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Abstract: Coarse woody debris (CWD; large parts of dead trees) is a vital element of forest ecosystems,
playing an important role in nutrient cycling, carbon storage, fire fuel, microhabitats, and overall
forest structure. However, there is a lack of effective tools for identifying and mapping both standing
(snags) and downed (logs) CWD in complex natural settings. We applied a random forest machine
learning classifier to detect CWD in centimetric aerial imagery acquired over a 270-hectare study
area in the boreal forest of Alberta, Canada. We used a geographic object-based image analysis
(GEOBIA) approach in the classification with spectral, spatial, and LiDAR (light detection and
ranging)-derived height predictor variables. We found CWD to be detected with great accuracy
(93.4 £ 4.2% completeness and 94.5 + 3.2% correctness) when training samples were located within the
application area, and with very good accuracy (84.2 + 5.2% completeness and 92.2 + 3.2% correctness)
when training samples were located outside the application area. The addition of LiDAR-derived
variables did not increase the accuracy of CWD detection overall (<2%), but aided significantly
(p < 0.001) in the distinction between logs and snags. Foresters and researchers interested in CWD
can take advantage of these novel methods to produce accurate maps of logs and snags, which will
contribute to the understanding and management of forest ecosystems.

Keywords: coarse woody debris; coarse woody material; large woody debris; random forest
classification; GEOBIA; aerial image; LIDAR; segmentation

1. Introduction

Woody debris—dead trees and branches—is a key element of forest ecosystems, providing nutrient
cycling, carbon storage, microhabitats, and overall forest structure, and can feature prominently in
studies of wildlife habitat [1], forest fuel load [2], bioenergy [3], and forest disturbances [4]. Coarse
woody debris (CWD) can be distinguished from fine woody debris on the basis of length (at least 1 m)
and diameter (at least 10 cm at the largest end) [5]. The two most common classes of CWD are snags
and logs. If the CWD is standing with an inclination relative to vertical smaller than 45° then it can be
classified as a snag. If it is positioned horizontally or is leaning with an inclination greater than 45°
relative to vertical then it is classified as a log [5].

In the boreal forest of Alberta, Canada, extensive human disturbances, mostly side products of
resource development such as roads, mineral exploration corridors, and well-sites, have been shown to
increase predation rates on woodland caribou (Rangifer tarandus), especially by wolves (Canis lupus) [6].
This is one of the reasons why caribou populations in Alberta have declined significantly in the last
two decades and consequently the species has been listed as threatened by the federal and provincial
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governments [7]. Within this context, CWD is especially important, since it is widely applied to
linear-disturbance features to obstruct the movement of predators and humans, while creating valuable
microsites for improved growth and protection of newly planted seedlings [8].

Traditional methods for detecting and measuring CWD rely on manual field operations—an
activity that is labor intensive and difficult to scale. Therefore, a variety of studies have applied
remote sensing solutions to detect CWD. For example, Inoue et al. [9] used nadir-looking air photos of
ground sampling distance (GSD) around 1 cm obtained with an unmanned aerial vehicle (UAV) to
visually detect logs under leaf-off conditions in a temperate deciduous forest, achieving about 85%
completeness on CWD detection. The authors concluded that this kind of approach is promising for
lowering costs of ground surveys, but the study area was small (200 x 300 m), focused only on logs,
and involved identification through visual detection—a strategy that would be inappropriate over
large areas.

Some studies have used satellite data to delineate CWD. For example, Baumann et al. [10] applied
support vector machine classification on multi-temporal Landsat data to detect windthrown areas with
good accuracy (about 95% completeness and 67% correctness). Similarly, Riietschi et al. [11] detected
windthrown areas through multi-temporal analysis of Sentinel-1 C-band datasets, obtaining reliable
results (88% completeness and 85% correctness). However these approaches are generally only suitable
for detecting large windthrow disturbances.

