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Abstract: Forests across the globe are faced with a rapidly changing climate and an enhanced
understanding of how these changing conditions may impact these vital resources is needed. Our
approach is to use DISTRIB-II, an updated version of the Random Forest DISTRIB model, to model
125 tree species individually from the eastern United States to quantify potential current and future
habitat responses under two Representative Concentration Pathways (RCP 8.5 -high emissions
which is our current trajectory and RCP 4.5 -lower emissions by implementing energy conservation)
and three climate models. Climate change could have large impacts on suitable habitat for tree
species in the eastern United States, especially under a high emissions trajectory. On average, of the
125 species, approximately 88 species would gain and 26 species would lose at least 10% of their
suitable habitat. The projected change in the center of gravity for each species distribution (i.e., mean
center) between current and future habitat moves generally northeast, with 81 species habitat centers
potentially moving over 100 km under RCP 8.5. Collectively, our results suggest that many species
will experience less pressure in tracking their suitable habitats under a path of lower greenhouse
gas emissions.

Keywords: climate change; tree species suitable habitat; random forest model; DISTRIB-II; eastern
United States

1. Introduction

The climate is changing, globally becoming warmer almost every year in recent decades. Risks
associated with this warming are high, sometimes manifesting into multiple, broad threats to
humanity [1] and the economy [2]. The recent Intergovernmental Panel on Climate Change (IPCC)
report on the impacts of global warming of 1.5 ◦C above pre-industrial levels, and in comparison to
impacts of 2.0 ◦C, describes many ‘Reasons for Concern’ related to efforts to strengthen the global
response to the threat of climate change, sustainable development, and efforts to eradicate poverty [3].
Even so, with current pledges in the Paris Agreement on Climate Change, ~2.6–3.2 ◦C of warming
is projected by 2100, though the Agreement aims to limit global warming “well below 2 ◦C” and
to “pursue efforts” to limit temperatures above pre-industrial levels to 1.5 ◦C [4]. The biodiversity
implications of these various levels of warming are huge, as outlined in Warren, et al. [5], where
climatically determined geographic range losses exceeding 50% were projected for 44%, 16%, and
8% of plants by 2100, corresponding to warming of 3.2, 2.0, and 1.5 ◦C, respectively. Even though
climatically determined range losses do not equate with actual distributions of plants because trees live
a long time while harboring great genetic diversity, the potential effects of climate change on the biota

Forests 2019, 10, 302; doi:10.3390/f10040302 www.mdpi.com/journal/forests

http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0001-9501-471X
http://www.mdpi.com/1999-4907/10/4/302?type=check_update&version=1
http://dx.doi.org/10.3390/f10040302
http://www.mdpi.com/journal/forests


Forests 2019, 10, 302 2 of 28

of the planet are staggering. Meanwhile, the co-benefits of limiting the amount of warming towards
the 1.5 ◦C path are immense.

As a consequence of the range of these potential changes, models are needed to provide a suite of
possible outcomes, by species, to assist decision makers to minimize biological impacts and to adapt to
the coming changes. Adaptation planning has been accelerating, whether by motivation or mandate.
For example, the Northern Institute of Applied Climate Science (NIACS), associated with the USDA
Forest Service, has facilitated nearly 300 adaptation demonstrations or projects on forest lands over the
last 10 years in the north central and northeastern United States via their Adaptation Workbook [6],
www.forestadaptation.org. Model outputs are critical for understanding vulnerability and evaluating
possible adaptation avenues, particularly when considering transitional or facilitated outcomes [7–9].

To arrive at reliable and informative models of how tree species may respond to a rapidly changing
climate, a diverse and dynamic field has emerged, where continued refinement affords new insights.
Statistical models and mechanistic models form a dichotomy of how one approaches predicting
future change and each has their strengths and weaknesses [10,11]. Demography approaches add
another useful dimension to modeling potential futures [12,13], as do paleoecologic studies [14,15].
Hybrid approaches, which use a combination of modeling methods, may also provide key insights not
otherwise uncovered [16–19]. Nonetheless, primary themes from all modeling studies indicate the
value of forests in the overall climate equation and the high potential for eventual forest composition
and productivity changes in the future [20,21].

With passing time, the evidence is mounting that changes are indeed occurring in forest
composition and productivity. Evidence of migration of tree species along elevational gradients
(up or down) has been mounting for some time, along with the ecological explanations for such
movements [22–30]. However, latitudinal or longitudinal changes in species range are more difficult
to document because of wide distributions, limited sample size, and confounding disturbance
factors, such as insect pests and succession following harvest, forest clearing, fire exclusion,
human introductions, or other disturbance [21,31–34]. Nonetheless, recent studies conducted with
repeated inventory and demography data do provide insights into changes (or not) in range limits.
Boisvert-Marsh and others [35,36] found poleward shifts in Quebec, Canada for Acer saccharum Marshal,
Acer rubrum L., Fagus grandifolia Ehrh., and Betula alleghaniensis Britt. between 1970–1977 and 2003–2014,
mostly attributed to warming of early- or late-season climatic variables. However, they also detected
southward shifts of Abies balsamea (L.) Mill., Picea glauca (Moench) Voss, and Picea mariana (Mill.) B.S.P.,
attributed to natural and human disturbances. Sittaro et al. [37], also in working in Quebec, found
that the spatial velocity of temperature at range limits exceeded the pace of tree species migration by a
factor of two for 14 of 16 species. Woodall and D’Amato [38], in a decadal evaluation of 20 eastern US
tree species not extending north of the Canada border, found stability for 85% of the species, regardless
of the level of canopy disturbance.

Our modeling approach has been to statistically model potential changes in suitable habitat for a
large number to species using Forest Inventory and Analysis (FIA) data and environmental co-variates.
This approach has evolved along with concomitant large advances in hardware, data, analytical
software, and techniques. Our first effort for 80 common trees used county-level data and the statistical
technique Regression Tree Analysis [39,40]. We then moved to a 20 × 20 km grid, 134 tree species, and
the Random Forest technique [41–43], our original DISTRIB model which modeled suitable habitat
for 134 tree species from the Eastern United States. These models were the basis for several NIACS
reports on the vulnerability of forests to climate change in the Mid-Atlantic region [44], the Central
Appalachians [45], the Central Hardwoods [46], the Northwoods of Minnesota [47], Michigan [48],
and Wisconsin [49], New York and New England [50], and the Chicago Wilderness region [51]. Most
recently, we have developed a new set of models based on newer FIA data (www.fia.fs.fed.us), higher
resolution soils data [52], and a hybrid lattice composed of 10 × 10 km and 20 × 20 km grids, derived
from FIA plot density and described in a subsequent paper. The objective of this paper is to summarize
the outputs from the DISTRIB-II model, for 125 species of trees in the eastern United States.

www.forestadaptation.org
www.fia.fs.fed.us
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2. Materials and Methods

In our effort reported here, we present summaries from our recent revision of the original DISTRIB
model, now called DISTRIB-II. The extent of our analysis encompasses the United States east of the
100th meridian. In DISTRIB-II, we developed a hybrid lattice of a mix of 20 × 20 and 10 × 10 km
cells. The mixture of cell sizes allowed us to optimize modeling by increasing resolution for those
cells which had support from sufficient FIA plots. Locations, such as large parts of the Corn Belt in
the Midwest, had few FIA plots, so we retained the coarser, 20-km structure, while those locations
with higher densities of FIA plots were evaluated and modeled via a 10-km structure. DISTRIB-II also
used completely updated data sets of 45 environmental variables and FIA plot data; it also used newer
techniques to assign model output values.

