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Abstract: Exotic non-native Pinus species have been widely planted or become naturalized in
many parts of the world. Pines rely on ectomycorrhizal (ECM) fungi mutualisms to overcome
barriers to establishment, yet the degree to which host specificity and edaphic preferences influence
ECM community composition remains poorly understood. In this study, we used high-throughput
sequencing coupled with soil analyses to investigate the effect of host plant identity, spatial distance
and edaphic factors on ECM community composition in young (30-year-old) native (Pinus massoniana
Lamb.) and exotic (Pinus elliottii Engelm.) pine plantations in China. The ECM fungal communities
comprised 43 species with the majority belonging to the Thelephoraceae and Russulaceae. Most
species were found associated with both host trees while certain native ECM taxa (Suillus) showed
host specificity to the native P. massoniana. ECM fungi that are known to occur exclusively with
Pinus (e.g., Rhizopogon) were uncommon. We found no significant effect of host identity on ECM
communities, i.e., phylogenetically related pines shared similar ECM fungal communities. Instead,
ECM fungal community composition was strongly influenced by site-specific abiotic factors and
dispersal. These findings reinforce the idea that taxonomic relatedness might be a factor promoting
ECM colonization in exotic pines but that shifts in ECM communities may also be context-dependent.

Keywords: ectomycorrhizal fungi; host origin; host specificity; Pinus massoniana; Pinus elliottii

1. Introduction

Plantation forestry has been widely used to accelerate reforestation, offset greenhouse gas
emissions, and relieve timber demands from native forests [1]. Fast-growing and high-yielding
exotic tree species such as Pinus and Eucalyptus are intensively planted in monocultures and frequently
introduced outside their natural range. However, a tree species planted outside its native range
can have dramatic and long-lasting impacts on biogeochemical cycling (carbon, nitrogen), water
and nutrient availability, and mycorrhizal communities [2,3]. Here, we focus on ectomycorrhizal
(ECM) fungi, the ubiquitous symbiont of many forest trees, and Pinus (pine), the most widely planted
plantation tree [4].

Pines are obligately dependent on symbioses with ECM fungi for nutrient uptake, growth and
plant survival, and ECM are therefore important components of forest management. More than
200 species of ECM fungi representing 54 genera have been intentionally introduced in the roots of pine
seedlings during the development of large-scale plantations [5]. This co-introduction has facilitated
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a massive range expansion of the ECM–Pinus mutualism, a situation that is widely compared to
co-invasion (or ‘enemy escape’ [4,6–9]). Exotic pines may also form novel symbioses with native
ECM fungi or cosmopolitan mutualists [10]. Nevertheless, plants may be limited by the availability of
compatible ECM fungal inoculum. Exotic pine ECM communities are remarkable for their low species
richness (<50 taxa) in comparison to native ECM forests [11], and an abundance of ECM taxa that are
almost exclusively associated with Pinaceae (e.g., Suillus, Rhizopogon [12,13]).

Such low-diversity limitations may reflect both neutral (dispersal) and niche processes (abiotic
factors; e.g., [14–17]). Studies show that longer distances (>10 km) may limit the stochastic dispersal of
fungal propagules from one location (native forest) to another (plantation) whereas deterministic traits
such as dispersal via spores [14,18] versus mycorrhizal root tips and hyphal networks may operate at
finer scales [19–22]. In addition, biotic (e.g., host nutrient demands, seed dispersal) and abiotic factors
(e.g., soil chemistry) may facilitate ECM fungal species with physiological and ecological adaptations
depending on the environmental context [23].

Recent evidence has demonstrated that phylogenetic distance between exotic and native hosts
might explain their (dis)similarities in ECM community composition and richness [24,25]. For example,
studies have shown that co-occurring exotic pine and native trees host similar ECM fungal communities
and share the same dominant ECM fungal species [8,10,26–28]. Most ECM fungal species were also
host generalists and, as a result, species-specific ECM taxa were rare [29,30]. Conversely, other studies
show that hosts in different subgenera (e.g., hard pines vs. soft pines) better explained the covariation
between exotic and native pines and their ECM communities [10,25]. Thus, a major challenge is to
disentangle the effects of host phylogeny from environmental covariation on ECM-host interactions.

