APR.
27

JUL.
27

SEPT.
25

P. massoniana MA MB MC MD ME MF MG 116.04 29.50 78

the Z pine ZA ZB ZC ZD ZE ZF ZG 115.98 29.54 730
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Figure 2. Successively staged pine cones of P. massoniana (a) and the Z pine (c). Details of mature 
cones of MG (b) and ZG (d) stages are shown. The scale shields of P. massoniana are flat or slightly 
bulged, the transverse ridge is not very obvious, and the scale umbilical has no thorn. The scale shield 
of the Z pine is bulged, the transverse ridge is obvious, and the scale umbilical is thorny. Codenames 
for collected cones are explained in Table 1. (Scale = 10 mm.). 

2.2. RNA Extraction and Sequencing 

We randomly collected three to six cones for RNA isolation of each sample code to make sure 
that these cones and their RNA could be representative. Cones were taken from the -80°C freezer and 

Figure 2. Successively staged pine cones of P. massoniana (a) and the Z pine (c). Details of mature cones
of MG (b) and ZG (d) stages are shown. The scale shields of P. massoniana are flat or slightly bulged,
the transverse ridge is not very obvious, and the scale umbilical has no thorn. The scale shield of the
Z pine is bulged, the transverse ridge is obvious, and the scale umbilical is thorny. Codenames for
collected cones are explained in Table 1. (Scale = 10 mm.).

2.2. RNA Extraction and Sequencing

We randomly collected three to six cones for RNA isolation of each sample code to make sure
that these cones and their RNA could be representative. Cones were taken from the −80◦C freezer
and briefly re-frozen in liquid nitrogen to further weaken tissue, cut into pieces, after which sections
containing ovules (or seeds) were collected and crushed. RNA was extracted from each sample using
the Bioteke Plant RNA Extraction Kit (Beijing, China). Three replications of RNA were extracted for
each sample code. Purity and quality of the RNA samples was checked respectively by measuring
260 nm/280 nm UV absorption values with a Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA,
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USA) and examining the RIN (RNA Integrity Number) with an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA).

After RNA extraction, magnetic oligo (dT) beads were used to purify mRNA, which was then
collected using RNeasy RNA reagent. The mRNA was then cut into small fragments using the RNA
Fragment Reagent (Illumina, San Diego, CA, USA) and subsequently cleaned using an RNeasy
RNA Cleaning Kit (Qiagen, Germany). First-strand cDNA was then synthesized using MMLV
reverse transcriptase (Takara, Japan), while second-strand cDNA synthesis was performed using
DNA Polymerase I and RNase H. cDNA was finally sequenced on an Illumina Hiseq X Ten (Illumina,
USA). The sequencing raw data were submitted to the NCBI Short Reads Archive (SRA) database
under the BioProject accession number PRJNA482692.

2.3. Data Processing and Assembly

The raw RNA-seq data was screened by removing adaptor and low quality sequences using
Trimmomatic [11]. Qualified reads were assembled into non-redundant transcripts by Trinity [12,13],
using the following parameters: –min_contig_length 200 –min_kmer_cov 2 –min_glue 3 –seqType fq,
other parameters use default settings. Contigs were assembled by Trinity, gathered and processed
by TGICL [14], the parameters of TGICL are as follows: -l 40 -c 10 -v 25 -O -repeat_stringency 0.95
-minmatch 35 -minscore 35. After which unigenes were collected.

2.4. Functional Annotation

Unigenes were generally annotated by aligning against SwissProt (Release-2016_07) [15],
NCBI non-redundant protein sequences (Nr, Release-20160314), NCBI non-redundant nucleotide
sequences (Nt, Release-20140514) [16], Kyoto Encyclopedia of Genes and Genomes (KEGG, Release
59.3) [17,18], Cluster of Orthologous Groups of proteins (COG, Release-20090331) [19] and Gene
Ontology (GO) [20] databases, selecting the most likely annotations. Blast2GO (v2.5.0) [21] was
conducted as GO annotation tool against GO database (Release-201604) under default settings.
Furthermore, analysis of GO function and KEGG pathways of differentially expressed genes
was performed.

2.5. Differentially Expressed Genes (DEGs) and Gene Expression Pattern Analysis

Calculation of unigene read counts was performed using RNA-Seq by Expectation-Maximization
(RSEM) software [22]. RSEM results were transformed into FPKM [23] values (expected number
of Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced), commonly
used for measuring gene expression levels. DESeq was used to determine differentially expressed
genes of different transcript libraries [24]. Differentially expressed genes were assigned based on a
threshold value of FDR (false discovery rate) ≤ 0.001 and|log2Ratio| ≥ 2. Gene expression patterns of
P. massoniana and the Z pine were assembled by Short Time-series Expression Miner (STEM) [25].

