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Abstract: Old-growth longleaf pine savannas are characterized by diverse ground-layer plant
communities comprised of graminoids, forbs, and woody plants. These communities co-exist with
variable-aged patches containing similar-aged trees of longleaf pine (Pinus palustris Mill.). We tested
the conceptual model that physical conditions related to the cycle of longleaf pine regeneration
(stand structure, soil attributes, fire effects, and light) influence plant species’ composition and spatial
heterogeneity of ground-layer vegetation. We used a chrono-sequence approach in which local
patches represented six stages of the regeneration cycle, from open areas without trees (gaps) to trees
several centuries old, based on a 40-year population study and increment cores of trees. We measured
soil characteristics, patch stand structure, fuel loads and consumption during fires, plant productivity,
and ground-layer plant species composition. Patch characteristics (e.g., tree density, basal diameter,
soil carbon, and fire heat release) indicated a cyclical pattern that corresponded to the establishment,
growth, and mortality of trees over a period of approximately three centuries. We found that plants in
the families Fabaceae and Asteraceae and certain genera were significantly associated with a particular
patch stage or ranges of patch stages, presumably responding to changes in physical conditions of
patches over time. However, whole-community-level analyses did not indicate associations between
the patch stage and distinct plant communities. Our study indicates that changes in composition and
the structure of pine patches contribute to patterns in spatial and temporal heterogeneity in physical
characteristics, fire regimes, and species composition of the ground-layer vegetation in old-growth
pine savanna.

Keywords: Pinus palustris; fire effects; spatial heterogeneity; plant species niches; plant life
history characteristics

1. Introduction

Forest, woodland, and savanna communities dominated by a single tree species are often structured
as arrays of discrete patches containing even-aged and similar-sized trees [1,2]. Such patches, which
reflect spatio-temporal patterns of tree recruitment, growth, and mortality, can simultaneously represent
the full suite of stages characterizing the tree life cycle [3,4]. The spatial structure of tree populations
organized by such patches, in turn, can influence the species composition of herbs and relative
cover by modifying resource availability and growth conditions [5], including soil moisture, nutrient
levels, and light availability [6]. Small-scale changes in tree patch dynamics can affect ground-layer
plant communities through limitations in growth conditions, which create distinct patchworks of
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micro-communities in the understory [7–9]. Such canopy-ground layer interactions are likely in
savannas in which the dominant tree species influence fire characteristics and, thus, modify local
environments [2,10].

We hypothesized that patch dynamics of longleaf pine (Pinus palustris Mill.) influence ground-layer
dynamics and herbaceous species composition. Old growth longleaf pine savannas are characterized
by an open canopy structure typified by patches containing even-aged clusters of pines established at
various times [2,3,11]. The diverse ground-layer plant community contains graminoids, forbs, and
broadleaf woody species, with grasses typically the aspect dominants [12–14]. The open savanna
condition of old-growth sites is maintained by frequent fire, which prevents dominance of the canopy by
woody plants [13,15]. Frequent fire also limits accumulation of fine fuels and duff and therefore results
in low severity fires [10,16,17]. The predominantly perennial herbaceous plants in the ground-layer
typically survive top killing by fires and quickly re-sprout [16,18,19]. Such frequent fires, especially
those that occur in the season of natural lightning fires [20], are characteristic of old-growth longleaf
pine savanna [13].

The spatial and age distributions of longleaf pine in old-growth pine savannas are strongly
influenced by the species’ life history [2]. Longleaf pine cone production is irregular, with periodic
mast years separated by years of low cone production [3,21]. Following seed dispersal, which can
reach as much as 60 m from large trees [22], newly germinated seedlings are abundant. However,
subsequent fires kill many seedlings [23,24]. Even so, seedlings can survive within openings, if needle
litter fuel loads are lower and fires are less severe [24–26]. Following mast years, dense patches of
even-aged/sized individuals [3,4,26] may be recruited within such openings.

Once formed, patches can persist for at least two or three centuries, as indicated by the increment
boring of trees [3,4,27]. During that time, trees grow into the canopy and the initially high density of
individuals decreases due to resource competition and mortality from fire [4,11,24]. After trees reach
canopy height, mortality from lightning strikes, windstorms, and fires continue to reduce the density
of patches over centuries [4,28]. Ultimately, as patches of pines dissipate, open areas of sufficient size
for recruitment are formed [26]. In these areas, recruitment following mast years renews the patch
cycle as long as fires occur frequently and maintain open areas suitable for regeneration [13,26]. The
staggered initiation times of longleaf pine patches in old-growth pine savanna results in patch ages
that may span centuries [29].

Environmental characteristics that differ among stages in the patch cycle may influence plant
species composition and species richness of the ground-layer vegetation. One potential mechanism
by which the longleaf pine patch stage may influence plant species composition is fire effects, as
mediated by litter deposition [10]. Pine needle litter in pine savannas often represents approximately
half of available fire fuel [10,18,30] but varies with tree age and density, which contributes to patchy
fire severity [24,25]. Woody debris, including pinecones, also increases plant mortality beneath pine
canopies because of its long combustion residence times [31]. Other environmental characteristics that
could vary with the patch stage include light levels [32–34], soil moisture [12,35], and available soil N
and C [36,37]. Thus, patch stages could directly or indirectly influence spatial heterogeneity in the
ground-layer plant community.