Here, we examined the influence of phylogenetic relatedness, distance, and environmental factors
on ECM communities in plantations of exotic slash pine (Pinus elliottii Engelm.) adjacent to native
Pinus massoniana Lamb. (masson pine) at two sites. Our study sites were selected to represent forests
with inherent differences in soil N and P fertility. Both plantations were located in southern China.
Plantations comprise ~69 million hectares of forest in China, or ~36% of the total forest area [31].
Masson pine is a slow-growing, dominant native species in native forests in subtropical China. Slash
pine was introduced from the southeastern U.S. during reforestation efforts in the 1920s [32], and is
now one of the most popular plantation timber species due to its high-quality timber, fast growth, and
resistance to insect damage [33]. The standardized forestry practices (e.g., thinning) used across both
study sites makes this a model system in which to examine the effects of native versus exotic pines on
ECM communities. We used high-throughput sequencing analyses of ECM communities coupled with
analyses of soil physicochemical properties to address two questions:

(1) Do closely related exotic and native host species support similar ECM communities?
(2) To what extent do neutral (dispersal) versus niche (abiotic factors) shape ECM assemblages in

exotic and native pines?

2. Materials and Methods

2.1. Study Sites

The study was carried out at two forest areas of south China, Longli Forest Farm, Guizhou
Province (LFF, 26◦45′ N, 106◦45′ E), and Hunan Botanic Garden, Hunan Province (HBG, 28◦60′ N,
113◦20′ E) (Figure S1). LFF has a subtropical humid climate characterized by abundant precipitation
and mild temperatures; mean annual precipitation is 1077 mm and average temperatures is 15 ◦C.
The soil is a well-drained sandy-loam yellow soil developed from quartz sandstone parent rock,
classified as Hapli-Udic Ferrosols according to the Chinese Soil Taxonomic Classification System
(CSTC [34]). In HBG, the climate is typical mid-range subtropical monsoonal with mean annual
precipitation of 1422 mm and annual air temperature of 17.2 ◦C. The soil is a well-drained clay-loam
red soil developed from slate parent rock, classified as Alliti-Udic Ferrosols by the CSTC. Both masson
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pines and slash pine plantations were planted in 1988 as monocultures after clear-cutting of mixed
evergreen broadleaved (Fagaceae)-conifer mixed forests (masson pines).

In each site and forest type, two (HBG) or three (MA) 20 × 20 m plots were established at least
50 m apart; the small stand size in HBG limited the number of plots possible (Figure S1). Within each
plot, five randomly selected mature pine trees (DBH 15–20 cm) separated by at least 4 m were selected
as ‘island’ trees.

2.2. Sampling Methods

We sampled the ECM community in each site and tree species using a combination of sporocarp
surveys (collected monthly since August 2015) and hyphal in-growth bags. In-growth bags were made
of anti-static polyester fabric with 50 µm diameter pores and filled with sand (0.6~1.8 mm) that had
been washed with 5% (v/v) HCl and 10% (v/v) H2O2, thoroughly rinsed with deionized water, and
dried. Such bags allow for efficient, well-replicated community sampling of active ECM fungi hyphae
growing in soil [35,36]. In July 2016, we planted three 5 × 5 cm mesh bags under each island tree.
Bags were buried 45 cm from the base of the tree along one of the four cardinal directions, and 5 cm
below the soil surface (A horizon). Additional bags containing sand were stored in the laboratory as
negative controls. All bags were harvested in October 2016 and transported to the laboratory over
ice. At harvest, soil cores (5 cm diameter × 10 cm deep) were collected next to each buried bag. Soil
cores were homogenized and pooled by each ‘island’ tree, sieved to 2-mm to remove gravel and coarse
organic matter, and used for soil physical and chemical analyses.