Light detection and ranging (LiDAR) has been used in many studies of forest structure, including
some aimed at the detection of CWD. For example, Sumnall et al. [12] applied regression of LiDAR
statistics on study plots, obtaining a strong relationship with snag volume (R? = 0.91) but weaker for
log volume (R? = 0.51). Their strategy did not involve the explicit detection of CWD objects, but rather
relied on implicit relationships between field measurements and LiDAR-derived metrics. It is unclear
how well such relationships would extend beyond their study site in southern England.

There have been few studies presenting accurate methods for detecting individual CWD objects
in forested environments. Polewski [13] detected logs in a forested area via multiple classification
steps over a LiDAR point cloud (30 points/m?), obtaining good results (~80% completeness and
correctness). Richardson and Moskal [14] detected logs in riparian areas via a rule-based geographical
object image analysis (GEOBIA) workflow applied to LiDAR (8 points/mz) and four-band imagery
(15 cm GSD), reporting a good relationship between measured and predicted CWD area (R? = 0.65).
Sterericzak et al. [15] detected snags via maximum likelihood classification of LIDAR (6 points/m?) and
four-band data (<50 cm GSD), achieving high-accuracy products (93.65% completeness and 99.95%
correctness of testing points). Duan et al. [16] classified wind-thrown logs on visible band (RGB) UAV
images (20 cm GSD) through random forest classification of image pixels. The authors then used a
Hough-transform algorithm to delineate each log object, reporting good results (75.7% completeness
and 92.5% correctness). A study by Panagiotidis et al. [17] also detected wind-thrown logs in a forest
environment by processing UAV-obtained aerial images (3 cm GSD) via a series of edge-detection
filters and then applying the Hough transform to delineate individual logs, with good results (84.6%
completeness and 94.9% correctness).

None of the studies listed above has attempted to identify both logs and snags through a
single classification method, none has used object-based classification in conjunction with area-based
verification, and none has been applied to the boreal ecosystem. Additionally, except for Richardson
and Moskal [14] and Sterericzak et al. [15], all previous studies used very small application areas and
focused only on recently downed trees (wind-throws). Thus, additional studies are required aimed at
larger, more complex study areas in a broad variety of settings.

The aim of this study was to develop and test a GEOBIA-based workflow for classifying logs
and snags in the boreal forest using random-forest classification of multispectral and LiDAR data
acquired from an aerial platform. In pursuing this work, we addressed two main objectives. First, we
assessed the accuracy and transferability of our workflow by conducting validation exercises in both a
calibration area, where the classifier was trained, and a separate verification area located in another
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portion of the study area. Second, we evaluated the need for supplementary LiDAR metrics in this
classification task. Additional analyses were performed to gain insight into the number of predictor
variables required to map CWD effectively with random forest, and the effect of training-dataset size
on classification accuracy.

2. Materials and Methods

This paper presents a novel approach to CWD detection in centimetric (i.e., dimensioned in
the order of centimeters) aerial imagery using a geographic object-based image analysis (GEOBIA)
workflow, where the image-objects are classified by a random forest (RF) using spectral and LiDAR
data as predictor variables. In this demonstration, we identify logs and snags in a boreal forest study
site located in northern Alberta, Canada.

GEOBIA consists in partitioning images into a set of mutually exclusive and collectively exhaustive
groups of connected pixels (a.k.a. image-objects) that are relatively homogeneous internally, and
then analyzing such objects based on their spectral and spatial features [18]. Random forest is a
machine-learning algorithm that creates (trains) an ensemble of classification trees, each with a distinct
random selection of the input features, then classifies objects through a voting system for all created
trees [19]. The approach has been previously demonstrated to be efficient in classifying log objects [16].

To assess accuracy, we conducted a number of experiments. The main one assessed the accuracy of
our approach for classifying CWD in both the calibration (where the classifier was trained and tested)
and the verification (a separate portion only used for testing) parts of the study area. A second set of
experiments involved removing certain predictor variables from the training process and assessing
their effect on accuracy. Finally, a training-dataset-size test was performed by gradually reducing the
number of training samples and assessing the trade-offs in classification accuracy.