2.1. Data

Climate data. We used a range of models and scenarios to capture projections of future
temperature and precipitation. Data included current (1981–2010) annual and seasonal mean
temperature (◦C) and annual and seasonal precipitation totals (mm) based on Parameter-elevation
Regressions on Independent Slopes Model, [53] (PRISM), and end of the century (2070–2099) projected
mean values from three General Circulation Models (GCM) under the 4.5 and 8.5 Representative
Concentration Pathways (RCP). Downscaled future projections were obtained from NASA Earth
Exchange U.S. Downscaled Climate Projections (NEX-US-DCP30) project (https://cds.nccs.nasa.
gov/nex/), with metadata found at (https://cds.nccs.nasa.gov/wp-content/uploads/2014/04/NEX-
DCP30_Tech_Note_v0.pdf) [54]. These data are derived from GCM runs under the Coupled Model
Inter-comparison Project Phase 5 (CMIP5) in support of the IPCC Fifth Assessment Report (IPCC
AR5). The NEX US-DCP30 dataset was downscaled to 30 × 30 arcseconds via Bias-Correction Spatial
Disaggregation (BCSD) [55]. Future values were derived by adjusting PRISM data with the change
(the deltas) between GCM-simulated data for periods 1981–2010 and 2070–2099, similar to methods
described by Monahan, et al. [56]. These delta adjustments provided closer alignment to current
conditions now and minimized exposure to pixel-level artifacts between training and projection
climate data. For climate summaries reported in Table 1, data were aggregated to 10-km across 41,681
cells across the eastern U.S. Three models were used, each with RCP 4.5 and 8.5 [57]: Community
Climate System Model, or CCSM4 (hereafter CCSM45 and CCSM85) [58], Geophysical Fluid Dynamics
Laboratory (Donner), or GFDL-CM3 (GFDL45 and GFDL85) [59], and Hadley Global Environment
Model—Earth System [60] (or HadGEM2-ES (Had45 and Had85) [61]. These climate models and RCPs
capture, for the entire eastern U.S. study area, a wide distribution space in projected change (Figure 1
and detailed in Table 1). Further, the mean change across these combinations (Figure 1), fall along a
strong temperature gradient, from an estimated annual temperature increase of 2.5 ◦C with CCSM45
to 6.5 ◦C with Had85, and with an overall mean increase of 4.5 ◦C. The potential change in annual
precipitation (though precipitation changes have higher uncertainty as compared to temperature
changes) was higher for all scenarios by end of the century, but for many locations, a reduction in
future precipitation is forecasted (i.e., points below the horizontal 0 change line), especially for Had85
and GFDL85 (Figure 1). Coupled with higher temperatures, especially these scenarios will likely inflict
additional physiological stress on organisms for some future periods (see also [62]). This trend is
especially true when examining growing season temperatures, which reach 28.4 ◦C, an increase of
6.8 ◦C, for both GFDL85 and Had85. To make matters worse for plant growth, the Hadley model
(Had45 and Had85) showed growing season precipitation decreases by end of the century, even though
annual precipitation was slightly higher (Table 1).

https://cds.nccs.nasa.gov/nex/
https://cds.nccs.nasa.gov/nex/
https://cds.nccs.nasa.gov/wp-content/uploads/2014/04/NEX-DCP30_Tech_Note_v0.pdf
https://cds.nccs.nasa.gov/wp-content/uploads/2014/04/NEX-DCP30_Tech_Note_v0.pdf
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2010) as modeled by the NASA Earth Exchange U.S. Downscaled Climate Projections (NEX-US-143 
DCP30) data for 2070–2099, for 41,683 10-km cells across the eastern US. Black dots are the mean 144 
change in precipitation and temperature for each General Circulation Models (GCM)- Representative 145 
Concentration Pathways (RCP) scenario. 146 
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Figure 1. Distribution of annual temperature and precipitation changes from a baseline period
(1981–2010) as modeled by the NASA Earth Exchange U.S. Downscaled Climate Projections
(NEX-US-DCP30) data for 2070–2099, for 41,683 10-km cells across the eastern US. Black dots are
the mean change in precipitation and temperature for each General Circulation Models (GCM)-
Representative Concentration Pathways (RCP) scenario.

Table 1. Average climate conditions in the eastern US currently and for three models (CCSM4, GFDL
CM3, and HadGEM2-ES) for the 4.5 and 8.5 RCPs. CCSM4: Community Climate System Model;
GFDL CM3: Geophysical Fluid Dynamics Laboratory Coupled Model 3; HadGEM2-ES: Hadley Global
Environment Model—Earth System; PANN: Mean Annual Precipitation; Pgrow: Precipitation in
growing season; TANN: Mean Annual Temperature; Tgrow: Temperature during growing season
(May–Sept); TSUMavg: Mean Temperature of Warmest Month; TWINavg: Mean Temperature in
Coldest Month; TMin: Absolute Minimum Temperature; TMax: Absolute Maximum Temperature;
RCP: Representative Concentration Pathway.

Variable CCSM4 GFDL CM3 HadGEM2-ES

Current RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

PANN (mm) 1048 1113 1162 1203 1233 1121 1110
Pgrow (mm) 509 527 519 573 585 504 457
TANN (◦C) 12.7 15.2 17.1 16.3 18.6 16.8 19.2
Tgrow (◦C) 21.6 24.0 26.3 26.0 28.4 25.7 28.4

TSUMavg (◦C) 24.8 26.6 28.1 28.1 29.7 28.0 29.9
TWINavg (◦C) −0.9 1.2 2.1 1.6 2.0 1.3 3.3

TMin (◦C) −11.3 −8.6 −6.5 −7.2 −5.7 −7.4 −4.0
TMax (◦C) 33.8 35.9 39.3 39.1 42.5 38.5 41.9

Tree Data. As done in the earlier effort [42], we used U.S. Forest Service Forest Inventory and
Analysis (FIA, www.fia.fs.fed.us) data to derive individual tree species importance values (IV) for
each of 84,204 FIA plots. All plots were included with no filtering. The assumption was if the species
already grows there, it can grow there. The relative number of stems and relative basal area for each
species were weighted equally to calculate IV for each plot. Thus, some species with large numbers of
smaller stems (e.g., Ulmus, Acer, Fraxinus spp.) may be calculated as more important than species with
fewer, but larger stems (e.g., some Quercus). All 84,204 annualized FIA records sampled during the
period 2000–2016 were processed, and aggregated to cells with native resolutions of either 10 × 10 km
or 20 × 20 km to represent the mean IV within the grid cell. We strove to increase spatial resolution,

www.fia.fs.fed.us
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over that of our previous effort, where the FIA data would support it; to that end, a hybrid lattice
was generated through an iterative algorithm to determine whether resolution could be increased
to 10 × 10 km (four cells within each 20 × 20 km cell), or maintained at 20 × 20 km. To do so, a
10-km was accepted if ≥50% of the four 10-km cells within a 20-km cell contained two or more FIA
plots, otherwise the focal 20-km cell was retained. The resulting hybrid lattice for the eastern U.S. had
29,357 cells, 84.7% of which were comprised of 10 × 10 km cells, and accounting for 2.49 million km2,
or 58% of the eastern U.S. (Figure 2). The 20 × 20 km cells occupied 1.79 million km2, or 42% of the
area, and were mostly confined to highly agricultural areas, predominantly in the western portion
of the eastern U.S. (Figure 2). To minimize species that have too few samples to build a respectable
model, species were only included if they had at least 60 grid cells with at least two FIA plots per cell.
This filter resulted in a total of 125 species in the analysis.
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Figure 2. Extent of 20 km vs. 10 km cells used for DISTRIB-II modeling.

Environmental Data. A suite of 45 environmental variables was used to predict IV, for 125 species
across the entire eastern US. We used seven climate-related variables, seven elevation-related variables,
a solar-related variation of day length variable, nine soil taxonomic orders, and 21 variables related to
soil properties to derive the Random Forest models [41] predicting current species IV (Table 2). These
data were acquired from various sources, with most soils information from gSURRGO [52], elevation
data from the shuttle radar topography mission [63], a model of solar radiation via latitude [64], and a
model of soil productivity based on soil taxonomy [65]. We then swapped the seven climate-related
variables with future (2070–2099) projections of the same variables according to each of the six
GCM/RCP combinations (see above), and Random Forest predicted future IVs for each species.
It is important to note that we are not using elevation variables as a proxy for climate—we use them to
discriminate among species that prefer lower elevation habitats (for example along the coastal plains
or swamps) from those that prefer more elevated habitats with rugged terrain. Also, in addition to



Forests 2019, 10, 302 6 of 28

improving model fit, the numerous soil variables help restrain the models’ response under future
climates and distinguish among species that are mostly climate driven vs. those that are less so.

Table 2. Environmental data used to predict habitat suitability of eastern U.S. tree species. Data was
either aggregated to 10 and 20 km grids or derived from aggregated data.

Category Variable Description Native Resolution

Climate 1

Annual precipitation Mean 30-year (1981–2010) monthly
precipitation (mm).