2.3. Soil Physicochemical Analysis

Soil pH was determined in a soil suspension with soil: water ratio of 1:2.5 (w/v) using a Delta
320 pH-meter (Melter-Toledo Instruments Co., Shanghai, China). Soil texture was determined by
the hydrometer method for estimating particle size. Soil ammonium (NH4-N), nitrate (NO3-N),
and phosphate (PO4) were extracted with 2M KCl and measured using a continuous flow analyzer
(SAN++, Skakar, Breda, Holland). Available potassium (K) was determined on ammonium acetate
extraction by flame photometry (Model FP6410; Jingke Ltd. Co. Shanghai, China). Total N was
measured using Semi-micro-Kjedahl digestion with a mixture of H2SO4, K2SO4, CuSO4 and Se.
Additional soil samples were digested with HNO3: HCl (1:3), and analyzed for total P using a
molybdenum colorimetric method and macro- or micronutrients (Ca, Mg, Fe, Cu, Pb, Zn, Mn) using
atomic absorption spectrophotometry (Mode AA-7000; Shimadzu Corp. Nakagyo-ku, Kyoto, Japan).
Soil samples for organic matter analysis were oven-dried at 105 ◦C, milled and sieved through 0.25 mm
mesh and analyzed by wet combustion method (Walkley-Black procedure) with potassium dichromate.

2.4. Molecular Identification of Ectomycorrhizal Fungal Community

Fungal hyphae were obtained from the mesh bag following [36]. Briefly, each bag was emptied
into a sterile 50 mL centrifuge tube, 10 mL of sterile deionized water was added and each tube was
vortexed for 2 min. After a 5 min settling period, the top 2 mL of suspension was transferred to a new,
sterile 2 mL centrifuge tube and the contents pelleted via centrifugation. Hyphal pellets were pooled
by ‘island tree’, which yielded 55 samples from forest types across both the LFF and HBG sites. We also
extracted DNA from 18 different ECM sporocarps that had been collected opportunistically from both
sites. These extracts were only used to create a positive control (or mock ECM community) comprising
equimolar aliquots of genomic DNA from each fungal species (Table S2). We did not include these
fungi in analyses of masson and slash pine ECM communities because sporocarp sampling was
infrequent, and local farmers collect edible ECM sporocarps (e.g., Lactarius) in pine plantations.

DNA from sample mesh bags and negative controls (bags stored in the laboratory) was extracted
using Mobio PowerSoil kit (Hercules, CA, USA) following the manufacturer’s instructions for
maximum DNA yield. The ITS1 region of the fungal rDNA subunit was amplified by polymerase
chain reaction (PCR) (95 ◦C for 2 min, followed by 25 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C
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for 30 s and a final extension at 72 ◦C for 5 min) using primers ITS1F and ITS2 [37]. PCR reactions
were performed in triplicate—20 µL mixture containing 4 µL of 5 × FastPfu Buffer, 2 µL of 2.5 mM
dNTPs, 0.8 µL of each primer (5 µM), 0.4 µL of FastPfu Polymerase, and 10 ng of template DNA.
Amplicons were extracted from 2% agarose gels and purified using the AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, USA) according to the manufacturer’s instructions and
quantified using QuantiFluor™-ST (Promega, Fitchburg, WI, USA). Purified amplicons were pooled
in equimolar concentrations and paired-end sequenced (2 × 250 bp) on an Illumina MiSeq platform
according to the standard protocols at Majorbio Technic Group Laboratory, Shanghai, China.

Raw Illumina fastq files were demultiplexed and quality-filtered using QIIME v1.17 [38] with
the following criteria: reads were truncated at any site receiving an average quality score of <20 over
a 50-bp sliding window; truncated reads shorter than 50 bp were discarded; any read containing
one or more ambiguous base calls was discarded; only sequences that overlapped by more than
10 bp were assembled according to their overlap sequence. Reads that could not be assembled were
discarded. The ITS1 sub-region was then extracted from each sequence using FungalITSextractor
(http://emeren-cia.org/FungalITSextractor.html) [39]. Operational units (OTUs) were initially
clustered with 97% similarity cutoff by USEARCH v7 [40] and followed by de novo chimera checking
using the UNITE-QIIME reference (http://unite.ut.ee/repository.php) [41]. All global singletons were
removed to avoid data artifacts [42,43]. Taxonomy was assigned using NCBI BLAST+ v2.2.29 [44]
and a custom database compiled from sequences in UNITE v7 and vouchered mushrooms collected
from the field sites. The mycorrhizal status of OTUs was tentatively assigned using the ‘FUNGuild’
algorithm [45] and checked manually [46].