A graphical summary of our workflow and the tests performed in this study is shown in Figure 1;
details are provided in the following subsections. Image segmentation and image-object attribution
with spatial and spectral features were performed in eCognition (Version 9.4) [20]. All other procedures,
including training random forest and assessing the accuracy of classifiers, were performed in R (Version
3.5.1) [21] using the “randomforest” package [22]. The source code in R and input files used to generate
the results presented in this paper are provided as Supplementary material.

2.1. Study Area

The study area (Figure 2) is located in the boreal forest natural region near Conklin, Alberta, in
the central mixed-wood subregion [23]. The gently rolling terrain, which can be divided into uplands
and wetlands, is mainly populated by jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana
(Mill.) B.S.P), and trembling aspen (Populous tremuloides Michx.) trees [23]. The region contains a
dense network of reclaimed and un-reclaimed seismic lines (petroleum exploration corridors 5-10 m
wide) and well sites. CWD can be found dispersed in the undisturbed forest, as well as concentrated in
piles on seismic lines. The study area was selected for being representative of its natural subregion,
as well as containing a good variety of disturbances and restoration strategies on seismic lines. A
250-hectare calibration area was selected to develop and fine-tune the CWD classification method.
A smaller 20-hectare verification area, about 4 km SE of the calibration area, was used to assess the
accuracy of the classifier developed in the calibration area when applied “as is” to a similar area with
no further training or tuning.
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Figure 1. Workflow chart of this study with the sub-section numbers where each step is explained in

this document. Coarse woody debris (CWD) are mapped via image segmentation and random forest

(RF) classification of the image objects. Multiple tests are performed to assess implications of inputs on

classification accuracy. Specific tests are based solely on calibration samples.
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Figure 2. Location of the training and verification areas within the 250-hectare area of study. Background

image for the overall study area obtained from the ArcGIS mapping software using the following
sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN,
IGP, swisstopo, and the GIS User Community.
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2.2. Image Acquisition and Pre-Processing

Remote sensing data for this project were obtained via a piloted aircraft (Cessna 210T) mission
executed by OGL Engineering of Calgary on August 2 and 4, 2017. The aircraft was equipped with a
LiDAR sensor (Leica ALS70, Leica Geosystems AG, Heerbrugg, Switzerland), an optical sensor (Leica
RCD30, Leica Geosystems AG, Heerbrugg, Switzerland), a global navigation satellite system (GNSS,
Rohde & Schwarz, Munich, Germany) unit, and an inertial measurement unit. The flight detail for this
mission is provided in Table 1. Prior to the flight mission, 250 visible ground control points (GCPs,
60 cm squares with a bullseye marking) were deployed across the study area and their coordinates
measured using a real-time kinematic GNSS (Trimble R8 — 8 mm horizontal and 15 mm vertical
precision - Trimble, Sunnyvale, United States). Out of the 250 GCPs, 100 were used for georeferencing,
and the remaining 150 were used for accuracy assessment. The X, Y, and Z accuracy (root-mean-square
error) of the final products were 5, 10, and 11 cm, respectively.

Table 1. Flight specifications for airborne remote sensing mission. Projection uses the Canadian Spatial
Reference System (CSRS) in Universal Transverse Mercator (UTM) coordinates.

Projection/Datum NADS83 (CSRS) UTM Zone 12N, CGVD2013
Flying Height 850 m Above Ground Level
Flying speed 130 knots, 67 m/s
Overlap 80% forward and 60% side
Ground Resolution (RGB) 5.5 cm or less
Sensor calibration Yes, Leica Geosystems

The average raw LiDAR point density was ~40 pts/m?. OGL Engineering (Orthoshop Geomatics
Ltd.) Calgary performed noise removal from the raw points, then classified them into ground and
non-ground points, using Bentley Microstation with Terrasolid software to accomplish this task. We
then rasterized (25 cm pixel) the ground points into a digital terrain model (DTM) and the first-return
points into a digital surface model (DSM) in ESRI (Environmental Systems Research Institute) ArcMAP
(Version 10.6.1) [24]. Finally, a canopy height model (CHM) was obtained by subtracting the DTM
from the DSM.