In this study, we test our conceptual model and hypothesize that the longleaf pine (Pinus palustris)
patch stage and associated environmental characteristics generate spatial heterogeneity of ground-layer
plant species composition. We compare physical characteristics and plant species composition among
patch stages comprising a chrono-sequence that spans approximately three centuries in an old-growth
longleaf pine savanna in southern Georgia, USA. Our results expand the patch dynamics concepts
already established for old-growth pine savannas [13], which indicates important relationships between
over-story pine patch dynamics and the composition and spatial species distribution of ground layer
plant communities.
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2. Materials and Methods

2.1. Study Area and Patches of Longleaf Pine

We conducted our study on the Wade Tract (30◦45′N; 84◦0′W, Thomas County, Georgia, USA).
The site is situated on moderately dissected terrain 25 to 50 m above sea level in the headwaters of
the St. Marks River in the Red Hills region of northern Florida-southern Georgia. Soils at the site are
loamy-sand Ultisols (Typic and Arenic Kandiudults) [38,39] with clay-rich sub-horizons formed in
Pliocene-aged sands of the Miccosukee Formation. This site contains 85 ha of exemplary old-growth
pine savanna [13,14,40] protected by a conservation easement held by Tall Timbers Land Conservancy
and managed during the past century for northern bobwhite (quail) hunting and conservation.

Much of the ground layer vegetation is dominated by warm season grasses, especially Aristida
beyrichiana Trinius & Ruprecht, Schizachyrium scoparium (Michaux) Nash, and Sorghastrum secundum
(Elliott) Nash. The plant community is species-rich, with >500 native plant species collected within the
Wade Tract easement. Records indicate 27 prescribed fires within each of the two fire management
units between 1982 and 2016 (1.5-year average return interval) even though the seasonal timing and
often the year of fire differed between units. In addition, 90% of burns were in mid-March to late June.
Such high fire frequency is consistent with records from the last three centuries [41,42]. Sufficient fuel
loads are easily maintained by substantial annual rainfall (average of ~1350 mm in the vicinity) and a
10–11 month growing season, which results in rapid regrowth of ground-layer plants [14,40].

We identified patches to study within an area covering most of the Wade Tract where the trees
were mapped and a census was completed in 1978. At that time, W.J. Platt established a 50-hectare
plot within which all trees >1.5 m tall were tagged, mapped, and measured for diameter at breast
height. This plot has been re-censused for tree growth, mortality, and recruitment every 3–4 years.
We used tree diameter data and increment cores from approximately 400 trees [3,4] to estimate each
individual’s age based on their diameter. Although tree cores were not cross-dated, we were reasonably
confident in patch age designations, given that longleaf pine in the study region have approximately
equal amounts of early wood and late wood per ring. This facilitates counting annual rings within the
40–year margin of error represented by the intervals between regenerating cluster age categories [43].
Using ArcGIS 10.5 (ESRI Inc., Redlands, CA), we digitized polygons representing patches identified
as clusters of similarly aged trees (indicating concurrent recruitment into the stand). We assigned
these patches to one of six categories representing stages of the patch cycle: even-aged clusters of
trees aged at 10–50 years, 50–90 years, 90–130 years, 130–180 years, 180–250 years, and open gap areas
(Figure A1). Patches of trees were limited to those exceeding 10 m in breadth. Although there were
trees considerably older than 250 years [27], patches dissipate into a matrix of scattered large trees as
older trees die [3]. Thus, patches transition to open areas without trees over time. Such open areas
constituted the majority of the mapped plot (~70% of the total area) when the study was initiated [3].
We identified gaps (an additional stage) as treeless areas with a minimum breadth of 50 m. These gaps
are irregular and often sinuous in form.

Ten replicate patches within each of the six patch stages (60 plots total) were chosen for the study,
prioritizing patches that were not spatially auto-correlated with regard to patch stage and had an area
of at least 90 m2. Half were in the Typic Kandiudult soil subgroup (Faceville, Orangeburg, Fuquay
series) and half in the Arenic Kandiudult soil subgroup (Lucy series) [44]. This stratification resulted
in five replicate plots per patch stage and soil type combination (Figure 1A). Patches were further
stratified to incorporate the different fire histories of the two burn units. The six patch stages were
replicated twice in each soil type on the west burn unit and three times on the east burn unit. Patch
areas ranged from 90 m2 to 1045 m2 (median 320 m2). At the approximate center of each selected
patch, a steel reinforcement bar was used to establish the center of a plot for sampling plants and
physical conditions.
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Figure 1. Mean longleaf pine tree density (trees m−2) for plots in each patch stage (n = 10). 
Boxes represent plot distribution within one standard deviation of the mean (box 
centerline). Error bars indicate standard error and shared letters indicate non-significant 
differences between patch stages. 

 
Figure 2. Total basal area in patch stages. Total basal area (m−2ha−1) of Pinus palustris for plots in each 
patch stage (n = 10). Boxes represent plot distribution within one standard deviation of the mean (box 
centerline). Error bars indicate standard error and shared letters indicate non-significant differences 
between patch stages. 

Figure 1. Mean longleaf pine tree density (trees m−2) for plots in each patch stage (n = 10). Boxes
represent plot distribution within one standard deviation of the mean (box centerline). Error bars
indicate standard error and shared letters indicate non-significant differences between patch stages.