2.6. Validation by Quantitative Real-Time PCR (qRT-PCR)

Quantitative real-time PCR was applied for validating differentially expressed genes detected by
our RNA-seq analysis. Primers were designed using the NCBI Primer-Blast Tool [26] and synthesized
by Generay Biotech Co., Ltd. (Shanghai, China). cDNA samples for qRT-PCR were synthesized using
the Vazyme HiScript II Q RT SuperMix for qPCR (Nanjing, China). qRT-PCR was carried out using an
Applied Biosystems 7500 PCR cycler (Thermo Fisher Scientific Corporation, CA, USA) and Vazyme
ChamQ SYBR qPCR Master Mix (Nanjing, China) as reaction reagent kit. Each sample was run in
triplicate, with samples having a final volume of 20 µL: containing 10 µL of ChamQ SYBR qPCR
Master Mix (2×), 0.4 µL of each primer, 2 µL of cDNA and 7.2 µL of ddH2O. The reaction program
was according to standard product instructions. An Actin gene that was discovered from RNA-seq
data (Unigene69821_All) was utilized as reference gene. The qRT-PCR data was analyzed with the
2−∆∆Ct method [27].
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3. Results

3.1. Illumina Sequencing and Assembly

A total of 160 Gb raw data was obtained. It has an average of 53 million reads per library.
We evaluated the quality of the original and clean sequencing data of all samples. The Q30 value has a
range of 88.49~92.33 % for the original sequencing data (Table S1) and a range of 91.75~94.31% for the
clean data (Table S2), indicating that this data set is ready for further assembly. All transcripts that we
obtained from the staged pine cones of our two conifer species were assembled into 93,291 unigenes
(see Materials and methods for details, Table 2). About 39.88% of them exceeded 2 kb in length, while
37.02% unigenes have a length from 1 kb to 2 kp and 23.1% were 100 bp to 1 kb (Figure S1). The average
length of unigenes is 1987 nt, while N50 is 2494 nt.

Table 2. Number and length of unigenes.

Sample Total Number Total Length (nt) Mean Length (nt) N50

MA 77,051 89,621,989 1163 1875
MB 75,111 86,567,730 1153 1838
MC 85,801 96,687,090 1127 1833
MD 78,553 88,590,120 1128 1834
ME 78,223 87,067,948 1113 1813
MF 76,159 84,583,542 1111 1800
MG 100,035 87,128,148 871 1400
ZA 68,015 80,547,061 1184 1893
ZB 76,206 88,922,013 1167 1882
ZC 81,570 90,787,807 1113 1824
ZD 74,227 84,044,527 1132 1823
ZE 66,146 76,428,873 1155 1833
ZF 73,004 79,225,689 1085 1789
ZG 85,392 86,084,303 1008 1708
All 93,291 185,359,493 1987 1 2494 2

1,2 When all samples are assembled, they would express much higher abundance than single samples, therefore the
data of ‘All’ is usually higher than others.

3.2. Functional Annotation of P. massoniana and Z Pine Unigenes

The assembled unigenes were annotated against the SwissProt, NCBI non-redundant protein and
nucleotide sequences (Nr and Nt), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of
Orthologous Groups of proteins (COG) and Gene Ontology (GO) databases. A total of 86,006 unigenes
were annotated in P. massoniana and the Z pine, of which 25,150 unigenes were annotated against all
six databases (Figure S2).

We were able to annotate most genes using the Nr database, using sequences from Picea sitchensis
for the bulk of the annotation (30,943), after which Amborella trichopoda (7055) and Indian lotus (4504)
provided most annotations, suggesting that these sequenced species are most closely related to
P. massoniana and the Z pine (Figure S3).

We then used data from the COG, GO and KEGG databases for unigene functional prediction.
Using the COG database, 30,017 unigenes could be annotated and were classified into 24 functional
categories. The ‘general function prediction only’ was the most abundant, followed by ‘transcription’
and ‘replication, recombination and repair,’ ’function unknown’ and ‘signal transduction mechanisms’
(Figure 3).