After bioinformatic processing, we first calibrated our clustering threshold [47] and cut-off for
low abundance OTUs [48]. To do so, we examined and compared the number and abundance of OTUs
recovered after sequencing versus the original composition of the mock ECM community (Table S2).
Using 97% clustering threshold resulted in the recovery of 22 species out of the 18 species. Adjusting
the clustering threshold to 96.8% (de novo UCLUST) resulted in the recovery of the correct number
of species (Table S2). Analyses also showed that four sequence reads (OTU read abundance ≥4) was
the lowest cut-off that was not significantly different from a 10-sequence threshold (p > 0.05; pairwise
Wilcoxon rank-sum tests). We used this value as a conservative threshold for taxon inclusion in the
species richness analysis.

DNA sequences in this study have been deposited in Sequence Read Archive of the NCBI database
under accession number SRP113701.

2.5. Statistical Analyses

All statistical analyses were conducted in R v3.3.2 (R Foundation for Statistical Computing;
available at http://www.R-project.org) with indicated packages.

Prior to all tests, read abundances were normalized using the ‘metagenomeSeq’ package [49],
since rarefaction may reduce the sensitivity of analyses [50,51]. Soil properties were standardized
using scale transformation (function ‘scale’ in R). Data sets were then checked for multi-collinearity
among variables using the variation inflation factor (VIF) function of the ‘FMSB’ package, and highly
correlated variables removed (variation inflation factor scores >5: C, K, Cu, Fe, % sand and clay).

We calculated ECM species richness (S), evenness (Shannon–Wiener index), estimated species
richness (Chao1 richness), and species accumulation curves (Mao Tau) for each sample. Differences
in species richness and evenness between host tree species and sites were analyzed using two-way
analysis of variance (ANOVA) with post-hoc Tukey Honestly Significant Difference (HSD) tests for
significant variables. Indicator species analysis was used to identify OTUs unique to each host species
and site (‘indicspecies’ [52]). This analysis was based on presence-absence of each ECM fungal OTU
in each ‘focal’ tree. The indicator values were group-equalized and their statistical significance was
tested by a randomization procedure with 999 permutations. Heat maps and network-based analyses
(Cytoscape 3.7.0 [53]) were used to visualize the number of ECM species that were cosmopolitan
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(present in all forest types), specific to a host species or site (i.e., only detected in one forest type) or
broadly dispersed (found in two or three sites).

Next, an ECM community distance matrix (Bray–Curtis dissimilarity, OTU abundances) and
environmental matrix (Euclidean dissimilarity, spatial distance and soil properties) were constructed.
We tested for differences in ECM community and soil properties between sampling sites and host
species using permutational multivariate analysis of variance (PERMANOVA; adonis function in
vegan, 999 permutations), and multivariate homogeneity of group dispersions (betadisper function in
vegan). Patterns of ECM community dissimilarity were visualized using non-metric multidimensional
scaling (NMDS). Differences in community structure were compared visually using centroids and 95%
confidence intervals associated with a χ2-distribution around the standard error of the centroid.
To disentangle the relative importance of soil factors controlling ECM community composition,
we identified and fitted significant environmental vectors to the NMDS (envfit function in vegan;
999 permutations). Mantel tests were used to directly compare geographic distances with community
composition differences (mantel.rtest in ade4 package) and to determine differences in spatial scaling
between sites (mgram in ecodist package). These analyses were run using both abundance-based and
presence–absence ECM community data. Both analyses showed similar results (data not shown), and
only the abundance-based data are presented.

3. Results

Our initial dataset included a total of 2,921,761 raw sequence reads. After quality filtering, there
were 1,992,789 sequences for downstream analysis, with an average of 37,060 (±12,664 standard error
(SE)) reads per sample. These sequences clustered to 403 OTUs. Eighty-percent of the sequences
(1,593,614) were identified as putative ECM fungal species.