2.2. Ground-Layer Vegetation

We censused plant species in the ground-layer vegetation during the growing season from July
through August in 2017. The census timing was staggered to be approximately four months following
prescribed fires in each burn unit (east unit, March 23, 2017, west unit, April 12, 2017). Within a
square 10 m2 area around each plot center, we recorded a list of all vascular plant species <2 m tall
and with stems ≤2 cm diameter at breast height (approximately 1.4 m). The nomenclature followed
Weakley [45]. Using 10 cover classes, we also estimated relative aerial percent cover [46] of every
species within this area. These estimates were performed by one observer to minimize bias among
patch stages [47–49]. We also measured aboveground biomass (g) of broadleaf woody plants capable
of forming a canopy over herbaceous plants to assess their potential interactions with trees and
herbaceous plants. We measured the basal stem diameter (within 3 cm above the soil surface) of plants
rooted within the 10 m2 plot. We calculated their aboveground biomass (g) using locally determined
allometric equations [30] to assess their potential competitive or facultative interactions with trees and
herbaceous plants. Additionally, we approximated aboveground productivity of ground-layer plants
since the previous prescribed fire by clipping live aboveground vegetation rooted within two 0.25 m2

sampling frames placed within a 10 m radius of the plot center and sorted material according to its
origin from graminoid, forb, or woody plants (<2 cm dbh and <2 m height). After drying and weighing
the samples, we calculated the total biomass per unit area (kg m−2) for each of the three categories.

2.3. Fire Behavior and Fuel Loads

We compared fuel loads, fuel consumption, and associated energy release during fire among
the different patch stages by sampling biomass before and after the 2017 fires. Both units had been
previously burned one year prior. Before each fire, we harvested all aboveground plant biomass and
litter in two 0.25 m2 subplots per plot and sorted it by herbaceous plants (live and dead graminoids
and forbs), broadleaf woody material (live and dead broadleaf plant leaves and stems less than a 0.6
cm diameter), pine needle litter, woody pine litter (branches, bark, and pine cones sorted separately),
and fine particulate matter (small pieces of litter including residual material from previous burns)
before drying and weighing them.

Immediately after the fires, we re-sampled residual material within two more 0.25 m2 subplots
and sorted it into live biomass (<0.6 cm thickness), dead fine biomass (<0.6 cm thickness), and coarser
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dead biomass (0.6–2.5 cm thickness). To estimate total fuel energy release per unit area, we used the
sum of category-specific fuel energy contents [50] and applied it to the total fuel consumed.

2.4. Canopy Structure

We measured tree density and basal area (m2 ha−1) in plots by recording the diameter at breast
height (DBH) of every tree within a 5-m radius of the plot center (78.5 m2 area) in the 10–50, 50–90, and
90–130 years patches and, to accommodate for greater dispersion of trees, within a 10-m radius of the
plot center (314 m2 area) in the 130–180 and 180–250 years patches. We measured the percentage of
canopy openness as an indicator of available light at each of the 60 plot centers using a digital camera
with a hemispherical lens mounted on a tripod at 1 m height and oriented vertically to encompass
only the canopy and not the ground-layer vegetation. Using the software Gap Light Analyzer, we
calculated the percentage of open canopy as an index of available light.

2.5. Soil Characteristics

To characterize soil attributes that might influence plant growing conditions and species
distributions, we measured soil bulk density, water content, total N and C, organic matter, pH,
and concentrations of K, Ca, and Mg in each of the 60 plots. For soil chemical content, a 2-cm diameter
soil probe was used to collect 10 soil cores to a 10-cm depth within a 5-m radius of the plot center,
after which cores were combined for each plot. Soil samples were air-dried, pulverized, and filtered
through a 2-mm sieve to remove fine roots and mineral concretions. These samples were processed
at a soils laboratory at Auburn University, where soil mineral nutrients and acidity with an iCAP
analyzer (Thermo Fisher Scientific Inc., Waltham, MA, USA) were measured. Organic matter, total N,
and total C using a TruSpec CN analyzer (Leco Corps, St. Joseph, MI, USA) was also measured. Bulk
density was measured using a slide hammer and soil collection barrel with a plastic insert to collect
undisturbed cores to a 10-cm depth at three locations within a 3-m radius of each plot center. Samples
were dried and weighed to calculate the mean soil bulk density (g cm−3) per plot. Soil volumetric
water content was sampled in both the summer rainy season (July) and the early dry season (October)
by collecting five replicate soil samples to a 10-cm depth within 5 m of each plot center during a 12-h
period. We calculated the per unit volume of soil volumetric water content (g cm−3) at each plot
location by subtracting the difference in the wet and dry masses of samples.

2.6. Data Analyses

We performed a two-factor univariate PerMANOVA (PC-Ord, MjM Software, Corvallis, OR) to
test for differences among the patch stages for each univariate response variable measured, which
includes the patch stand structure (tree density, basal area, canopy openness), soil attributes (N, C, K,
Ca, Mg, pH, bulk density, water content, and organic matter), fire fuel loads (total and per each fuel
category), total energy released during fires, and plant productivity (total and per each category). Soil
subgroups were used as a blocking factor. PerMANOVA uses permutation tests to provide comparisons
among patch stages [51] where differences were considered significant at α = 0.05 [52].