We used a structure-from-motion [25] workflow in Agisoft Photoscan (Version 1.2.4.2399) [26] to
generate a photogrammetric point cloud and an orthomosaic from the raw photos (~2200). However,
only the orthomosaic was used for this project. First, the photo quality was assessed using Agisoft
Photoscan photo-quality assessment tool. All the photos were found to be above the minimum quality
threshold. Then, the photos were aligned and a sparse point cloud was generated using the camera
positions estimated by the onboard GPS. The camera position and orientation, and the X, Y, and Z
locations of the sparse point cloud were further adjusted with the georeferenced GCPs. The sparse
point cloud was next used to generate a dense point cloud and DSM. Finally an orthomosaic was
generated at 5 cm GSD using the true DSM. A normalized difference vegetation index (NDVI) for the
area of study was also generated from the Red and the Near-infrared (NIR) bands of the orthomosaic.

The LiDAR DSM and CHM, the orthorectified Red, Green, Blue, and NIR bands, and NDVI
were stacked together and used as input image bands in Trimble eCognition (Version 9.4). Only
the Red, Green, Blue, NIR, and NDVI bands were used for image segmentation (i.e., creation of
image-objects), since the LiDAR layers had a less dense GSD (25 cm) and were too smooth to
provide information about the edge of objects, while all the input bands were used to attribute the
generated image-objects. After some initial testing to find a reasonable balance between under- and
over-segmentation, the segmentation parameters were set to scale 10, shape 0.6, and compactness 0.4.
The resulting image-objects and their attributes were used for further analysis.
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2.3. Training the Classifier

A reference dataset in the calibration area was created by manually classifying 5000 randomly
selected image-objects (hereafter called just “objects” for short). To account for the lower frequency in
the orthomosaic of objects with a NDVI similar to that of CWD (<—0.1 in the NDVI image), a stratified
random sample with two strata (with —0.1 separating “high” vs. “low” NDVI) was extracted. Out of
the 5000 objects, 1000 came from the “high” NDVI stratum and 4000 and 1000 from the “low” NDVI
objects. Similarly, a second randomly selected reference dataset was created in the verification area,
with 300 “high”-NDVI objects and 1200 “low”-NDVI objects. Objects in these datasets were classified
by an experienced human analyst. The analyst viewed the reference-object polygons and the spectral
and height layers in a GIS environment, then labeled the 6500 calibration-verification objects with one
of the classes in Table 2.

Table 2. Name and description of each of the classes in the reference dataset. The five first classes were
used for training and testing (Y) the random forest classifier, and the last two were not used for either
training or testing but for discarding some of the randomly selected objects (N).

Name Description Train/Test
Log Downed CWD. Horizontal or leaning with an angle > 45° Y
Snag Standing CWD. Vertical or leaning with an angle < 45° Y
Water Puddles and ponds Y
Dirt Road, mud and exposed soil Y
Other Shrubs, moss, alive trees, shadowed areas Y
Man-made Ground control points, buildings, power lines N
Unidentified Unclassifiable object due to practical issues or limitations N

The five object classes used for random forest classification were as follows: logs, snags, water,
dirt, and other (Table 2). This class composition was deemed to be optimal for the present study after
preliminary accuracy tests were performed with different combinations of training classes. Using just
the classes of interest (log and snag plus “other”) decreased the number of false positives, but also
increased the number of false negatives. By adding water and dirt as formal classes, which correspond
to low-NDVI objects often confused with CWD, we obtained a better trade-off between false positives
and false negatives.

Objects that the human analyst was unable to unambiguously identify were labeled as unidentified
and discarded from the reference dataset. Common unidentified objects included miniscule features
composed of few pixels, heavily shaded objects that are distinct from their surroundings but too dark
to identify, and blurry objects positioned in areas where the ortho-mosaicking produced artifacts.

The reference dataset for the calibration area had 3710 objects, of which 364 were logs and 537
were snags. The remaining objects in the calibration area of the original 5000 were discarded for being
unidentified and not beneficial for training. The reference dataset for the verification area had 1500
objects, of which 40 were logs, 51 were snags, and 192 were unidentified objects. More detail and
descriptions about each class can be found in Appendix A.