The ECM community comprised a broad range of phylogenetic lineages. A total of 43 ECM fungal
species were assigned to 16 genera, many of which were native to China. The most abundant taxa were
Russula and Tomentella with 10 OTUs each (Table 1; Figure 1). The majority of ECM species were either
cosmopolitan (14%) and found in all sites with both tree species (e.g., Cenococcum) or broadly dispersed
across sites and/or species (63%; e.g., Tylospora, Clavulina; Table 1; Figures 1 and 2). In contrast, Suillus
OTU_963 and Lactarius OTU_984 were specific to masson pine in both LFF and HBG while ECM
specific to slash pine were site dependent, e.g., Lactifluus in LFF and Chloridium OTU_349 in HBG.
Further, fewer fungal taxa were indicator species in masson pine than slash pine (IndVal; Table 1).
Analyses showed that ECM fungi of other native pines (e.g., P. yunnanensis) were indicator species
of masson pine. In contrast, a variety of ECM were indicator species in slash pine, including taxa
that were best matched to pines in North America (Clavulina) and Eastern Europe (Pseudotomentella;
Table 1). We also found significant differences in ECM community between sites (Figures 1 and 2),
whereby 44% of ECM fungal species were specific to HBG or LFF. Of the 43 ECM species identified in
the study, 16 were recovered only in LFF, most of which were species of Pseudotomentella (2 species),
Tomentella (6 species), or Russula (5 species). Conversely, only three ECM were restricted to HBG:
Laccaria OTU_1219, Chloridium OTU_349, and Russula OTU_1000.
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Figure 2. A network map showing the interactions of the OTUs among all the samples from different
hosts at each site. Each point represents one independent fungal OTU (43 OTUs in total). OTUs in the
left column were unique to one forest type, while those in the right belonged to multiple forest types.
LFF—Longli Forest Farm; HBG—Hunan Botanic Garden.

Rarefaction curves showed that the number of ECM fungal species was higher in LFF than HBG.
However, species richness did not reach saturation, suggesting that additional ECM species could
be added with further sampling (Figure 3). Host × Site interactions influenced both observed and
estimated ECM fungal richness (Table 2). Species richness was significantly higher in slash than
masson pine at LFF whereas there was no significant difference in richness between pine species at
HBG. Species evenness was significantly higher in slash than masson pines (Table 2).
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Table 1. Indicator species analyses. The table shows the number of ectomycorrhizal (ECM) fungal molecular taxa (OTU) significantly associated with each habitat
type, their indicator species value [52] and associated probability. Based on species hypotheses, the distribution area and possible host species was assigned by closest
similar representative sequence data in UNITE. MA-masson pine, SL-slash pine.

Site Species Name OTU No. Indicate Value p-Value
Closest BLAST

Match in
Genbank

Closest UNITE
Species Hypothesis

Match
Distribution 1 Host of Pinus

Longli Forest Farm, LFF
MA Russula virescens OTU_988 0.683 0.003 KU552087 (100) SH179772.07FU China not indicated

Russula violeipes OTU_1007 0.619 0.012 LT201954 (100) SH191296.07FU Yunnan (China) P. yunnanensis
Russula.sp1 OTU_992 0.447 0.05 LT602950 (97) SH218430.07FU Yunnan (China) P. yunnanensis

SL Amphiema.sp OTU_1264 0.961 0.001 LC176645 (100) SH193510.07FU China P. massoniana
Tomentella stuposa OTU_1154 0.856 0.001 UDB024437 (100) SH529807.07FU Laos not indicated

Clavulina corralloides OTU_1120 0.816 0.001 KF359593 (94) SH220215.07FU North America P. banksiana
Russula sp.2 OTU_990 0.774 0.001 AB636419 (93) SH218466.07FU Korea P. koraiensis
Russula sp.3 OTU_993 0.682 0.001 AB211253 (95) SH186553.07FU Japan P. densiflora

Tomentella sp.1 OTU_1157 0.632 0.001 UDB018462 (97) SH010050.07FU China not indicated
Tomentella sp.2 OTU_1129 0.632 0.002 UDB018462 (99) SH010050.07FU China not indicated

Pseudotomentella sp1 OTU_1027 0.628 0.011 AB839386 (100) SH223400.07FU East Europe P. sylvestris
Pseudotomentella sp2 OTU_1025 0.577 0.011 AB587791 (100) SH189639.07FU China P. massoniana

Tomentella.sp.3 OTU_1133 0.516 0.011 AB587791 (100) SH189639.07FU Japan, Korea P. thunbergii
Site Russula sp.4 OTU_989 0.941 0.001 AB211253 (99) SH186553.07FU Japan not indicated

Pseudotomentella sp.3 OTU_1026 0.913 0.001 AB839386 (100) SH223400.07FU East Europe P. sylvestris