800 m

May–Sept. precipitation Mean 30-year (1981–2010) monthly
precipitation for May–September (mm).

Annual mean temperature Mean 30-year (1981–2010) monthly
temperature (◦C).

May–Sept. mean
temperature

Mean 30-year (1981–2010) monthly
temperature for May–September (◦C).

Mean temperature of
coldest month

Mean 30-year (1981–2010) monthly
temperature of coldest month (◦C).

Mean temperature of
warmest month

Mean 30-year (1981–2010) monthly
temperature of warmest month (◦C).

Aridity Index
A conditional ratio of precipitation and

Thornthwaite potential evapotranspiration
(see [66])

10 and 20 km

Elevation [63]

Minimum Minimum value

90 m

Mean Mean value

Maximum Maximum value

Median Median value

Range Range between minimum and
maximum values

Standard deviation Amount of deviance among elevation

Coefficient of variation The CV of elevation

Solar [64] Day length coefficient
of variation

The CV of 12 monthly day lengths derived
from the latitude of grid cells. 10 and 20 km

Soil [52]

Available water
capacity (cm)

The quantity of water that the soil is capable of
storing for use by plants

30 m

Available water supply (cm)
The total volume of water that should be

available to plants when the soil, inclusive of
rock fragments, is at field capacity

Bulk density (g/cm3)
The ovendry weight of the soil material <2 mm
in size per unit volume of soil at water tension

of 1/3 bar

Calcium carbonate The percent of carbonates, by weight, in the
fraction of the soil <2 mm in size

Cation-exchange capacity

The total amount of extractable cations that can
be held by the soil, expressed in terms of
milliequivalents per 100 grams of soil at

neutrality (pH 7.0) or at some other stated pH

Depth to water table (cm) Depth to a saturated zone in the soil

Permeability (cm/h)
Saturated hydraulic conductivity or the ease

with which pores in a saturated soil
transmit water

Erosion K factor

The susceptibility of a soil to sheet and rill
erosion by water estimated by the percentage
of silt, sand, and organic matter and on soil

structure and saturated hydraulic conductivity
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Table 2. Cont.

Category Variable Description Native Resolution

Erosion T factor
(tons/acre/year)

An estimate of the maximum average annual
rate of soil erosion by wind and/or water that
can occur without affecting crop productivity

over a sustained period

Percent clay Mineral soil particles that are <0.002 mm
in diameter

Percent sand Mineral soil particles that are 0.05 mm to 2 mm
in diameter

Percent silt Mineral soil particles that are 0.002 to 0.05 mm
in diameter

Organic matter content (%
by weight)

Plant and animal residue in soil material
<2 mm in diameter at various stages

of decomposition

pH A measure of acidity or alkalinity

Percent passing sieve No. 10 Soil fraction passing a number 10 sieve
(2.00 mm square opening)

Percent passing sieve
No. 200

Soil fraction passing a number 200 sieve
(0.074 mm square opening)

Soil productivity [65] Productivity Index derived from family-level
Soil Taxonomy information

Soil taxonomic order The percentage of taxonomic order

Soil texture
The percentage of clayey, loamy, sandy, or

other texture class defined by USDA
standard terms

1 PRISM Climate Group. 2014. Oregon State University, http://prism.oregonstate.edu.

2.2. Modeling

Individual tree species IV were modeled using the randomForest library [67] in R version 3.1.1 [68]
(hereafter RF), in which 1001 regression trees were trained with eight randomly selected environmental
variables evaluated at each node, and grown to include a minimum of 10 observations. To train the
models, only grid cells within the hybrid lattice (10 × 10 or 20 × 20 km) were used that had (1) two or
more FIA plots (to ensure representation within each cell), (2) ≥5% forest cover defined by the 2006
NLCD [69] (classes 41, 42, 43, and 90, to exclude very highly agricultural regions), and (3) a mean
IV ≤ 1.5 times the inter-quartile range of IVs across all cells (to exclude outliers because they were
unlikely to represent the full 100 or 400 km2). Each of the 1001 regression trees built by RF provides
information about the predicted IV, and the default is to report the mean prediction. However, the
random resampling of only eight of 45 variables at each node can result in spurious outcomes due to,
for example, omission of an entire class of variables (e.g., climate); while these spurious trees rarely
influence overall prediction [70], outliers can influence prediction distributions at a given cell [71].
Therefore, we compared the mean predicted value to the median for each cell; if the median = 0 and
among all 1001 predicted values the coefficient of variation ≥2.75, then 0 was used as the predicted IV
rather than the mean; which was 0 < IVmean < 8 among all species. This “mean-median” combination
is a modification to the approach suggested by Roy and Larocque [71] which limits the influence on
outlier predictions, minimizing the area of modeled low suitability, due to a few outliers within the
1001 regression trees for each species.

Once the RF model was trained, predictions of IV were made to all 29,357 cells irrespective of
cell size within the hybrid lattice, whether or not at least 2 FIA plots were present, or whether percent
forest cover was less or more than five percent.

http://prism.oregonstate.edu
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2.3. Model Reliability

We created a model reliability (ModRel) score from a series of five metrics obtained from the
performance statistics of each of 125 species. These included (1) a pseudo R2 obtained from the RF
model (RF R2); (2) a Fuzzy Kappa (FK) metric which compares outputs of the imputed RF-predicted
map to the FIA-derived map [72]; (3) the deviance of the CV (CVdev) among 30 regression trees
via bagging [41]; and (4) the stability of the top five variables (Top5) from 30 regression trees, and
(5) a true skill statistic (TSS) of the imputed RF. The first four were used previously, described in
Iverson et al. [42]. The five variables were normalized to a 0–1 scale and weighted as follows to arrive
at a final ModRel score: 0.33 × RF R2 + 0.33 × FK + 0.11 × CVdev + 0.11 × Top5 + 0.11 × TSS
which gives more weighting to RF R2 and FK, a primary performance metric and a comparison of
predicted to observed values, respectively. Then, ModRel scores were assigned to one of four classes:
High (ModRel ≥ 0.7), medium (0.7 > ModRel > 0.54), low (0.55 > ModRel ≥ 0.14), and unreliable and
excluded from further modeling (ModRel < 0.14).

2.4. Variable Importance

Each of the 45 predictor variables was scored for all species cumulatively according to a variable
importance index, which was the average of three normalized (0–100) scores. First, the variable
importance, as calculated within the RF function (percent increase in MSE based original and permuted
predictors of the out-of-bag data—see the help for “importance” in randomForest library in R), for
each of 125 species was summed. Second, the sum of the reciprocal of ranked predictor importance
across all species was calculated; the reciprocal produced higher scores for top ranked variables. Third,
the frequency, or count, of the number of times a predictor ranks in the top 10 across all species was
tabulated. These metrics allowed comparison among the 45 variables for their value in creating the
tree species models. Importantly, these metrics are based on all species across the entire eastern U.S. so
that species that have specific requirements will not garner much support with these indicator metrics.

2.5. Area-Weighted Importance Values

To incorporate both the area and the relative abundance of each species, we calculated
area-weighted importance values for each species. We use area-weighted importance values as
a surrogate for the strength of suitable habitat across a species’ distribution. The higher the IV score,
the higher the tendency for that species to occupy that cell, and the higher the possible basal area of that
species within the cell. This measure of suitable habitat is not a probability of occurrence (though likely
similar for many species) but rather an indication of the potential of the cell to host the species. Any
value above 0 can be considered suitable habitat, though the strength of that habitat varies according to
the area-weighted IV score. These values thus provide an estimate of each species’ importance based
on the IV modeled for each cell (or partial cell), multiplied by the area the cell represents. Because of
the variation of grid sizes (100 km2 or 400 km2), due to the hybrid grid structure, and the partial cells
especially along coasts, the area-weighted values are truer to their actual and projected future suitable
habitat. The ratio of future to present modeled condition represents the potential change of suitable
habitat in the future, where values >1 indicate an increase in area-weighted importance and values <1
indicate a decrease.

2.6. Changes in Mean Center of Spatial Data

Within ArcGIS 10.3 (ESRI, Redlands, CA, USA), the Mean Center and Directional Distribution
functions were used to calculate the current and future ‘center of gravity’ and directional ellipse within
1 standard deviation, respectively, of species ranges generated by our models. No weighting was
applied to the IV, but only cells modeled to have an IV > 0 were considered in the calculation of the mean
centers and directional ellipses. The coordinates of the mean center were used to calculate distance
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and direction of potential movement of the suitable habitat for each species and were visualized using
polar graphs to evaluate potential changes among all species for each scenario of climate change.