The manually classified image-objects had spatial, spectral, and height attributes that were
exported from eCognition for use as predictor variables in R. The spectral attributes for each band and
height layer included the following: mean, standard deviation, difference from neighbors, band ratio,
border contrast, mean inner border, mean outer border, minimum, maximum, and skewness. The
spatial attributes included density, asymmetry, length by width, border length by length, shape index,
compactness, polygon width, pixel area, border index, main line width, pixel length, rectangular fit,
perimeter, roundness, elliptic fit, and curvature by length. Full attribute definitions can be found in the
eCognition Reference Book [27].

Before running the random forest classification in the calibration area, a stratified-random selection
of the reference dataset was performed. In each run, we used 80% of the reference objects for training
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and 20% for testing, while maintaining the original proportion of object classes. No training was
performed in the verification area. Out of the 1500 reference objects in it, 1388 were used for testing,
and the remaining 192 unidentified objects were discarded.

2.4. Classification Accuracy Analysis

Random forest classifiers, specific for each individual test (explained in the following subsections),
were trained using their respective training datasets and then tested against reference data. In this
manner, we created confusion matrices and derived two accuracy metrics: completeness and correctness.
Completeness indicates the areal proportion (i.e., proportion by total area, not by number of objects) of
all the target-class objects in the test data which were correctly assigned the target class. Correctness is
the areal proportion of all objects in the target class that actually belong to this class in the reference
data. These metrics are calculated as:

TP .
Completeness = TPrEN — 1 — Omission 1)
TP
= — _ =1- issi 2
Correctness TP L FP Comission 2)

where TP is the total area of true positives: actual target class objects correctly classified as such; FN is
the total area of false negatives: actual target class objects incorrectly classified with a different class;
and FP total area of false positives: non-target objects incorrectly classified as the target class. In this
study, we defined target classes at two hierarchical levels: (i) logs and snags at the lower level; and (ii)
a “CWD union” class at the upper level, which represents all CWD objects together.

Since there can be variability in the results due to the training and testing selection, as well as in
the way the RF algorithm constructs the classification trees, the accuracy metrics in this study were
obtained by running 100 independent instances of random forests for each test (i.e., for each instance,
an independent 80/20 training/testing stratified random split was drawn from the reference dataset of
the calibration area). Results are reported as averages (arithmetic mean) and standard deviations.

2.4.1. General Accuracy and Transferability

In order to test the reliability of our workflow for CWD identification, we applied it first to the
calibration area and then to the verification area. In the calibration area, a random selection of 80% of
the reference samples were used to train the classifier. The remaining 20% were used for testing (i.e.,
for assessing the performance of the classifier). We repeated this process 100 times and averaged the
results. In order to test the transferability of the classifier to a spatially segregated area, we performed
a second test using the reference objects in the verification area. This test was also repeated 100 times
(once per each classifier instance) and the results were averaged.

2.4.2. Value of LiDAR-Derived Height Variables

Two types of height data were tested in this study: a digital surface model (DSM) and a canopy
height model (CHM), both derived from LiDAR. We tested their effect on RF classifier accuracy using
four combinations of predictors: (i) all spectral and height attributes; (ii) all spectral data plus CHM data;
(iii) all spectral data plus DSM data; and (iv) only spectral attributes. Each of these combinations were
used in 100 RF runs, and their results were averaged. We used a series of pairwise difference-of-means
t-tests to look for statistically significant differences on completeness and correctness accuracies in
each of the three CWD classes: CWD union, logs, and snags. The null hypothesis was that there is
no difference in the mean accuracy of any given CWD class between one combination of predictor
variables and another. The significance level for these t-tests was 0.05.
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2.4.3. Importance of Predictor Variables

The Random Forest R package provides a built-in “importance” function, which measures the
impact of each predictor variable on classification error by calculating the difference between the error
before and after randomizing each variable [22]. More important variables have a greater effect on
classification accuracy, and therefore receive a higher importance score. For example, a variable with
an importance score of 20 means that randomly permuting the values of that variable leads to a 20%
decrease in accuracy. These values are discriminated for each of the output classes. The importance
values of 100 RF for the two CWD classes (logs and snags) were averaged and then the predictor
variables were ranked from most important to least important in terms of CWD detection accuracy.
In order to test the effect of the number of predictor variables on CWD classification accuracy, the
least-important variables were gradually removed one by one. We performed classification-accuracy
tests for each iteration, based on 100 random forests, until no more variables could be removed.