Hunan Botanic Garden, HBG
MA Russula sp.5 OTU_983 0.785 0.001 AB839393 (100) SH201481.07FU South China P. massoniana

Laccaria amethystina OTU_1219 0.548 0.015 KF692988 (100) SH220964.07FU China, Japan P. densiflora
Laccaria aurantia OTU_1191 0.547 0.03 KU685645 (99) SH179274.07FU Yunnan (China) P. yunnanensis

SL Russula sp.6 OTU_1000 0.577 0.001 UDB032527 (100) SH189355.07FU Laos not indicated
Tomentella.sp.4 OTU_1158 0.577 0.044 AB587783 (100) SH189355.07FU a.w. multiple

Russula sp.7 OTU_1001 0.576 0.006 KP866130 (99) SH199912.07FU Hunan (China) P. elliottii
Site Tomentella sp.5 OTU_1155 0.891 0.003 JX556209 (100) SH189353.07FU South China not indicated

Scleroderma sp.1 OTU_1164 0.772 0.006 KP866131 (100) SH189277.07FU Hunan (China) P. elliottii
1 a.w.-reprehensive sequences have wild distribution all over the world.
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Table 2. Single-sample based observed operational taxonomic unit (OTU) richness, Chao1, and Shannon-Wiener indices for ECM fungal communities from all forest
types across the sites. Different letters indicate significant differences among forest types based on Tukey Honestly Significant Difference (HSD) post-hoc test (p < 0.05).

Analysis of Variance (ANOVA) Test

Mean (Standard Error) of Index

Longli Forest Farm (LFF) Hunan Botanic Garden (HBG)

Masson Pine
(n = 15)

Slash Pine
(n = 15)

Masson Pine
(n = 10)

Slash Pine
(n = 15)

Observed Richness

F P
Host 2.11 0.152 7.07

(0.62) b
10.33
(0.8) a

7.50
(1) ab

6.27
(0.53) bSite 7.95 0.007

Interaction 9.31 0.004

Chao1

F P
Host 0.43 0.513 8.13

(0.88) ab
11.32
(0.8) a

8.85
(1.6) ab

6.77
(0.71) bSite 5.36 0.025

Interaction 7.51 0.008

Shannon

F P
0.47

(0.09) b
0.72

(0.1) a
0.30

(0.09) b
0.58

(0.12) a
Host 5.49 0.023
Site 2.93 0.174

Interaction 0.02 0.899
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Figure 3. Sample-size-based species accumulation rarefaction (solid line segment) and extrapolation
(dotted line segments) sampling curves with 95% confidence intervals (shaded areas) for estimated total
ectomycorrhizal OTU richness across different host/sites. LFF—Longli Forest Farm; HBG—Hunan
Botanic Garden.

NMDS ordination coupled with PERMANOVA analyses (Table 3) showed that ECM communities
differed significantly between Site and Host (Figure 4). This distribution was nonrandom (PERMDISP;
Table 3), and best explained by site (R2 = 0.151, p = 0.001) rather than host plant (R2 = 0.057, p < 0.02;
Table 3). NMDS also showed strong influence of local soil factors on ECM community. Although soil
factors varied significantly between Site and Host (Table 3; see supplementary Table S1), the largest
effects were detected between sites (R2 = 0.929, p = 0.001). In particular, levels of soil N (including N as
NO3), P, and K were higher in HBG than LFF whereas macronutrients (Ca, Mg, Mn) and silt levels
were higher in LFF than HBG (Table S1). Within each site cluster, HBG ECM communities were more
homogeneous than those in LFF (PERMDISP; Table 3).
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Table 3. PERMANOVA analyses performed to test the differences in ECM fungal community and
soil properties among forest types. Post hoc PERMDISP pair-wise analysis tests were applied to data
from all forest types across the sites. Values represent the site mean with standard error in parentheses.
Different letters indicate significant differences among forest types based on Tukey HSD post-hoc test
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ECM communities scaled very differently between sites. In LFF, ECM communities were more
similar than expected by chance within ~10 m (Figure 5). In HBG, ECM communities were also more
similar than expected at ~10 m and 350 m but more dissimilar than expected at spatial scales ranging
from ~80 m to 400 m (Figure 5). Within each site, however, host effects on ECM community and
soil property scaling were not correlated (LFF Mantel test: r = −0.0675, p = 0.63; HBG Mantel test:
r = 0.0196, p = 0.73, respectively).
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Figure 5. Mantel correlogram showing the strength of the correlation between spatial proximity and
ectomycorrhizae for samples within different distance species composition classes in (a) Longli Forest
Farm and (b) Hunan Botanic Garden. Points are plotted at the midpoint of each distance class. Solid
circles represent significant correlations (p < 0.05), and open circles show correlations that are not
significantly different from zero (p > 0.05).