2.7. Analysis of Dominants, Gainers, and Losers

The area-weighted IV allowed comparison of species prominence and potential change according
to the climate scenarios, by spatial domain. These provide valuable supplements to FIA data and
state reports (www.fia.fs.fed.us) on the current situation for tree species, as the IVs are based on both
density (number of stems) and dominance (basal area) simultaneously. We provide this information
for each of 37 states and the District of Columbia, and for five regions within the eastern US. Notably,
for the six states split by the 100th meridian (our boundary of the eastern U.S.), some forest patches
will be missed but the area in those states west of the 100th meridian is dominated by nonforest or
western species (not modeled), with the exception of the Black Hills of South Dakota. We ranked each
species according to the modeled current IV and selected the top three for each spatial unit and then
calculated the potential changes in area-weighted IV, as ratios of future to current IVs, among the
various scenarios of climate change.

2.8. Species-Level Maps

Maps representing species (abundance and suitable habitat under various scenarios) were
generated for each species. Specifically, the maps show outputs of the (1) FIA estimate of current
abundance, (2) modeled current distribution, and the future distributions according to the (3) CCSM45,
(4) CCSM85, (5) GFDL45, (6) GFDL85, (7) Had45, (8) Had85, (9) mean of all three RCP4.5, and (10) mean
of all three RCP8.5 scenarios.

2.9. Comparison to Earlier DISTRIB Models

We have been modeling tree species suitable habitat within the eastern U.S. since
1998 [17,39,40,42,43], and there have been changes in many dimensions throughout this period. First,
we modeled 80 species at the county level of resolution, then 134 species at 20 × 20 km resolution, and
most recently 125 species at a hybrid of 10 × 10 and 20 × 20 km resolution, depending on the density
of FIA plots (~forest cover). Throughout the period, there has also been a remarkable improvement in
environmental data, especially climate and soils data. And, the modeling improvement from regression
tree analysis to random forests [41] was particularly dramatic in enhancing model performance. As
expected when using multiple models, updated data sets, or variations in modelling technique, model
outcomes will differ between iterations; this is true in this case too.

2.10. Scope and Limitations

The models depicted here represent changes in potentially suitable habitat according to scenarios
of climate change; they do not depict projections of actual future distributions by 2100. Earlier work
has shown that natural migration proceeds at a much slower pace than change in habitat, especially
for long-lived trees [17,73–75]. Therefore, our projections of an increase in the range are likely to
overestimate the actual distributions by century’s end, unless humans get seriously involved in
moving species.

Though Random Forest has been shown to be a robust modeling tool, highly resistant to
overfitting, we sometimes are making predictions into novel parameter space through extrapolation;
nonetheless, the resistance to overfitting of Random Forest predictions gives us confidence that the
extrapolations are suitably constrained and are not exaggerated projections [41]. Obviously, not all
125 species models are created equal, and we calculate several metrics to assess model reliability for
each species [42].

When we model potential changes in suitable habitat, one would normally expect the greatest
impacts to be experienced by young plants at the point of regeneration, when seedlings or saplings
are more susceptible to the increased extreme weather events and other ramifications of the changing

www.fia.fs.fed.us
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climate. However, mature forests are certainly also susceptible, either directly via droughts, especially
‘hot’ droughts [76], or indirectly via pests and pathogens [77]. Because the models are based on
FIA inventories of trees >2.5 cm dbh, the regeneration component is not well represented in the
model formulations. We are modeling the potential niche space that may be available to species
under future climates, which may not be the realized niche because disturbances and extreme
events will be operating within the suitable habitats. Though the FIA data, in effect, integrates
past disturbances by documenting those species that have survived past events, we cannot anticipate
future disturbances (like an exotic pest invasion) that will influence actual future distribution and
abundance. Further, we cannot assume that all species are in equilibrium with their current climate or
other environmental variables.

3. Results and Discussion

3.1. Model Reliability and Variable Importance

Of the 125 species in this assessment, we scored 29 species with high model reliability, 47 with
medium, and 49 with lower model reliability. These model reliability classes are presented for each
species in Table A1. Admittedly, the cut off values presented in the methods section are arbitrary and
adjusting the cut offs would change the proportion of each model reliability class. We chose to stay
conservative in assigning the cut offs, leading to a loading of species at the lower end of reliability.

When we scored each of the 45 predictor variables according to a variable importance index, we
found the climate variables dominated in importance. In fact, seven of the top nine variables were the
climate variables. Of course, several of these variables are correlated with each other across the entire
eastern U.S. but will be important locally for particular species. The first and second ranked variables
were summer (30-year mean of the warmest month) and winter (30-year mean of the coldest month)
temperatures; these indicate some species are limited by cold, some are linked to warm temperatures,
and some may be driven by both together. Because these metrics are based on all species across the
entire eastern U.S., the wide ranging, generalist species will tend to be correlated with wide ranging
temperature or precipitation patterns as well. The day length coefficient of variation among months
(based on latitude) was the most influential non-climate variable, followed by soil variables pH, texture
(soil fraction passing a sieve with a 2 mm square opening), soil productivity (based on soil taxonomic
family), and permeability (saturated hydraulic conductivity). The lower ranked variables, though
not rated high for all species together, will rank high for individual species in particular habitats, etc.
Though space prevents discussion of individual species and their variables of importance, these will
be presented in upcoming updates to our Climate Change Tree Atlas (www.fs.fed.us/nrs/atlas).

3.2. Potential Changes in Species Area-weighted Importance Values

For the 125 species with acceptable models, Table 3 provides an indication of the quantity of
species that may lose (Future: Current ratios < 0.9) or gain (ratios > 1.1) suitable habitat by 2100, as
well as those projected to remain somewhat stable (0.9 < ratios < 1.1). Averaged across all scenarios,
88 species showed at least a 10% increase in area-weighted IV, and 26 species showed at least a 10%
decrease, with 12 species having little or no change (Table 3). For those 88 species inclined to have
increasing habitat, the RCP8.5 scenario showed more species at least doubling habitat (55 species) than
under the RCP4.5 scenario (42 species) of lower emissions. Notably, there was not much difference
between RCPs for those species losing habitat (Table 3). Species included among those projected
to lose substantial habitat are: Acer nigrum Michx. f. (black maple), A. spicatum Lam. (mountain
maple), Picea mariana (black spruce), Populus balsamifera L. (balsam poplar), Prunus pensylvanica L.f.
(pin cherry), and Sorbus americana Marshall (American mountain-ash) (Table A1). Among those
species showing substantial increases in suitable habitat are: Carpinus caroliniana Walter (American
hornbeam), Celtis laevigata Willdenow (sugarberry), Magnolia grandiflora L. (southern magnolia),
Ostrya virginiana (Mill.) K.Koch (eastern hophornbeam), Pinus echinata Mill. (shortleaf pine), P. palustris

www.fs.fed.us/nrs/atlas
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Mill. (longleaf pine), Quercus falcata Michx. (southern red oak), Quercus marilandica Muenchh. (blackjack
oak), Quercus michauxii Nutt. (swamp chestnut oak), Q. nigra (water oak), Q. phellos (willow oak),
Quercus phellos L. (post oak), Quercus phellos L. (live oak), Taxodium distichum (L.) Rich. (bald cypress),
and Ulmus alata Michx. (winged elm) (Table A1).

Table 3. Potential species changes in area-weighted importance value for habitat suitability for
125 species in the eastern United States. Allowing for a 10% buffer around the future:current ratio
of 1.0 (i.e., no change), values below 0.9 indicates a loss, while values above 1.1 indicate a gain in
suitable habitat. Scenarios refer to model (CCSM, GFDL, Had, and mean of all three GCM models) and
emission level (RCP 4.5 and 8.5).