To identify patterns in ground-layer plant species distribution among the patch stages, we
conducted a non-metric multidimensional scaling (NMDS) analysis using plant species percent cover
(midpoint of cover classes) within each plot as the response variable. We also conducted a series of
indicator species analyses (ISA, PC-Ord, MjM Software, Corvallis, OR) to identify plant species, genera,
and families that were significantly associated with particular patch stages or sets of combined patch
stages. Given the possibility that species might be associated with multiple sequential stages, we
performed an indicator species analysis using various combinations of the original six stages, where
gaps were considered to precede the 10–50-year stage and follow the 180–250-year stage. Specifically,
we created two new sets of stages by pairing sequential stages into three groups, and we created
three additional sets by grouping three stages into two groups. Separate tests were run for each set
for species, genera, and families to identify possible relationships between taxonomic groups and
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the patch stage. Given the increased likelihood of finding significance for a taxonomic group using
multiple analyses, “significant” results for individual species were considered descriptive for purposes
of identifying general trends among genera and families. We related plant species composition to
environmental characteristics of patches by performing a Canonical Correspondence Analysis (CCA)
(PC-Ord, MjM Software, Corvallis, OR, USA) [51] using multiple measured environmental variables
as explanatory variables and plant percent cover as the principal components’ multivariate response
variable. Prior to the CCA, we conducted a Principal Components Analysis (PCA, PC-Ord, MjM
Software, Corvallis, OR, USA) and correlation analyses to identify environmental variables for use in
the CCA to represent others that were highly correlated and logically related in order to not over-fit
the model [51].

3. Results

3.1. Patch Environmental Characteristics

The structure and characteristics of longleaf pine patches generally followed patterns that were
related to the regeneration cycle. Following the gap stage, the initially high density of trees in the 10–50
year old patches was followed by low densities that slowly decreased in the older patches (Figure 1).
Average tree basal area increased as the ages of patches increased, with the highest average value in the
130–180 year category before declining as the clusters of trees forming patches dissipated (Figure 2).
Canopy openness showed a roughly inverse pattern to tree density (Figure 1), with the highest values
in gaps and the lowest values in the two youngest patch stages (Figure 3). Thus, the first century after
pine colonization is when the lowest light conditions occur during the pine regeneration cycle.
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patches, peaked at 50–90 years, and then steadily decreased in progressively older patch stages 
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Appendix A3). There were no significant differences among patch stages for live herbaceous fuel, 
broadleaf woody plant stems, or broadleaf woody plant leaves (Appendix A4). Levels of total soil 
carbon were at the lowest in gaps and young tree patches, peaked at 90–130 years, and then decreased 
at older patch stages (Figure 6). Soil mineral nutrients (Ca, K, Mg) generally increased over the life 

Figure 3. Total canopy openness in patch stages. Canopy openness (%) of plots in each patch
stage (n = 10). Boxes represent plot distribution within one standard deviation of the mean (box
centerline). Error bars indicate standard error and shared letters indicate non-significant differences
among patch stages.

Other physical conditions also demonstrated trends related to the regeneration cycle. Total fuel
loads, pine needle fuel loads, and total fuel consumed were lowest in gaps compared to occupied
patches, peaked at 50–90 years, and then steadily decreased in progressively older patch stages (Figure 4,
Appendix A). Total fuel energy released during fires also peaked at 50–90 years (Figure 5, Appendix A).
There were no significant differences among patch stages for live herbaceous fuel, broadleaf woody
plant stems, or broadleaf woody plant leaves (Appendix A). Levels of total soil carbon were at the
lowest in gaps and young tree patches, peaked at 90–130 years, and then decreased at older patch
stages (Figure 6). Soil mineral nutrients (Ca, K, Mg) generally increased over the life span of trees and
were highest in 180–250 year patches, but lacked distinct associations across patch stages (Appendix A).
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plots in each patch stage (n = 10). Boxes represent plot distribution within one standard deviation of
the mean (box centerline). Error bars indicate standard error and shared letters indicate non-significant
differences among patch stages.
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Points representing plots are distributed in a roughly counter-clockwise cyclical arrangement in order 
of increases in patch age from gaps in the lower right through successive patch ages to the oldest 
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(Table 1), three variables were selected for the CCA. These were total basal area, pine needle litter, 
and canopy openness.  
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distribution within one standard deviation of the mean (box centerline). Error bars indicate standard
error and shared letters indicate non-significant differences among patch stages.
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Figure 6. Total soil carbon in patch stages. Total percent of soil carbon in plots in each patch stage
(n = 10). Boxes represent plot distribution within one standard deviation of the mean (box center
line). Error bars indicate standard error and shared letters indicate non-significant differences among
patch stages.

The PCA scatterplot reflected associations between patch stages and environmental variables
identified in the univariate tests and showed how many variables were correlated with each other.
Points representing plots are distributed in a roughly counter-clockwise cyclical arrangement in order
of increases in patch age from gaps in the lower right through successive patch ages to the oldest
patches in the lower center (Figure 7). Based on the PCA (Figure 7) and correlations among variables
(Table 1), three variables were selected for the CCA. These were total basal area, pine needle litter, and
canopy openness.
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Figure 7. PCA ordination graph of the environmental characteristics in plots in each patch stage
(n = 10). Each point represents a plot (n = 60). Soil characteristics include organic matter (OM), total
nitrogen and carbon, pH, soil bulk density (SBD), and two soil moisture (SM) periods. Fire behavior
attributes were of live fuel loads (herbs, woody stems) and deposited litter (woody leaves, pine needle
litter, and non-needle pine litter). Measurements of plant productivity (graminoids, forbs, and woody
biomass) and canopy structure (pine mean dbh and tree density) were also included. The names of
the three environmental characteristics chosen for the CCA are highlighted in red: needle pine litter,
canopy openness (light levels), and total basal area.