A total of 229,950 redundant unigenes (with 38,619 nonredundant unigenes) were annotated into
56 sub-categories under three primary GO categories: biological process, cellular component and
molecular function (Figure 4). The top three sub-categories were metabolic process (23,854 unigenes),
cellular process (22,439 unigenes) and catalytic activity (20,324 unigenes).
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The KEGG classification placed 41,931 unigenes into 5 pathway functional categories
(Figure 5): organismal systems (5474 unigenes), metabolism (37,045 unigenes), genetic information
processing (9684 unigenes), environmental information processing (2871 unigenes) and cellular
processes (1487 unigenes). The top three sub-categories out of a total of 18 were ‘global map,’
‘environmental adaptation’ and ‘carbohydrate metabolism,’ which contains 14,748, 5350 and 4965
unigenes, respectively.
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3.3. Analysis of Expected Number of Fragments per Kilobase of Transcript Sequence per Million Base Pairs
Sequenced (FPKM)

FPKM values were calculated using RSEM software. The general density distribution of
expression quantity (Figure 6) was analyzed and showed that the average total of expressed mRNAs
across all unigenes of P. massoniana and the Z pine varies between species and stages.
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3.4. GO Classification and KEGG Enrichment Assessment of Differentially Expressed Genes (DEGs) at
Successive Pinecone Stages

We determined and compared the number of up- and down-regulated genes between the two pine
species at the seven different developmental stages of the pine cones collected (Figure 7 and Figure S4).
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In comparison group A, C and G, more down-regulated genes were found than up-regulated ones,
while in group B, D, E and F, there was more up-regulated genes than down-regulated ones (Figure 7).
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To gain more insight in differential regulation of genes related to the pinecone reproductive
process, we performed GO classification of all DEGs at every developmental stage (Figure S5).
The number of differentially expressed unigenes classified in the ‘reproduction’ category under
‘biological process’ at each stage is listed (Figure S6). Three groups displayed more up- than
down-regulated genes: ZA-MA, ZD-MD and ZF-MF. While the other four groups showed more
down- than up-regulated genes: ZB-MB, ZC-MC, ZE-ME and ZG-MG. The ZG-MG group contains
101 down-regulated genes, almost double the number of up-regulated genes (51 genes).

We then determined whether specific cellular processes are differentially affected at each pinecone
stage by performing a KEGG pathway enrichment analysis (Figure S7).

3.5. Quantitative Real-Time PCR Validation

We randomly selected five unigenes for validation of the accuracy of our RNA-seq data set using
qRT-PCR. The following unigenes were randomly chosen: Unigene12135_All, Unigene31229_All,
Unigene5965_All, Unigene69986_All and Unigene71003_All. We tested cDNA derived from four
samples: MA, ME, ZA, ZE, which were collected in different years from the two different species.
Details of sequences and primers were list on Tables S3 and S4, respectively. Validation results shows a
reliable correlation between RNA-seq and qRT-PCR (Figure S8).

3.6. Temporal Gene Expression Profiles of P. massoniana and the Z Pine

We analyzed gene expression dynamics of all unigenes across pinecone developmental stages
for both species and clustered these into 49 unique expression profiles. The eighteen most frequently
occurring profiles for each species are shown in Figure 8a. Within P. massoniana, the top five expression
profile types are 16, 10, 31, 34 and 40, with respectively 8416, 7967, 5532, 3291 and 3092 genes showing
these expression dynamics. In the Z pine the most frequently occurring profiles are profile types 40,
10, 27, 29 and 44, represented by 5610, 4336, 3441, 3371 and 3361 genes. P. massoniana and the Z pine
shared fourteen profile types among their respective top 18 profiles (Figure 8a). In addition, we carried
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out a profile comparison between P. massoniana and the Z pine. Every single profile of P. massoniana is
listed and similar ones of Z pine are placed on the right of it in Figure 8b.
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Figure 8. (a) Eighteen expression patterns of P. massoniana (M) and the Z pine (Z) based on the highest
number of genes having these particular patterns. The number on the upper left of each square
indicates profile type, the number on the lower left indicates the number of genes within each profile,
the fold line shows the expression pattern, colored squares are significant profiles while white ones are
insignificant profiles; (b) All P. massoniana (M) patterns compare to its similar ones in the Z pine (Z).
The most left column of each part is profiles of P. massoniana while their similar Z pine counterparts are
list on the right, significant profiles of M are marked profile numbers and colors.