Future: Current Ratios of Importance Values

Scenario <0.5 0.5–0.9 0.9–1.1 1.1–2 >2 Total

CCSM45 6 18 14 64 23 125
CCSM85 7 16 13 40 49 125
GFDL45 8 15 13 39 50 125
GFDL85 6 18 10 31 60 125
HAD45 7 20 12 38 48 125
HAD85 8 24 8 35 50 125
GCM45 8 17 11 47 42 125
GCM85 7 19 9 35 55 125

The data do show that for many of the species gaining in excess of 10% in habitat, they are often
from less reliably modeled species than those species losing habitat. For example, only 12 of 88 species
(14%) which show at least 10% increase in habitat had highly reliable models, but 12 of 26 species (46%)
showing a decrease of at least 10% had highly reliable models (Table A1). For those more common
species (arbitrarily selected as those with the sum of IV > 15,000), those ratios are 11 of 34 (32%) for
gainers compared to 8 of 8 (100%) for the losers. The large gainers fall into three categories: First,
the species is currently common in a region that is now quite warm and fairly dry, that being the
southwestern portion of the eastern U.S. (e.g., Texas, Oklahoma, southern Missouri). These species,
like Quercus stellata (post oak), Quercus marilandica Muenchh. (blackjack oak), Carya texana Buckley
(1861) (black hickory), ashe juniper (Juniperus ashei J. Buchholz) and Juniperus virginiana L. (eastern
red cedar), are primarily temperature driven, and expand greatly in suitable habitat when provided
much warmer temperatures as projected under climate change. Second, the species is currently quite
rare or sparse according to current FIA plot data, and the models project the species to ‘fill in’ some
additional territory with suitable habitat. Species in this category include Diospyros virginiana L.
(common persimmon), Ilex opaca Aiton (American holly), and Ostrya virginiana (Mill.) K.Koch (eastern
hophornbeam). Third, the species is an important southern species now but is expected to substantially
expand its suitable habitat northward by end of the century. These species include Quercus falcata
(southern red oak), Quercus nigra L. (water oak), Pinus echinata (shortleaf pine), and P. palustris (longleaf
pine) (Table A1).

3.3. Changes in Mean Center of Spatial Data

The potential changes in mean centers of suitable habitat under various scenarios of climate
change indicate that roughly 3–4 times as many species show habitat movement in a northerly
direction as compared to a southerly direction (Table 4, Figure 3). As many as 81 species (RCP8.5 mean)
could have mean center movement at least 100 km northward. The data also clearly show that those
northward-moving species will likely have their mean habitat centers move greater distances under
the hotter (RCP8.5) scenarios as compared to the RCP4.5 scenarios. Some of the species modeled to
move habitats long distances northward include Carya texana (black hickory), Quercus virginiana (live
oak), and Ulmus crassifolia (winged elm) (Figure 3). The scenario with the least change in temperature,
CCSM45, also shows less northward movement of mean centers, but this scenario still has 54 species
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moving habitats at least 100 km by the end of the century. Some of the species moving habitats
southward include Acer pensylvanicum L. (striped maple), Prunus pensylvanica (pin cherry), and Sorbus
americana (American mountain ash) (Figure 3); these species models, however, had lower model
reliability and are complicated by the geographic influence of the spine of the Appalachian Mountains.
Example maps showing the mean centers and their ellipses around current and potential future habitat
distributions for two southern species, Liquidambar styraciflua L. and Pinus echinata, are shown in
Figure 4. Fei et al. [78], in an analysis of FIA data across three decades for 86 species/groups in
the eastern U.S., found that 62% of species show evidence for a northward shift and that 73% of
species show evidence for a westward shift. This westward trend was associated with changes in
moisture availability (more moisture now westward) and successional trends (afforestation farther
west), though the much sparser FIA data westward into the highly agricultural Midwestern Corn
Belt can also contribute to the differences in results with ours. Of the species we have in common
(n = 78) with the Fei et al. study, our results from the GCM85 scenario show much more potential for
northward (87% N, 13% S) over westward (31% W, 69% E) migration of climatically suitable habitat. In
future, the GCMs do show a lot more warming northward as compared to the previous 30 years [78,79],
and when coupled with a probable constraint of the increased moisture westward [79], these two
studies are not incongruent.
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Table 4. Number of species by distance and generalized northward and southward direction of mean
centers of suitable habitat for the 125 species in the eastern United States. Only the ‘bookends’ of
severity (CCSM45 and Had85) and the means (GCM45 and GCM85) of all three models are presented.

Scenario Kilometers

<10 10–50 51–100 101–200 201–300 301–400 >400 Total

Northward
CCSM45 1 16 22 43 10 0 1 93
GCM45 1 12 19 33 19 7 8 99
GCM85 0 9 11 25 23 16 17 101
Had85 0 8 17 22 19 18 16 100

Southward
CCSM45 0 7 7 10 1 5 2 32
GCM45 0 0 5 9 2 5 5 26
GCM85 0 3 2 6 4 3 6 24
Had85 0 2 4 5 7 2 5 25
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Figure 4. Ellipses of 1 standard deviation and mean centers for the current distribution and suitable
habitat according to CCSM45, GCM45, GCM85, and Had85 under RCP 4.5 (circles) and 8.5 (squares)
for (A) Liquidambar styraciflua and (B) Pinus echinata. Only the ‘bookends’ of severity (CCSM45 and
Had85) and the means (GCM45 and GCM85) of all three models are presented. FIA Actual refers to the
known FIA plot locations of the species, while Current refers to the modeled current distribution of
the species.

Numbers represent the FIA species codes for a few species with potential long distance movements
(shown in km): 61 = Juniperus ashei J. Buchholz, 315 = Acer pensylvanicum L., 404 = Carya illinoensis
(Wangenh.) K.Koch, 408 = Carya texana Buckley, 761 = Prunus pensylvanica L.f., 935 = Sorbus americana,
973 = Ulmus crassifolia.

3.4. Analysis of Dominants, Gainers, and Losers by State and Region

In this analysis we identified, for the entire East, five regions, and 37 states plus the District of
Columbia, the dominant three species now and what their overall changes are projected for suitable
habitat, with 1 meaning no change, <1 meaning a loss in habitat, and >1 meaning a gain in habitat
(Table 5). Over the entire eastern U.S., the top three species currently are loblolly pine (Pinus taeda),
red maple (Acer rubrum), and sweetgum (Liquidambar stryraciflua L.). Of the 36 unique species ranked
among the top three positions, those that most frequently scored among the dominant three species
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are red maple (for 21 of 44 states or regions), loblolly pine (15 of 44), sugar maple (Acer saccharum, 11 of
44), and sweetgum (10 of 44) (Table 5). By genus, the three Acer species were found among the top
three species 33 times, the five Pinus species 25 times, and the nine Quercus species 23 times.

For the top three species within the 38 state (and District of Columbia) rankings (n = 114), 50
(44%) are expected to lose >10% of their suitable habitat, while 41 (36%) species are projected to
gain >10% of habitat by 2100 for the RCP 4.5 scenario; comparable numbers under RCP 8.5 are 58
(51%) losers and 40 (35%) gainers. So, although more of these dominant species are expected to lose
habitat suitability in the changed climate, the fact that they are abundant presently and often very
adaptable to a changing climate [80,81] increases the probability that many of these species, even the
losers, may still be plentiful in their respective states by 2100.

Contrary to the data for the entire suite of 125 species, where 88 species were modeled to gain
at least 10% habitat (Table 3), the analysis of only the top three species by state or region shows that
a larger number of species are projected to lose habitat as compared to gain habitat (Table 5). Of the
132 iterations of species listed on Table 5 under regions or states, 56 species lost >10% habitat and 51
gained >10% habitat. Primary losers were Acer rubrum, A. saccharum, Liriodendron tulipifera L., and
Populus tremuloides, while primary gainers were Pinus taeda and Liquidambar styraciflua.
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Table 5. Top three species currently in each region and state, along with the future:current ratio of projected suitable habitat under low and high emission scenarios.