Table 1. Correlations (r = Pearson’s correlation coefficient) of each patch environmental variable
included in the PCA with the three representative variables used in the CCA.

Canopy Openness r Pine Basal Area r

Herbaceous fuel 0.333 Pine tree mean dbh 0.819
Graminoid productivity 0.274 Fine particulate fuel 0.480

Woody plant productivity 0.268 Pine woody litter fuel 0.453
Canopy woody plant biomass 0.272 % total C 0.450

Tree density −0.482 % total N 0.370
Ca ppm 0.341

Pine needle litter r Mg ppm 0.364
Total fuel 0.706 K ppm 0.503

Total fuel consumed 0.657 pH −0.445
Total energy released 0.751 Soil bulk density −0.162

Forb productivity −0.225 Woody plant fuel −0.210
Soil bulk density −0.238 Woody stems −0.183

3.2. Plant Community Composition among Patch Stages

The NMDS analysis on plant species indicated considerable variability in plant species composition
among the replicate plots within each patch stage (Figure 8). However, indicator species analyses
identified certain plant species, genera, and families to be associated with particular patch stages or
stage groupings. Plant species in the family Asteraceae were most strongly associated with gaps and
180 to 250-year-old patches (Table 2). Relatively high light and low nutrient environments characterized
these patches (Figures 3 and 6). Five of the 24 species in Asteraceae had significant associations with
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patch stage groupings that included gaps (Chrysopsis mariana Elliot, Helenium spp., Eupatorium album
Michaux, Helianthus radula Torrey and Gray, Verbesina aristata Elliot) and an additional ten species in
the family were the most abundant in patch stage groupings including gaps (Table 2). The family
Asteraceae as a whole was significantly associated with the gap/10–50 year grouping, with 15 out of
24 species having the strongest associations with groupings that included gaps, even though a few
species in the family had significant associations with non-gap stage groupings (Ageratina aromatic
Spach, Sericocarpus tortifolius Michaux, Symphyotrichum adnatum Nesom, Vernonia angustifolia Michaux).
Species in families Convolvulaceae (Ipomoea pandurate Meyer), Lamiaceae (Scutellaria multiglandulosa
Small), and Rosaceae (Rubus cuneifolius Pursh) had significant associations with patch stage groupings
including gaps (Table 2). The family Euphorbiaceae as a whole was similarly associated with the
180–250 year/gap/10–50 year stage grouping. While Poaceae as a whole did not have a significant
association, the genus Dichanthelium was significantly associated with the gap/10–50 year/50–130 year
grouping (Table 2).
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Figure 8. NMDS ordination graph of ground-layer plant species’ relative cover in plots of each of the
patch stages (n = 10). Each point is a plot of a patch, with color denoting its corresponding stage.

Some genera were related to patch stages representing intermediate age classes of trees. In the
family Fabaceae, seven out of its 26 species (Centrosema virginianum Benth., Desmodium ciliare Muhl ex.
Willd, D. lineatum Gray, D. marilandicum Kuntze, Galactia volubilis Britton, Lespedeza angustifolia Elliot,
and L. repens Barton) were significantly associated with stage groupings incorporating the 90–130 year
age class, while an additional 10 species had similar but non-significant associations (Table 2). The
genera Desmodium, Galactia, Lespedeza, and Tephrosia as a whole also had significant associations with
patch stage groupings that included the 130–180 year stage. None of the species in Fabaceae had
significant associations with patch stage groupings that included gaps (Table 2).

Some plant taxonomic groups were associated with environmental variables characteristic of
certain patch stages. Results from the CCA (p = 0.002) indicated that species in the family Fabaceae as a
whole were associated with relatively lower light levels, higher levels of pine litter (and by correlation
fuel load, consumption, and energy release), and high basal area (and, by correlation, total soil carbon,
nitrogen, and mineral nutrients), (Figure 9). Species in Asteraceae and Rosaceae were related to
relatively high light levels and low fuel loads, basal area, and nutrient levels (Figure 9). The genus
Dichanthelium and family Euphorbiaceae were centrally distributed on the CCA graph with regard to
fuel loading and canopy openness but were on the low side of the basal area (Figure 9).
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Table 2. Indicator species analysis results including the patch stage or stage group with which species,
genera, and families were most strongly associated. Taxonomic groups included are those with at least
one significant result. Bold p-values indicate significant associations.