4. Discussion

In this study, we systematically investigated the effect of host plant identity, distance and edaphic
factors on ECM community composition in native and exotic pine plantations using hyphal ingrowth
bags and high throughput sequencing. Although the hyphal ingrowth bag approach has its limitations
(see [54]), we found no significant effect of plant identity on ECM communities, i.e., phylogenetically
related exotic and native pines shared similar ECM communities (Q1). In the absence of a phylogenetic
effect, we found that ECM community composition was influenced by site-specific abiotic factors and
dispersal (Q2).

The few differences in ECM community between slash and masson pine (both subgenus Pinus)
reinforces the idea that taxonomic relatedness might be a factor influencing ECM fungal colonization
in exotic pines. Plant–ECM interactions are also believed to be conserved at the family level [55].
Analogous results have been noted in previous studies of ECM in native and exotic pines [8,10,24,26].
However, other studies have found that ECM host specialization contributes significantly to the
composition of ECM communities [25,56]. Although the reason(s) for these opposing responses are
not clear, they may reflect differences in the evolutionary co-adaptation between ECM fungi and their
host [25,30], or differences in host range [57].

We found that exotic slash pine readily developed ECM with native fungi. Overall, the ECM
community in exotic pine plantations was composed of a subset of the ECM fungi usually associated
with native pines in their native ranges. Other studies have similarly shown a restricted suite of
ECM species in exotic pine species (e.g., [12]). However, masson and slash pines exhibited very little
systematic differences in ECM community composition and relative abundance of ECM species. Most
of the recorded ECM fungi are considered cosmopolitan with the result that out of 43 ECM fungal
taxa identified, 40 were associated with non-native slash pine (vs 35 in masson). Compositionally,
members of the Thelephoraceae (e.g., Tomentella) emerged as the most species-rich, frequent and
abundant genera on both pine species and sites. These taxa typically dominate ECM communities in
many systems [58], form ECM with a wide range of plant host species, and exhibit broad ecological
profiles [59,60]. Along with Inocybe and Laccaria, these taxa also form relatively long-lived spore banks
that have the capacity to rapidly colonize roots of new plants [16]. This is important because it indicates
that in plantations there is an ECM community that can immediately assist with reforestation.

Only a small number of ECM species displayed host specificity. Inspection of ECM communities
shows that certain ECM fungi were specific to masson or slash pine. Clavulina corralloides (OTU_1120)
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and Pseudotomentella (OTU_1025) were only found with slash pine. Sequence similarity shows that
they are best matched with species of known North American (Clavulina) and Eastern Europe origin
(Pseudotomentella). These species were likely co-introduced with slash pine. Suillus OTU_963- masson
pine was an example of strict host specificity in both sites. Based on sequence similarity, this species is
part of a distinct Asian Suillus clade [61], and its high masson pine- ECM specificity is consistent with
patterns reported in other Suillus- pine associations [62]. The low abundance of Rhizopogon and Suillus
in both pine species, however, was unexpected. These ECM genera are considered pine-specific [63]
and abundant in pine roots in other ECM surveys (e.g., [20]). Yet, neither taxa were indicator species
in masson or slash pine. These conflicting results may be due to the fact that Rhizopogon and Suillus are
early successional taxa, and ECM fungal communities in 30 year-old plantation trees are not reflective
of seedling ECM communities [64]. That Rhizopogon was equally abundant in both pine species and
sites, however, supports the wide ecological amplitude of this taxon [65] and suggests that Rhizopogon
has dispersed to these sites in the past and formed soil reservoirs of resistant spores that remain
dormant in the soil for long periods [66].