3.7. Reproductive Genes Are Differentially Expressed between P. massoniana and the Z Pine

Next, we aimed to see whether genes related to reproduction might be differentially expressed
between P. massoniana and the Z pine, potentially explaining the reproductive problems that the Z
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pine experiences. We looked for several DEGs involved in processes such as pollen development,
pollen exine formation, pollen tube growth and development of the female gametophyte, endosperm,
embryo and/or embryo sac according to recent reports (Table S5). Some of these genes show
consistently higher expression in P. massoniana than in the Z pine, including: ACA7 (Ca2+-ATPase),
MPK4 (mitogen-activated protein kinase), QRT2 (polygalacturonase), TKPR1 (tetraketide alpha-pyrone
reductase 1), PI5K (phosphatidylinositol 4-phosphate 5-kinase), PMEs (pectin methylesterase),
SEC6 (exocyst complex component 6), SEC15 (exocyst complex component 15), SWK2 (slow walker 2),
PPR (pentatricopeptide repeat-containing protein), EMB (embryo), LEA (late embryogenesis abundant
protein), SERK (somatic embryogenesis receptor kinase), BLH (BEL1-like homeodomain protein)
(Figure 9). Some genes relate to reproduction show a similar expression level in both pines, such as:
SHT (spermidine hydroxycinnamoyl transferase), SEC5 (exocyst complex component 5), SEC8 (exocyst
complex component 8), EYE (embryo yellow), EDD1 (embryo defective development 1) and EDA
(embryo sac development arrest).
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Figure 9. Expression levels of DEGs related to the reproductive process at successive pinecone
developmental stages of P. massoniana and the Z pine. Expression level values in this figure have
been transformed to a log10(FPKM+1) value. (a) pollen development; (b) pollen exine formation; (c)
pollen tube growth; (d) female gametophyte; (e) embryo development; (f) embryo sac.

ACA7 belongs to the auto-regulated Ca2+-ATPase family, which is exclusively detected in
developing flowers of Arabidopsis and participates in the regulation of Ca2+ homeostasis [28]. MPK4
plays an important role in plant growth, development and male fertility [29]. QRT2 is necessary
for pollen grain separation and is also involved in pollen development [30]. TKPR1 takes part
in a biosynthetic pathway leading to hydroxylated α-pyrone compounds [31]. SHT encodes an
acyltransferase that conjugates spermidine to hydroxycinnamic acids, impacting the composition of the
Arabidopsis pollen wall [32,33]. NPG1 in Arabidopsis is specifically required for pollen germination [34]
and not for pollen development [35]. A type B PI5K mediates Arabidopsis and Nicotiana pollen tube
growth by regulating apical pectin secretion [36]. PMEs and its pro-region adjust cell wall dynamics
of growing pollen tubes in Nicotiana tabacum [37]. The exocyst contributes to the morphogenesis
of polarized cells in many eukaryotes, for example, SEC8 facilitates the initiation and maintenance
of polarized growth of pollen tubes [38]. SWK2 has an essential role in the coordinated mitotic
progression of the female gametophyte in Arabidopsis [39]. Absence of CRINKLY4 could cause an
inhibition of aleurone, which is in charge of differentiation normal progression over the endosperm
surface development [40]. PPR is required for embryo and seed viability in Arabidopsis, its absence
leading to embryo abortion [41,42]. EYE controls golgi-localized proteins, that have an important
role in cell and organ expansion [43]. EDD1 encodes plastid and mitochondria, functional absence
mutation of EDD1 causes embryo lethality [44]. LEA and SERK play key roles during embryogenesis
and SERK is essential for embryogenic competence [45,46]. Misexpression of BLH1 leads to a cell-fate
switch of synergid to egg cell in the Arabidopsis eostre mutant embryo sac [47].
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4. Discussion

4.1. Gymnosperm Gene Annotation Using Transcriptome Data

Transcriptome analysis based on RNA sequencing is an effective way to explore the huge
genomes of plants like gymnosperms. Several RNA sequencing studies related to gymnosperms have
previously been reported [48–51]. Yet until now few studies have focused on the development of Pinus
reproductive organs. In Pinus tabuliformis, unusual bisexual cones were found; here, the gene expression
pattern of MADS-box transcription factors, FT/TFL1-like and LFY/NDLY genes was compared between
unisexual and bisexual cones [52]. In Pinus bungeana, 39.62 Gb of RNA sequencing data was analyzed
from two kinds of sexual cones, obtaining 85,305 unigenes, 53,944 (63.23%) of which were annotated in
public databases [53].

In this study, we collected a total of 160 Gb of RNA sequence data from P. massoniana and its
introgression hybrid at seven different stages of pinecone development. N50 is a key parameter in
genome or transcriptome assembly. It is defined as the sequence length of the shortest contig at 50%
of the entire genome or transcriptome length. In principle, the higher the N50 value, the better the
sequencing quality. We obtained an N50 of 2494 bp in all-unigene, compared to previously obtained
values of (N50 = 551 bp) for Picea abies [48] and (N50 = 1942 bp) for P. bungeana [53], which means the
quality of our sequencing data improves on previously available data.