Family Genus Species Patch Stage Association
(Years) p-Value

Acanthaceae Dyschoriste oblongifolia 10–130 0.009
Asteraceae Gap–50 0.026

Ageratina aromatica 10–130 0.038
Chrysopsis mariana Gap–50 0.015

Conyza canadensis 50–180 0.155
Elephantopus 130–Gap 0.305

elatus Gap–50 0.274
tomentosus 90–180 0.104

Eupatorium 180–Gap–50 0.031
album 180–Gap–50 0.025

leucolepis Gap–130 1.000
Helenium spp. Gap–50 0.031
Helianthus radula Gap–50 0.010
Hieracium gronovii 130–Gap 0.425

Liatris elegantula 180–250 1.000
Pityopsis 130–Gap 0.206

aspera 130–Gap 0.380
graminifolia 130–Gap 0.275

Rudbeckia hirta 180–Gap–50 0.201
Sericocarpus tortifolius 130–180 0.043

Solidago 130–Gap 0.197
altissima 130–180 0.170

odora 180–Gap–50 0.254
Symphyotrichum 90–180 0.124

adnatum 90–180 0.019
concolor Gap–50 0.539

dumosum 50–180 0.061
oolentangiense 130–Gap 0.239

Trilisa odoratissima Gap–180 1.000
Verbesina aristata 180–Gap–50 0.018
Vernonia angustifolia 90–180 0.054

Convovulaceae Gap–50 0.008
Ipomoea pandurata Gap–50 0.004
Stylisma patens 130–Gap 0.242

Euphorbiaceae 180–Gap-50 0.023
Cnidoscolus stimulosus 10–90 0.392
Euphorbia 10–90 0.466

discoidalis 10–90 0.226
heterophylla 180–250 1.000

Stillingia sylvatica 180–Gap–50 0.087
Tragia 180–Gap–50 0.340

urens 180–Gap 0.190
urticifolia 10–130 0.512

Lamiaceae Scutellaria multiglandulosa Gap–50 0.053
Poaceae Dichanthelium Gap–90 0.007

aciculare 50–130 0.283
acuminatum Gap 0.129

angustifolium Gap–90 0.241
dichotomum 130–250 0.613

ovale Gap–90 0.411
ravenelii 10–90 0.093

strigosum Gap–90 0.017
villosissimum 10–90 0.778

Gymnopogon ambiguus 50–130 0.037

Rosaceae Rubus Gap–50 0.010
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Table 2. Cont.

Family Genus Species Patch Stage Association
(Years) p-Value

cuneifolius Gaps 0.045
flagellaris Gap–50 0.076

Fabaceae 50–130 <0.001
Centrosema virginianum 90–250 0.005

Chamaecrista fasciculata 130–Gap 0.298
Clitoria mariana 10–130 0.218

Crotalaria rotundifolia 180–250 0.151
Dalea albida 10–50 1.000

Desmodium 90–130 0.002
ciliare 90–130 0.010

floridanum 130–250 0.283
glabellum 130–250 0.331
lineatum 90–130 0.002

marilandicum 130–180 0.020
obtusifolium 10–50 1.000
paniculatum 10–130 0.286
viridiflorum 50–130 0.092

Galactia 50–180 0.021
regularis 10–90 0.175
volubulis 50–130 0.013

Lespedeza 50–180 0.025
angustifolia 130–250 0.050

repens 10–130 0.030
virginica 130–Gap 0.236

Mimosa quadrivalvis 50–180 0.430
Strophostyles umbellata 50–180 0.386
Stylosanthes biflora 50–180 0.271
Rhynchosia reniformis 50–180 0.412

tomentosa 50–180 0.286
Tephrosia 50–180 0.029

florida 50–180 0.348
spicata 50–180 0.492

virginiana 50–90 0.044
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4. Discussion

Although plant species were not clearly related to longleaf pine regeneration patch stages at the
whole-community level, our study indicated that certain plant species, genera, and families were
associated with certain stages of the regeneration cycle of longleaf pine. The strongest associations
were for three families (Asteraceae, Fabaceae, and Euphorbiaceae) and the genera Dichanthelium and
Rubus. These taxa collectively include about one-third of the known plant species on the Wade Tract.
These associations suggest two broad patterns in trade-offs among life history characteristics that result
in a tolerance of different stressors and use of different resources by suites of ground-layer plants.

Species in Asteraceae and genera Dichanthelium and Rubus were generally associated with patch
stages characterized by relatively open over-story conditions represented by the oldest patches and
gaps. Many species in the Asteraceae are considered relatively inflexible, light-demanding species,
with physiological characteristics like thick, hairy leaves with waxy cuticles and extensive taproots
that make them more resistant to water stress in high light environments [9], like those in which they
most often occurred in this study. These species, as well as grasses in the genus Dichanthelium, also
may be more sensitive to relatively high severity fire and, thus, tend to be most abundant in areas with
minimal litter accumulation and heat release. Dichanthelium species have been found to be associated
with younger longleaf pine age classes in other studies [53]. Rubus cuneifolius, which is a heliophilic
species [54] strongly associated with gaps in our study, has perennial stems which, like broadleaf
woody plants, gain a competitive advantage over herbs where fire severity is lower, such as in gaps.
The species is relatively non-flammable and typically requires two years of aboveground growth before
producing berries [54], such that sexual reproduction is most likely in gaps that are less frequented
by fire.