State/Region First Species Low High Second Species Low High Third Species Low High

Eastern U.S. Pinus taeda 1.21 1.32 Acer rubrum 0.99 0.92 Liquidambar styraciflua 1.48 1.73
Northeast Acer rubrum 0.91 0.76 Acer saccharum 0.93 0.88 Pinus strobus 1.04 0.87

North Central Populus tremuloides 0.71 0.61 Acer rubrum 1 0.93 Acer saccharum 1.03 0.98
Great Plains Ulmus americana 1.44 1.74 Celtis occidentalis 1.53 1.58 Juniperus virginiana 2.64 3.07

Southeast Pinus taeda 1.07 1.09 Pinus elliottii 1.31 1.42 Liquidambar styraciflua 1.34 1.43
South Central Pinus taeda 1.2 1.2 Liquidambar styraciflua 1.35 1.42 Quercus stellata 2.15 2.44

Alabama Pinus taeda 0.98 0.95 Liquidambar styraciflua 1.17 1.21 Quercus nigra 2.04 2.29
Arkansas Pinus taeda 1.35 1.36 Pinus echinata 1.55 1.56 Quercus alba 0.84 0.82

Connecticut Acer rubrum 0.7 0.54 Betula lenta 0.65 0.54 Quercus rubra 0.89 0.77
District of Columbia Liriodendron tulipifera 0.34 0.29 Fagus grandifolia 0.44 0.44 Quercus prinus 0.5 0.49

Delaware Acer rubrum 0.77 0.69 Pinus taeda 2.38 2.4 Liquidambar styraciflua 1 1.07
Florida Pinus elliottii 0.93 0.89 Pinus taeda 1.31 1.46 Quercus laurifolia 1.17 1.15
Georgia Pinus taeda 0.97 0.95 Pinus elliottii 1.19 1.27 Liquidambar styraciflua 1.23 1.29

Iowa Ulmus americana 1.23 1.27 Juglans nigra 1.39 1.33 Celtis occidentalis 2.24 2.02
Illinois Ulmus americana 1.29 1.47 Quercus alba 0.92 0.76 Prunus serotina 0.77 0.66
Indiana Acer saccharum 0.73 0.64 Prunus serotina 0.74 0.6 Fraxinus americana 0.99 0.94
Kansas Ulmus americana 1.15 1.23 Celtis occidentalis 1.07 1.06 Maclura pomifera 1.21 1.22

Kentucky Liriodendron tulipifera 0.44 0.35 Acer saccharum 0.66 0.6 Quercus alba 1.01 0.95
Louisiana Pinus taeda 0.97 0.92 Liquidambar styraciflua 1.13 1.14 Quercus nigra 2.2 2.32

Massachusetts Acer rubrum 0.81 0.66 Pinus strobus 0.46 0.38 Quercus rubra 1.02 0.92
Maryland Acer rubrum 0.8 0.72 Pinus taeda 2.32 2.67 Liriodendron tulipifera 0.65 0.47

Maine Abies balsamea 0.53 0.5 Acer rubrum 1.35 1.24 Picea rubens 0.64 0.57
Michigan Acer rubrum 0.98 0.87 Acer saccharum 0.82 0.74 Populus tremuloides 0.89 0.8
Minnesota Populus tremuloides 0.66 0.56 Picea mariana 0.4 0.4 Larix laricina 1.21 1.17
Missouri Quercus alba 0.57 0.52 Quercus velutina 0.95 0.86 Quercus stellata 1.74 1.94

Mississippi Pinus taeda 1.09 1.01 Liquidambar styraciflua 1.19 1.2 Quercus nigra 2.05 2.27
North Carolina Pinus taeda 1.21 1.24 Acer rubrum 0.79 0.77 Liquidambar styraciflua 1.28 1.39
North Dakota Quercus macrocarpa 1.75 2.58 Populus tremuloides 0.42 0.33 Acer negundo 1.92 1.63

Nebraska Juniperus virginiana 1.92 2.33 Quercus macrocarpa 1.59 1.57 Ulmus americana 2.1 2.51
New Hampshire Acer rubrum 1.06 0.91 Pinus strobus 0.79 0.65 Tsuga canadensis 0.77 0.66

New Jersey Pinus rigida 0.39 0.39 Acer rubrum 1.05 0.92 Quercus alba 1 0.83
New York Acer rubrum 0.98 0.77 Acer saccharum 0.78 0.71 Fagus grandifolia 0.73 0.67

Ohio Acer rubrum 0.47 0.4 Acer saccharum 0.89 0.79 Prunus serotina 0.67 0.55
Oklahoma Quercus stellata 1.09 1.08 Juniperus virginiana 1.24 1.34 Pinus echinata 1.36 1.4

Pennsylvania Acer rubrum 0.64 0.47 Prunus serotina 0.77 0.63 Acer saccharum 0.91 0.86
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Table 5. Cont.

State/Region First Species Low High Second Species Low High Third Species Low High

Rhode Island Acer rubrum 0.62 0.52 Pinus strobus 0.55 0.42 Quercus rubra 0.72 0.62
South Carolina Pinus taeda 0.86 0.81 Liquidambar styraciflua 1.08 1.09 Quercus nigra 1.8 2.03
South Dakota Quercus macrocarpa 5.57 5.65 Juniperus virginiana 5.87 6.93 Fraxinus pennsylvanica 3.75 4.15

Tennessee Liriodendron tulipifera 0.51 0.42 Quercus alba 1.13 1.08 Acer rubrum 0.81 0.83
Texas Pinus taeda 0.97 0.9 Juniperus ashei 1.11 1.1 Quercus virginiana 1.49 1.55

Virginia Pinus taeda 1.45 1.66 Liriodendron tulipifera 0.5 0.33 Acer rubrum 0.82 0.76
Vermont Acer saccharum 0.61 0.57 Acer rubrum 1.39 1.25 Fagus grandifolia 0.76 0.72

Wisconsin Populus tremuloides 0.7 0.62 Acer rubrum 0.97 0.8 Acer saccharum 0.94 0.92
West Virginia Acer rubrum 0.71 0.61 Liriodendron tulipifera 0.84 0.56 Acer saccharum 0.84 0.73
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3.5. Species-Level Maps

Though putting 10 maps on a page masks fine-scale visualization, it does provide a way to assess
the current distribution according to the relatively sparse FIA plots, the modeled current distribution,
and the potential future distributions according to each of the model/RCP scenarios, as well as the
mean RCP 4.5 and 8.5. For example, Liriodendron tulipifera (yellow poplar), a species important for
wood products throughout its range (Figure 5) shows a general northward expansion of suitable
habitat under warming, with more expansion under RCP8.5 vs. RCP4. The least expansion is with the
relatively cool CCSM4 model as compared to the more equivalent Hadley and GFDL models. However,
with the driest Hadley model (either RCP4.5 or RCP8.5), habitat for yellow poplar noticeably contracts
in the southern third of its current distribution (Figure 5). These maps are available in Figures A1–A3
for three other species, Pinus echinata (shortleaf pine) P. teada (loblolly pine), and Liquidambar styraciflua
(sweetgum); all species will eventually be on our atlas website www.fs.fed.us/nrs/atlas.
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3.6. Comparison to Earlier DISTRIB Models

As expected, there are differences between DISTRIB-II outputs described here from those
presented in our earlier work [15]. In our current effort, differences mainly arise from using a hybrid
lattice approach, and also from: (1) Newer FIA records, (2) recent 30-year climate normals, (3) a newer
set of predictor variables, (4) removal of outlier training data, and (5) modifying predicted IVs with
the mean-median combination. The recent FIA records provide information about disturbances and
changes in species demographics, while the 30-year climate normals attempt to match conditions
experienced by the trees inventoried by FIA. The newer set of environmental predictors incorporates
finer scale information (e.g., gSSURGO soils), as well as additional variables not previously used.
The removal of outliers from training datasets aims to limit the influence of unrepresentative cells
that might result from plantations or severe disturbance events, while the modification of predicted
values with the mean-median combination reduced the influence of spurious predictions among the
prediction set.

Attributing the differences in results between DISTRIB and DISTRIB-II to any single or
combination of the listed factors would be very difficult to quantify and of little practical value
to forest managers. Suffice it to say that the newer results are an improvement over the earlier ones.
However, as with our earlier results, models with low reliability should be interpreted with caution.
As always with modeling studies, ‘all models are wrong’ [82]; we strive to make them useful by
making them available to use in concert with any other information and experience available to the
decision makers.