A total of 30,943 genes (47.05%, rank 1) were annotated to Picea sitchensis through the Nr database,
with further annotations being 1174 (1.79%, rank 7) to Pinus tabuliformis, 1074 (1.63%, rank 8) to Pinus
taeda, 697 (1.06%, rank 12) to Pinus monticola, 401 (0.61%, rank 18) to Pinus radiata and 376 (0.57%,
rank 19) to Picea abies; all these species are conifers and belong to the Pinaceae family. Out of these,
two (Pinus taeda and Picea abies) had their genomes sequenced [1,54]. The genome sizes of Pinus taeda
and Picea abies are 21.6 Gb and 19.7 Gb, respectively. Pines have an estimated genome size ranging
from 18 Gb to 40 Gb [55–57]. This indicated that a lot of novel genes in P. massoniana and the Z pine
still completely unknown and expect to discover more in the future.

4.2. Impact of Introgression in Expression Levels

Introgressive hybridization implies repeated backcrossing of hybrids with parental species [58].
Hybridization between pines exists frequently in nature [59,60]. As the pollen of pines is mainly
moved by wind, it could spread to a vast area. In that case, the element consisting of individuals could
be with various proportions of parental genomes. Therefore, those differences between individuals
could lead to diversity on gene expression, particularly in genes relate to reproduction. In sample
collection, we conducted mixture of cones for each sample code and also made a mixture apply to
RNA isolation to reduce the possible expression bias through analysis process.

4.3. Differential Expression of Reproductive Genes Could Relate to Delayed Maturation of Z Pinecones

Within the Pinus genus, some female cones take 1.5 to 3 years to mature after pollination, while for
P. massoniana and the Z pine specifically, it takes around 1.5 years to do that. Around the middle and
lower reaches of the Yangtze River, these two pines are often pollinated in April and mature cones
emerge in November of the next year, a long time compared to most angiosperms. The structure of
a pinecone is rather complex compared to an angiosperm flower. Therefore, more genes relate to
reproduction may exist in cone than in flower and more pathways of these genes may occur in this
process also.

Genes directly related to reproduction in gymnosperms have only rarely been reported. One
of them is MADS genes, which are well studied relatively, for example in Gnetum spp. [61,62],
Ginkgo biloba [63], Picea abies [64] and Cryptomeria japonica [4]. LEAFY is also a crucial kind of gene that
involve in reproductive process in Welwitschia mirabilis [65] and Pinus caribaea var. Caribaea [66], as well
as NEEDLY in Pinus radiata [67]. We collected several such genes from model plants (e.g., Arabidopsis
thaliana) and analyzed their expression level in the two pines. We found that ACA7, MPK4, QRT2,
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TKPR1, PI5K, PMEs, SEC6, SEC15, SWK2, PPR, EMB, LEA, SERK, BLH1 showed a higher expression
level in P. massoniana than in the Z pine. This result indicates that the Z pine may have a lowered
expression level of genes related to pollen development, pollen exine formation, pollen tube growth
and female gametophyte, embryo and/or embryo sac development, compared to P. massoniana. This
outcome provides further understanding towards a possible molecular mechanism responsible for the
altered reproduction process of the Z pine in comparison to P. massoniana.

5. Conclusions

P. massoniana and P. hwangshanensis mainly grow in southern China and produce an introgression
hybrid, which we here temporarily named ‘the Z pine,’ on Mt. Lushan, where both species can be
found. This Z pine has morphological characters derived from both parent species, yet has an ultra-low
germination and ripening rate. In order to understand the molecular mechanism that might be causing
this delayed reproduction, we collected cones from P. massoniana and the Z pine of seven successive
developmental stages and determined their transcriptome. Herein we might discover differentially
expressed genes underlying the observed reproductive delay. We obtained 93,291 unigenes with an
average length size of 1987 bp and 2494 bp of N50. We identified significantly differentially expressed
genes (DEGs) in all seven cone growth stages. We screened for DEGs related to reproduction, such as
pollen tube growth, development of the female gametophyte and embryo and so forth. Several
potentially vital genes were identified and the expression levels of the two pines were compared and
analyzed. These results may offer insight into the molecular mechanisms of reproductive process
between the two pines and several other plants that with similar differential mode.
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