2.4.4. Effect of Training-Sample Size

We tested the effect of training-sample size on classification accuracy by systematically reducing
the number of training samples—from 2374 (64% of the calibration reference) down to 32—while
maintaining a constant number of testing samples (592 samples, 16% of the reference). For each
iteration the classification accuracy average and standard deviation of 100 RF runs was calculated,
where every forest had samples selected through stratified-random sampling.

3. Results

3.1. General Accuracy and Transferability

The random-forest classification GEOBIA workflow resulted in highly complete (93.4%) and
correct (94.5%) detections for overall CWD in the calibration area (Table 3). The correctness for the
individual log and snag classes were also very high (87.0% and 91.7%, respectively), which was also
the case for completeness of the snag detections (95.5%). Completeness for logs was slightly lower
(76.9%, Table 3).

Table 3. Accuracy metrics completeness and correctness for all CWD, only logs, and only snags.
Training samples were obtained solely from the calibration area; the first application has testing samples
in the calibration area and the second has testing samples in the verification area. These numbers reflect
the average metrics of 100 random forests runs with a 80/20 training/testing random split of samples.

Completeness Correctness
- . CWD CWD
Application Statistic union Log Snag union Log Snag
Calibrati Average 93.4% 76.9% 95.5% 94.5% 87.0% 91.7%
AUbTation - gtandard Deviation 2.1% 5.4% 2.2% 1.6% 4.5% 2.7%
Verification Average 80.6% 81.5% 65.7% 92.3% 75.8% 88.8%
Standard Deviation 3.0% 5.4% 4.8% 2.9% 4.9% 4.7%

When applied to the verification area without any further training, the workflow still produced
good overall CWD completeness (80.6%) and very high overall CWD correctness (92.3%) results
(Table 3). The correctness for the log and snag classes were good, but slightly lower (75.8% and 88.8%,
respectively) than observed in the calibration area (87.0% and 91.7%, respectively). The completeness
was higher for logs (81.5%) and considerably lower for snags (65.7%) in the verification area, relative to
the calibration area (76.9% and 95.5%, respectively; Table 3). The standard deviations for completeness
and correctness for the CWD union class is about half that noted in the other classes. The standard
deviation of completeness and correctness was higher for logs than snags in the calibration area. The
opposite was observed in the verification area.
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3.2. Significance of LIDAR-Derived Height Variables

Accuracy statistics for the RF test using CHM and DSM variables together were not significantly
different than those produced using CHM variables alone (Figure 3). Models using CHM variables
had higher snag completeness and log correctness than those using only a DSM.

Completeness and height data Correctness and height data
100.0% 100.0%
95.0% 95.0%
90.0% 90.0%
85.0% 85.0%
80.0% 80.0%
75.0% 75.0%
70.0% 70.0%
65.0% 65.0%
60.0% 60.0%
CHMand CHM DSM  No height CHMand CHM DSM  No height
DSM data DSM data

BCWD union ®Snag Log

Figure 3. Bar plots of completeness (left) and correctness (right) using different combinations of height
attributes: both canopy height model (CHM) and digital surface model (DSM), only CHM, only DSM,
and no height data. Average metrics for 100 runs with randomly selected training/testing samples on
the calibration area.

Models using any sort of height variables performed significantly better than those using spectral
variables alone. However, the difference was more noticeable in the log and snag classes, and less-so in
the CWD union class.

Statistical significance was tested for all of the results reported above using difference-of-means
t-tests, and are provided in Appendix B.