Species in family Fabaceae were generally associated with intermediate patch ages. Many species
in Fabaceae have been previously recognized as somewhat shade tolerant [55–57]. Most of these
species were associated with patches that have high tree density, basal area, and canopy cover and
have been observed occurring in similar conditions in other pine savanna systems [53]. Seeds of
some species in Fabaceae have exhibited high heat tolerance during fires [58] and have fire-stimulated
seed germination [59]. These conditions correspond to those in mid-age patches where species in
Fabaceae were preferentially found. The ability of many legumes to maintain persistent seed banks [60],
disperse seeds on the fur of mammals, and survive ingestion [61,62] may favor their occurrence in areas
where increased fire severity causes death of genetic individuals, which requires a re-establishment
through seed dispersal and germination instead of re-sprouting. The association of several species
of Fabaceae with a high basal area and by association-high soil carbon corresponds to findings that
many can increase soil carbon by stimulating belowground biomass and restoring soil N lost through
volatilization in frequent fire [63] via nitrogen fixation [64], including the genera Centrosema and
Tephrosia [65]. However, nitrogen was not found to vary significantly among patch stages.

Associations between certain taxa and patch stages notwithstanding, whole-community level
associations were not evident. This lack of community-level variation apparently reflects considerable
variation in species composition among plots within patch stages, such that species were not consistently
represented in all plots within the stage. An under-sampling of the species composition using 10 m2

plots may be one possible underlying reason, given that the median patch size was 320 m2 and >500
species are present within the study area. It is particularly notable that species in the family Poaceae
(except Dichanthelium) were not recognizably associated with stages of the tree regeneration cycle,
given their high richness (ca. 20% of total species) and physical dominance in the herbaceous layer.
Their robust presence, despite large variation in tree cover and pine fuels among patches of pines on
the Wade Tract, presumably enhances fire spread and contributes to the overall high fire frequency and
low broadleaf woody plant dominance that characterizes pine savannas [15,20,66,67].

Our study was the first to quantitatively characterize stages of the longleaf pine regeneration cycle
in terms of the tree population structure, fuel load and consumption, and soil characteristics. Early
stages were characterized by higher rates of mortality [11,24], presumably due to density-dependent
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competition and fire damage to younger, relatively more susceptible trees [11,25,26]. The peak of
needle litter accumulation, fuel consumption, and energy release during fires during middle stages
indicated that increasing needle productivity per tree overrides effects of decreasing tree density on
needle fall as the patches age [25]. Needle fall diminishes in older patches and gaps, where there are
fewer to no trees to deposit litter and, therefore, fire severity is lower [24–26]. As a consequence, fuel
loads, energy release, and associated fire severity are inversely related to light availability over the
course of the regeneration cycle. Certain soil characteristics also appear to be mediated by longleaf pine
patch dynamics. Soil mineral nutrients (Ca, K, Mg), which were highest in the oldest tree size classes,
increase after fire [63]. This pattern suggests that, in this study, these nutrients accumulated because
of increasing fuel consumption and deposition of residual ash. The relatively low soil bulk density
near the middle patch stage of trees was possibly because the fine roots of competing trees increased
soil porosity [68]. The peak in organic matter and total soil carbon in the 50–180 year patch stage
corresponds to the highest rates of potential biomass addition in the form of pine needles. Previous
studies have shown turnover rates of organic matter originating from pine needles to be slower than
that from other types of litter, which results in organic matter accumulation [69]. Higher C:N ratios in
soil of the intermediate aged patches might slow decomposition rates [69]. Pine needles typically have
much lower N concentrations than other litter sources even though the effect on decomposition rates
may vary [70–72]. Pine needles also tend to char more than litter from broadleaf woody plants and
herbaceous plants (authors’ observations), which could result in the introduction of more recalcitrant
carbon compounds to the soil [73]. Such changes in soil nutrients might potentially mediate some of
our observed changes in the ground layer vegetation during the pine regeneration cycle.

5. Conclusions

Our results expand the conceptual model of a longleaf pine regeneration cycle in old-growth
longleaf pine savanna by demonstrating that different stages have different environments that limit
species distribution and promote spatial patterns in some plant taxonomic groups. Longleaf pine
population dynamics, thus, contribute both to predictable spatial heterogeneity in local ground-level
and soil environments, as well as in the ground-layer plant community. Although the pine regeneration
cycle does not produce distinct species associations of ground-layer vegetation, its direct and indirect
effects contribute to overall high plant species richness of the old-growth pine savanna ecosystem. It
is possible that further sampling of the ground-layer vegetation in larger plots may further clarify
these patterns with patch structure and age. This study was an important contribution toward
understanding the environmental conditions that most influence the longleaf pine savanna structure
and their interactions with ground-layer vegetation. Identifying these associations and the cyclic nature
of the longleaf pine regeneration is key for informing restoration efforts that emulate the spatial and
temporal patterns that characterize these communities. Future work in such rare, old-growth longleaf
pine savannas will contribute to long-term data sets and use as a reference model for land management.
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Figure A1. Map of the study site at the Wade Tract in Thomasville, GA. The points represent the
locations of the selected study plots for each of the patch stages color-coded on the legend and their
distribution on the east and west burn units and Arenic and Typica Kanduidult soil types.

Table A1. Mean values of different longleaf pine population structure attributes in each of the six
patch stages and overall stage effect p-value from PerMANOVA analyses. Bold p-values indicate
significant results (p < 0.05) and shared letter subscripts denote non-significant differences indicated by
PerMANOVA pairwise comparisons.