We found that edaphic factors best explained the differences in ECM community composition
between sites, not host specialization. Initially, we had expected ECM communities primarily to
be structured by host plant identity. However, they were structured by differences in soil pH and
nutrient levels between sites. Specifically, ECM communities in HBG were shaped by soil pH and
macronutrient (N, P, K) levels whereas those in LFF were influenced by silt, Mn and base cations
(Mg, Ca). These differences suggest that ECM fungi are limited by niche requirements (or abiotic
tolerances) and that different ECM fungi may be available to plants depending on soil chemistry. This
strong edaphic segregation is similar to previous large-scale ECM studies [14,67–69]. In addition, the
correlation between soil N and P (and pH) and ECM community composition in HBG is consistent
with previous work in forest systems showing a strong role for soil fertility (primarily N) in driving
ECM community composition and richness (e.g., [70–74]).

More interestingly, the ECM community composition in LFF was correlated with soil Ca,
Mg and Mn, and silt. In addition, many ECM species were detected in LFF but not HBG (e.g.,
Tomentella, Russula), which suggests that there are underlying physiological differences in ECM species
that influence ECM community composition. Soil Mn levels are known to influence ECM fungi
differentially [75]. Calcium and Mg are important plant macronutrients but have not been found to
influence ECM community composition or favor certain ECM species in other studies [76]. The specific
mechanism(s) driving this response is beyond the scope of this study. However, there are several
possible processes that could generate this pattern: Soil Mn, Ca, and Mg availability is linked to soil
pH, so that the response of ECM communities to these cations signals the effects of soil pH [77]. Plant
morphology also varies with soil fertility meaning that major differences in root traits (root length, fine
root density) could indirectly alter the ECM community [78]. Alternatively, the abiotic correlates of
LFF and HBG ECM communities may simply reflect the idiosyncrasies in soil types that developed
from two different parent materials.

We found consistent and strong spatial structuring of ECM populations in both study sites.
Within each site, the highest spatial autocorrelation occurred at small scales (<5 m). This result
lends support to dispersal limitation in our sites [79], and is in general agreement with the degree of
spatial patterning found in temperate forests [21,30,66,80]. As a result, these ECM communities likely
comprise individuals that are closely related or have similar environmental requirements. Against this
backdrop, we found that ECM fungal taxa co-occurred less often than expected by chance (segregation)
at ~80 and 400 m in HBG; a similar result was noted by Yamamoto et al. [81].

One possibility is that microhabitat differentiation inside HBG may have created a mosaic of
environments that provided conditions for ECM fungi with varying environmental requirements [82].
Alternatively, there may be competition between ECM species [83] or between ECM and endophytic
fungi for resources, such as host C [80]. These patterns may also be attributed to differences in ECM
phenology or hyphal exploration networks. For example, ECM fungi with medium or long-distance
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exploratory hyphae (e.g., Tomentella, Tylospora) might compete over larger distances so that there is
open space for colonization by second and subsequent ECM species with contact- or short-range
hyphae (Russula). Distinguishing between these possibilities is beyond the scope of this study but
merits further investigation.

5. Conclusions

Our data sets provide important insights for separating the impact of host phylogenetic
relatedness from abiotic and spatial factors on ECM community composition. Our results revealed
that phylogenetic relatedness between pine trees resulted in a similar ECM community composition
in both sites, and slash and masson pine were not limited by the availability of compatible ECM
fungal inoculum. Instead, both dispersal and soil factors were stronger drivers of differences in ECM
community composition between sites, meaning that ECM fungal communities in exotic pines are
variable and context-dependent. In managed forests, improved productivity is reliant on belowground
resource availability, uptake, and use efficiency, all of which are driven by ECM. Given the importance
of soil and spatial factors in our study, there is now a need to better understand and align soil conditions
with ECM fungi across a range of spatial scales, and identify how differences in ECM community
functioning might feed back to influence host tree growth and productivity.
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Figure S1: Map of sampling regime and sampling locations across the continental China. Circles represent
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of south China. (B) Individual plots 20 × 20 m within a sampling site are shown in Longli Forest Farm, Guizhou.
(C) Individual plots 20 × 20 m within a sampling site are shown in Hunan Botanic Garden, Hunan. lat, latitude;
lon, longitude, Table S1: Soil physico-chemical characteristics among different habitats, Table S2: Comparison of
sequence abundances and operational taxomomic unit (OTU) counts in a mock community of 18 Basidiomycota
species collected in local area.
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