3.3. Importance of Predictor Variables

The importance scores of predictor variables in the 100 RF runs for the log and snag classes is
summarized in Figure 4. The NDVI predictor variables received the highest minimum, maximum,
median, first-quartile, and third-quartile importance amongst all types of predictor variables. CHM
received the second highest third-quartile and median importance amongst all categories, ranking
much higher on average than most DSM variables. The visible and near-infrared layers category
(RGBN) received the second highest maximum and first-quartile importance. Most spatial variables
received low importance values, with a few exceptions. Almost all DSM variables ranked very low
on importance, except DSM standard deviation, which scored a 4.9 average CWD importance value
(displayed as an outlier in Figure 4).
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Figure 4. Box and whisker plot of the random forest (RF) importance relative to the CWD classes for
different predictor variable categories: normalized difference vegetation index (NDVI), canopy height
model (CHM), visible and near-infrared layers (RGBN), extent and shape (spatial) attributes, and digital
surface model (DSM). The number of attributes in each category is shown in parenthesis. Importance
shown is the average of 500 random forests using all available attributes on the calibration area.

The top 15 most important variables for CWD classification in decreasing order of importance
were as follows: mean NDVI, mean inner border NDVI, green/RGB, mean CHM, density, mean inner
border CHM, minimum NDVI, asymmetry, polygon length by width, mean outer border CHM, border
length by length, blue/RGB, red border contrast, red difference from neighbors, green border contrast.
A list with the importance of all predictor variables is presented in Appendix C.

The minimum number of attributes required to obtain reliable average CWD accuracy above 90%
completeness and 87% correctness was 15, below which the accuracy metrics decreased drastically
(Figure 5). Completeness seemed to slightly rise indefinitely as new attributes were added, whereas
correctness seemed to stabilize at about 88.5% after 45 attributes were included as predictor variables.

Accuracy versus number of attributes

94.0%
. 92.0%
90.0%
88.0%
86.0%
84.0%
82.0%
80.0%

Average accuracy

0 10 20 30 40 50 60 70

Number of predictor variables

——Completeness ~=———Correctness

Figure 5. Line graph of number of attributes versus classification accuracy of CWD. Accuracy metrics
shown are the average of 100 random forests for logs, snags, and the CWD union classes on the
calibration area.
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3.4. Effect of Training-Sample Size

Both completeness and correctness continually decreased as the number of training samples
decreased, but completeness was found to decrease more drastically when there were less than 40
samples (Figure 6). Correctness never crossed the 65% threshold, whereas completeness was lower
than 40% for logs when there are less than 35 training samples. Levels of 90% average completeness
for the CWD union class could be achieved with as few as 512 training samples. Levels of 90% average
correctness could be achieved with as few as 64 samples. Standard deviation smaller than 4% could be
achieved with as few as 256 samples for completeness and 100 samples for correctness.

Completeness (a) Correctness (b)
100.0% 100.0%
90.0% 90.0% Mf/vw
80.0% 80.0%
70.0% 70.0%
]
o0 60.0% 60.0%
-
()
Z 500% 50.0%
40.0% 40.0%
30.0% 30.0%
32 64 128 256 512 1024 2048 32 64 128 256 512 1024 2048
Number of training samples Number of training samples
14.0% 14.0% ,
12.0% 12.0%
- 10.0% 10.0%
8
K 8.0% 8.0%
3
o 6.0% 6.0%
o
-
8 40% NG 0 4.0%
s IV N
A 2.0% 2.0%
[99)
0.0% 0.0%
32 64 128 256 512 1024 2048 32 64 128 256 512 1024 2048
Number of training samples Number of training samples
—— CWD union Log Snag

Figure 6. Graphs of completeness (a) and correctness (b) versus number of training samples on the
calibration area.

4. Discussion

4.1. General Accuracy and Transferability

The proposed method was able to map CWD in the study area with great accuracy on the
calibration area and good accuracy in the verification area. This means that models trained in one
location can be applied in distant locations, as long as the imagery and ground conditions remain
similar. The measured log accuracy metrics completeness and correctness for the calibration area were
76.9% and 87.0%, respectively, and for the verification test were 81.5% and 75.8%, respectively. Even
though these numbers fluctuated between the two areas they are still within the same range given their
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respective standard deviations. Therefore, the method was considered to achieve the same accuracy
for logs on the two areas.