Patch Stage Mean

Stage 0 1 2 3 4 5

Analysis Factor Overall
p-Value Gaps 10–50

Years
50–90
Years

90–130
Years

130–180
Years

180–250
Years

Tree DBH (cm) <0.01 0.00 E 11.88 D 30.45 C 41.15 B 47.77 B 59.95 A

Total Basal Area
(m2 ha) <0.01 0.00 D 0.04 C 0.08 B 0.12 A 0.13 A 0.10 A,B

Tree Density
(trees/10 m2) <0.01 0.00 E 4.82 A 1.00 B 0.88 B,C 0.70 C 0.37 D

Canopy
Openness (%) <0.01 67.49 A 45.69 D 46.30 D 53.27 C 54.55 C 63.62 B
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Table A2. Mean values of different soil attributes in each of the six patch stages and overall stage effect
p-value from PerMANOVA analyses. Bold p-values indicate significant results (p < 0.05) and shared
letter subscripts denote non-significant differences indicated by PerMANOVA pairwise comparisons.

Patch Stage Mean

Stage 0 1 2 3 4 5

Analysis Factor Overall
p-Value Gaps 10–50

Years
50–90
Years

90–130
Years

130–180
Years

180–250
Years

Total Carbon
(%) 0.05 1.32 B 1.42 B 1.86 A,B 2.40 A 2.00 A 1.90 A

Total Nitrogen
(%) 0.16 0.06 0.07 0.07 0.09 0.08 0.08

Calcium (ppm) 0.05 601.20 B 613.20 A,B 521.80 B 776.40 A 708.30 A,B 899.60 A

Potassium
(ppm) 0.04 14.00 B 16.00 B 18.50 B 19.70 A 20.30 A,B 22.90 B

Magnesium
(ppm) 0.10 104.70 121.10 105.40 141.60 131.10 153.90

Soil bulk density
(g cm−3) 0.02 0.5 A,C 0.54 A 0.44 B 0.46 B,C 0.48 A 0.49 A

July soil water
content (g cm−3) 0.42 0.22 0.23 0.24 0.26 0.26 0.24

October soil
water content

(g cm−3)
0.45 0.28 0.32 0.24 0.24 0.24 0.25

Soil pH 0.02 5.79 A 5.84 A 5.60 A 5.64 B 5.62 B 5.64 A

Table A3. Mean values of different fire fuel load attributes (BL = broadleaf) in each of the six patch
stages and overall stage effect p-value from PerMANOVA analyses. Bold p-values indicate significant
results (p < 0.05) and shared letter subscripts denote insignificant differences indicated by PerMANOVA
pairwise comparisons.

Patch Stage Mean

Stage 0 1 2 3 4 5

Analysis Factor Overall
p-Value Gaps 10–50

Years 50–90 Years 90–130
Years

130–180
Years

180–250
Years

Total fuel loads
(kg m−2) 0.002 0.52 D 0.69 C,D 1.06 A 0.90 B 0.82 B,C 0.76 C

Total fuel consumed
(kg m−2) 0.002 0.32 C 0.46 B,C 0.74 A 0.54 B 0.52 B 0.45 B,C

Total energy released
(kJ kg) 0.00 5823.53 C 8647.13 C,B 0.13 × 105 A 0.10 × 105 B 9861.17 B 8520.61 B,C

Total pine litter
(kg m−2) 0.002 0.13 D 0.35 B 0.54 A 0.39 B,C 0.38 B 0.27 C

Pine needle litter
(kg m−2) 0.002 0.12 D 0.33 B,C 0.47 A 0.38 B 0.33 B,C 0.26 C

Woody pine litter (kg
m−2) 0.041 0.01 B 0.03 A,B 0.07 A 0.05 A 0.04 A 0.03 A

Total BL woody
(kg m−2) 0.19 0.15 0.11 0.18 0.06 0.09 0.11

BL woody stems
(kg m−2) 0.13 0.08 0.10 0.14 0.05 0.05 0.06

BL woody leaves
(kg m−2) 0.041 0.07 A 0.03 A,B 0.06 A 0.02 B 0.03 A,B 0.03 A,B

Live herbs
(kg m−2) 0.76 0.11 0.09 0.09 0.10 0.09 0.12

Fine particulate litter
(kg m−2) 0.002 0.13 A 0.16 A 0.25 B 0.30 B 0.27 B 0.23 B
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Table A4. Mean values of estimated plant productivity, broadleaf (BL) woody plant biomass, and
ground-layer plant community relative cover attributes in each of the six patch stages and overall stage
effect p-value from PerMANOVA analyses (p < 0.05).

Patch Stage Mean

Stage 0 1 2 3 4 5

Analysis Factor Overall
p-Value Gaps 10–50

Years
50–90
Years

90–130
Years

130–180
Years

180–250
Years

Graminoid plant
productivity

(kg m−2)
0.42 0.03 0.02 0.02 0.03 0.03 0.03

Forb plant
productivity

(kg m−2)
0.83 0.03 0.02 0.03 0.02 0.03 0.03

BL woody plant
productivity

(kg m−2)
0.26 0.03 0.02 0.01 0.01 0.02 0.02

BL woody plant
biomass (g) 0.26 584.67 299.13 404.58 181.72 220.68 672.51

Canopy-closing
woody Species’
relative cover

0.46 1.64 1.28 1.22 0.85 0.53 1.95

BL woody species’
relative cover 0.47 1.59 1.49 1.34 1.58 1.52 2.08

Total percent of plant
coverage in plots 0.17 97.70 104.21 90.90 116.70 98.43 98.35

Ground-layer plant
species richness 0.32 36.70 41.60 36.90 39.20 37.00 34.20
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