4. Conclusions

The forests of the eastern United States are characterized by a diverse assemblage of tree species.
Climate change has the potential to shift and influence species patterns, thereby creating novel
communities, with the greatest disruption and change clearly linked to the emissions pathways that
unfold over the course of this century. By quantifying potential habitat changes across a wide array of
species over a broad geographic extent, we can consider several dimensions of potential habitat change
that lend to understanding individual species responses, as well as focused regional quantification
that lend to informed on-the-ground adaptation planning. The trend of increasing general habitat
conditions for a large portion of the species is a function of spreading at the range margin extents
with, in many cases, a decline in core habitat suitability. Those species projecting losses, while fewer in
number, generally show a contraction in the range of suitable habitat under either RCP, but especially
so under RCP 8.5. In many cases, a finer extent of regions or state level evaluations reveals the potential
impact of shifting habitats via ranked species importance and summary of winners and losers by
states or regions. In these more discrete extents, the gradual fading in or out for species presents
useful information for planners. Many of the current top species projected to decline in the region
(even though their range-wide ratio may be increasing) epitomize the conditions where macro level
pressures of climate change can have local level implications. In the end, these results show the high
potential for a reshuffling of where suitable habitats for species will occur across the eastern United
States, and it is clear that these will reshape competitive pressures and ultimate final outcomes that are
beyond any modeling approach. Therefore, we intend these models to be one piece of a package of
information that practitioners use for decisions related to adapting to the changing climate we now
face. Working together, adaptations in silviculture and ecological management should improve the
potential for eastern U.S. forests to continue to thrive in the coming decades.
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Appendix A

Table A1. Importance value × area scores (FIAsumIV) and their future:current ratios showing potential
gains (light green 1.1–2.0, dark green > 2.0-fold increase) or losses (orange 0.5–0.9, red < 0.5 times
decrease) or no change (black 0.9–1.1) under three scenarios of climate change: CCSM4.5, GFDL8.5,
Had8.5 and mean of the three models for each RCP (GCM45 and GCM85). Also shown is overall
average score (GCMave), and the model reliability for each species.

Scientific Name Model
Reliability

FIA
sumIV CCSM45 GFDL85 HAD85 GCM45 GCM85 GCMave

Abies balsamea (L.) Mill. High 35,606 0.496 0.504 0.492 0.495 0.506 0.500
Acer barbatus Michx. Low 1729 1.758 5.877 5.654 3.026 5.277 3.631

Acer negundo L. Low 25,259 1.356 2.096 1.887 1.637 1.889 1.763
Acer nigrum L. Low 678 0.409 0.292 0.282 0.364 0.299 0.340

Acer pensylvanicum L. Medium 2549 0.752 0.565 0.547 0.672 0.580 0.653
Acer rubrum L. High 165,591 1.030 0.915 0.871 0.993 0.920 0.956

Acer saccharinum L. Low 14,872 1.804 3.044 2.445 2.309 2.630 2.203
Acer saccharum Marshall High 88,010 0.945 0.906 0.819 0.932 0.880 0.906

Acer spicatum Lam. Low 472 0.214 0.177 0.171 0.177 0.164 0.220
Aesculus flava Sol. Low 1682 0.895 0.666 0.564 0.775 0.682 0.705

Aesculus glabra Willd. Low 999 0.720 0.588 0.572 0.640 0.584 0.603
Amelanchier spp. Low 2558 0.956 1.278 1.250 1.024 1.181 1.015

Asimina triloba (L.) Dunal Low 738 0.488 0.519 0.518 0.495 0.497 0.481
Betula alleghaniensis Britt. High 17,123 0.828 0.635 0.634 0.753 0.654 0.703

Betula lenta L. High 13,368 1.029 0.806 0.802 0.966 0.844 0.909
Betula nigra L. Low 3988 1.632 6.922 8.275 4.053 6.875 4.749

Betula papyrifera Marshall High 21,096 0.940 0.833 0.779 0.918 0.834 0.876
Betula populifolia Marsh. Low 1622 1.045 1.293 1.157 1.154 1.191 1.095

Carpinus caroliniana Walter Low 9337 2.417 4.278 3.472 2.913 3.756 2.954
Carya alba Sarg. Medium 22,233 1.831 2.998 3.185 2.267 2.920 2.593

Carya aquatica (F.Michx.) Nutt. Medium 2624 1.278 1.619 1.699 1.380 1.641 1.393
Carya cordiformis (Wangenh.)

K.Koch Low 12,853 1.468 2.757 2.284 1.859 2.315 1.882

Carya glabra Miller Medium 22,303 1.240 1.494 1.318 1.280 1.401 1.341
Carya illinoinensis (Wangenh.)

K.Koch Low 6698 2.613 13.336 15.386 5.479 12.017 7.580

Carya laciniosa (Mill.) K.Koch Low 1009 1.051 1.767 1.080 1.241 1.340 1.177
Carya ovate (Mill.) K.Koch Medium 19,547 1.149 1.356 1.170 1.281 1.262 1.271

Carya texana Buckley (1861) High 9390 2.126 6.676 7.545 3.686 6.198 4.358
Celtis laevigata Willdenow Medium 16,556 2.469 6.786 7.940 3.893 6.580 5.236

Celtis occidentalis L. Medium 21,798 1.516 2.420 1.974 1.861 2.076 1.968
Cercis Canadensis L. Low 4198 1.419 3.579 3.607 2.118 3.189 2.353

Chamaecyparis thyoides (L.) B.S.P. Low 821 1.464 1.927 0.697 1.704 1.542 1.475
Cornus florida L. Medium 10,589 1.545 1.868 1.631 1.607 1.765 1.554

Diospyros virginiana L. Low 7074 1.981 8.115 8.345 4.039 7.027 4.814
Fagus grandifolia Ehrh. High 35,486 1.118 1.291 0.996 1.163 1.193 1.178
Fraxinus Americana L. Medium 42,548 1.314 1.633 1.547 1.455 1.559 1.507

Fraxinus nigra Marshall Medium 13,276 1.114 0.934 0.890 1.080 0.955 0.997
Fraxinus pennsylvanica Marshall Low 47,622 1.872 2.747 2.738 2.200 2.627 2.413
Fraxinus quadrangulata Michx. Low 631 0.870 1.045 0.709 0.888 0.889 0.827

Gleditsia triacanthos L. Low 11,912 1.317 3.096 3.083 1.907 2.739 2.078
Gordonia lasianthus (L.) Ellis Medium 2418 1.666 1.812 1.567 1.651 1.712 1.549

Halesia spp. Low 150 1.354 1.627 1.314 1.486 1.518 1.391
Ilex opaca Aiton Medium 5391 1.829 2.456 2.165 2.018 2.304 1.956
Juglans nigra L. Low 24,037 1.282 2.367 2.081 1.678 2.069 1.873

Juniperus ashei J. Buchholz High 21,113 1.334 3.632 7.938 1.863 4.673 3.268
Juniperus virginiana L. Medium 49,834 1.794 3.717 3.864 2.524 3.508 3.016

Larix laricina (Du Roi) K. Koch High 12,797 1.198 1.170 1.161 1.238 1.215 1.176
Liquidambar styraciflua L. High 91,344 1.342 1.816 1.802 1.479 1.730 1.604
Liriodendron tulipifera L. High 63,276 0.895 0.821 0.645 0.807 0.766 0.786

Maclura pomifera (Raf.) Schneid. Medium 11,988 1.167 2.920 2.610 1.755 2.408 1.883
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Table A1. Cont.

Scientific Name Model
Reliability

FIA
sumIV CCSM45 GFDL85 HAD85 GCM45 GCM85 GCMave

Magnolia acuminata L. Low 1734 1.058 1.106 1.066 1.039 1.086 1.008
Magnolia fraseri Walter Low 651 1.542 1.667 1.610 1.540 1.653 1.465
Magnolia grandiflora L. Low 1407 5.634 11.214 3.819 6.490 8.227 6.387

Magnolia macrophylla Michx. Low 292 0.891 0.979 0.678 0.879 0.889 0.823
Magnolia virginiana L. Medium 7875 2.622 3.793 1.945 2.798 3.129 2.658

Morus rubra L. Low 8905 1.432 3.160 1.991 1.955 2.345 1.904
Nyssa aquatic L. Medium 5014 1.284 1.856 1.215 1.377 1.587 1.360

Nyssa biflora Walter Medium 14,558 1.716 2.140 1.813 1.816 1.991 1.760
Nyssa sylvatica Marshall Medium 25,962 1.772 2.576 2.449 2.037 2.450 2.243

Ostrya virginiana (Mill.) K.Koch Low 12,225 2.107 3.507 2.670 2.599 3.017 2.500
Oxydendrum arboretum (L.) DC. High 11,224 1.020 0.911 0.701 0.885 0.860 0.877

Persea borbonia (L.) Spreng. Low 2757 1.729 2.491 1.563 1.839 2.078 1.776
Picea glauca (Moench) Voss Medium 7764 0.758 0.844 0.863 0.778 0.842 0.807
Picea mariana (Mill.) Britton,

Sterns & Poggenburg High 14,500 0.497 0.468 0.453 0.474 0.460 0.534

Picea rubens Sarg. High 13,049 0.689 0.556 0.554 0.612 0.555 0.637
Pinus banksiana Lamb. Medium 9280 0.719 0.635 0.642 0.689 0.661 0.702

Pinus clausa (Chapm. ex
Engelm.) Sarg. Medium 3740 1.223 1.573 0.850 1.413 1.275 1.263

Pinus echinata Mill. High 32,601 2.147 3.848 3.985 2.796 3.665 3.231
Pinus elliottii Engelm. High 57,498 1.450 2.093 1.622 1.577 1.858 1.718

Pinus glabra Walter Low 1039 0.507 0.608 0.297 0.551 0.487 0.533
Pinus palustris Mill. Medium 19,920 2.677 4.428 2.167 2.933 3.507 3.220

Pinus pungens Lamb. Low 527 0.798 1.297 1.541 1.061 1.246 1.061
Pinus resinosa Sol. ex Aiton Medium 17,992 0.945 0.967 0.937 0.998 0.973 0.985

Pinus rigida Mill. High 5653 0.754 0.948 0.982 0.818 0.928 0.854
Pinus serotina Michx. Medium 4019 1.471 1.569 1.203 1.335 1.448 1.298

Pinus strobus L. High 42,529 1.137 0.882 0.827 1.090 0.921 1.006
Pinus taeda L. High 271,571 1.178 1.404 1.285 1.212 1.324 1.268

Pinus virginiana Mill. High 21,514 0.915 0.933 0.888 0.843 0.913 0.878
Planera aquatic J.F.Gmel. Low 932 1.940 3.579 4.961 2.526 3.987 2.854
Platanus occidentalis L. Low 11,992 1.963 4.698 4.200 2.803 4.053 3.030
Populus balsamifera L. Medium 5854 0.431 0.314 0.423 0.380 0.385 0.445

Populus deltoids W.Bartram ex
Marshall Low 11,742 1.935 4.570 3.983 2.881 4.034 3.034

Populus grandidentata Michaux Medium 12,814 1.218 1.034 0.974 1.235 1.074 1.094
Populus tremuloides Michx. High 54,642 0.814 0.671 0.636 0.775 0.691 0.733

Prunus pensylvanica L.f. Low 1734 0.354 0.132 0.151 0.284 0.164 0.259
Prunus serotina Ehr. Medium 60,388 1.380 1.529 1.404 1.477 1.466 1.472

Quercus alba L. Medium 87,470 1.225 1.364 1.300 1.317 1.330 1.324
Quercus bicolor Willd. Low 2188 1.833 3.550 2.420 2.713 3.077 2.549

Quercus coccinea Muenchh. Medium 17,739 1.128 1.221 1.137 1.168 1.208 1.188
Quercus ellipsoidalis E.J.Hill Medium 6120 1.679 1.915 1.454 1.909 1.733 1.677

Quercus falcate Michx. Medium 24,747 2.091 3.581 4.291 2.697 3.659 3.178
Quercus imbricaria Michx. Medium 4356 0.680 0.802 0.516 0.772 0.635 0.704
Quercus incana Bartram Low 624 1.050 3.781 9.120 2.678 5.097 3.404

Quercus laevis Walter Medium 2731 1.205 1.590 1.009 1.258 1.327 1.211
Quercus laurifolia Michx. Medium 15,945 1.947 2.739 1.708 2.046 2.263 1.974

Quercus lyrata Walter Medium 4159 1.589 3.426 3.826 2.166 3.289 2.435
Quercus macrocarpa Michx. Medium 19,711 1.705 1.941 1.592 1.859 1.816 1.837

Quercus marilandica Muenchh. Medium 10,061 2.750 10.400 11.679 5.241 9.588 6.459
Quercus michauxii Nutt. Low 2156 2.111 3.834 2.445 2.643 3.098 2.531

Quercus muehlenbergii Engelm. Medium 6459 1.230 2.054 1.388 1.484 1.613 1.433
Quercus nigra L. High 46,637 2.089 3.282 3.325 2.568 3.195 2.882

Quercus pagoda Raf. Medium 7681 2.027 3.388 3.255 2.470 3.199 2.539
Quercus palustris Münchh. Low 4434 0.974 2.846 1.892 1.347 1.970 1.510

Quercus phellos L. Low 10,282 2.116 3.299 3.727 2.625 3.336 2.653
Quercus prinus Willd. High 34,675 1.186 1.270 1.177 1.191 1.233 1.212

Quercus rubra L. Medium 55,330 1.410 1.460 1.337 1.478 1.416 1.447
Quercus shumardii Buckland Low 2523 1.127 5.424 4.020 2.050 3.989 2.664

Quercus stellate Wangenh. High 58,812 2.169 4.671 5.252 3.077 4.504 3.791
Quercus texana Buckley Low 2363 1.282 1.681 1.597 1.361 1.589 1.353
Quercus velutina Lam. High 44,550 1.598 2.469 2.301 1.962 2.273 2.118

Quercus virginiana Mill. High 25,609 2.450 7.093 10.064 3.789 7.552 5.670
Robinia pseudoacacia L. Low 18,414 1.380 3.449 3.471 1.922 3.030 2.476

Sabal palmetto (Walt.) Lodd. Medium 4949 2.046 3.867 2.557 2.337 3.123 2.473
Salix nigra Marshall Low 13,959 1.445 4.936 5.616 2.458 4.558 3.075

Sassafras albidum (Nutt.) Nees Low 14,728 1.477 2.377 2.631 1.871 2.346 1.908
Sideroxylon lanuginosum ssp.

lanuginosum Low 2109 7.622 49.696 89.291 23.994 56.912 34.731

Sorbus Americana Marshall Low 147 0.397 0.265 0.292 0.334 0.282 0.330
Taxodium ascendens Brongn. Medium 8177 2.305 4.612 2.979 2.467 3.457 2.646
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Table A1. Cont.

Scientific Name Model
Reliability

FIA
sumIV CCSM45 GFDL85 HAD85 GCM45 GCM85 GCMave

Taxodium distichum (L.) Rich. Medium 8683 2.324 3.622 2.692 2.599 3.131 2.558
Thuja occidentalis L. High 20,487 0.808 0.854 0.975 0.818 0.926 0.872

Tilia americana L. Medium 20,151 1.432 1.385 1.196 1.496 1.336 1.416
Tsuga Canadensis (L.) Carrière High 27,300 1.035 0.724 0.707 0.926 0.765 0.846

Ulmus alata Michx. Medium 21,303 2.273 4.353 5.729 3.137 4.597 3.867
Ulmus americana L. Medium 55,590 1.475 2.316 2.401 1.799 2.218 2.008

Ulmus crassifolia Nutt. Medium 8062 3.431 14.046 23.482 7.557 15.895 10.167
Ulmus rubra Muhl. Low 13,179 1.359 2.543 2.828 1.774 2.453 1.907
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Figure A1. Species distributions for Pinus echinata (shortleaf pine), shown as differences from current
modeled distribution (map b): (a) FIA estimate of current distribution of abundance, (b) modeled
current distribution, (c) CCSM45, (d) CCSM85, (e) GFDL45, (f) GFDL85, (g) Had45, (h) Had85, (i) mean
of all three RCP4.5, and (j) mean of all three RCP8.5.
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Figure A2. Species distributions for Pinus teada (loblolly pine), shown as differences from current
modeled distribution (map b): (a) FIA estimate of current distribution of abundance, (b) modeled
current distribution, (c) CCSM45, (d) CCSM85, (e) GFDL45, (f) GFDL85, (g) Had45, (h) Had85, (i) mean
of all three RCP4.5, and (j) mean of all three RCP8.5.
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Figure A3. Species distributions for Liquidambar styraciflua (sweetgum), shown as differences from
current modeled distribution (map b): (a) FIA estimate of current distribution of abundance,
(b) modeled current distribution, (c) CCSM45, (d) CCSM85, (e) GFDL45, (f) GFDL85, (g) Had45,
(h) Had85, (i) mean of all three RCP4.5, and (j) mean of all three RCP8.5.
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