Other studies mapping logs on aerial images were able to detect logs with comparable accuracy,
such as Baumann et al. [9] with about 68% and 95%, Duan et al. [16] with 75.7% and 92.5%, Riietschi
et al. [11] with 88% and 85%, and Panagiotidis et al. [17] with 84.6% and 94.9% completeness and
correctness, respectively. However, the accuracies in the present study reflect more challenging
conditions involving CWD in diverse settings—natural and disturbed forest—at varying stages of
decomposition and over a large application area.

The present study mapped individual CWD pieces, analogous to the results of Richardson and
Moskal [14] and Duan et al. [16], but was also able to map snags obtaining 95.5% completeness
and 91.6% correctness in the calibration area and 65.7% completeness and 88.8% correctness in the
verification area. These are comparable to the results of Biitler and Schlaepfer [28] and Sterericzak et
al. [15]. The accuracy metrics presented in this study are unique in that they are based on the area
of individual objects, whereas the other studies use count-based measures of the detected objects or
summary of the area of multiple objects.

The considerable decrease in snag completeness between the calibration and verification tests
in this study is likely due to the fact that most snags identified in the verification area were small
coniferous trees, whereas most snags identified in the calibration area corresponded to medium to
large sized conifers or large deciduous trees, as can be seen in the histograms of the area of snag
objects (Figure 7). This highlights that the method is most effective when applied to an area with
similar species compositions to the training area, or when ensured that the full range of composition is
included in the training part.

Area of Calibration Snags (a) Area of Verification Snags (b)
% —
mean = 105.42 mean = 67.71
S - sd = 58.08 5 sd= 2675
> 3 > &
: - .
=] 5 —
g 8 g
i £ oo
<
I} v —
(= (=
| [ | | | 1 | | | | | | | [
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Area (pixels) Area (pixels)

Figure 7. Histograms of area (pixels) of snag objects in the calibration (a) and verification (b) areas.
Mean and standard deviations (sd) are indicated on each graph.

The developed method was most accurate when mapping CWD regardless of the log/snag
distinction, obtaining completeness and correctness for the CWD union class of 80.6% and 92.3%,
respectively, in the verification area, and 93.4% and 94.5%, respectively, in the calibration area. These
results support the observation that the workflow yields highly accurate detection of overall CWD
given the complex and extensive nature of the study area. Since the accuracy metrics for the log
and snag classes is significantly lower than for the CWD union class, it is evident that there is some
confusion between log and snag objects. This suggests that there is room for improvement in the
automated distinction between the CWD classes, which could be addressed in future studies.
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4.2. Significance of LiDAR-Derived Height Variables

Experiments using both, either, and none of the two types of height data—DSM and
CHM—significantly increased the distinction between logs and snags, though the classification
accuracy of the undistinguished CWD union improved by just 2%. We found the CHM to be
significantly better than the DSM for the purpose of distinguishing logs from snags, particularly with
respect to completeness. Although they theoretically present the same information, this difference
might be due the fact that the dynamic data range in the CHM is larger (compared to the DSM), which
is able to account for smaller variability of objects (heights).

There were no significant benefits of using both a DSM and a CHM. Since the CHM was derived
from the DSM and a digital terrain model, the addition of DSM variables could be considered redundant
in this case. The handling of redundant variables by the random forest algorithm is further discussed
in the following subsection. We suggest that the most parsimonious selection of attributes concerning
height data is the CHM, in addition to the spectral and shape attributes.

Future studies using similar methods that are not concerned with the distinction between logs
and snags might choose to not use height data as predictor variables for CWD, since neither the CHM
nor DSM significantly increased CWD union accuracy. Conversely, studies targeting snags or logs
specifically, or concerned with the distinction between the two classes, will benefit from adding height
data as predictor variables.

4.3. Importance of Predictor Variables

The NDVI was the most important predictor variable type overall, which was expected since
CWD exhibits a very low NDVI signal overall. The top 15 attributes in the importance test included
a mix of NDVI, spectral, spatial, and CHM variables, with DSM being the only variable type not
included. This can be explained as random forest prioritizing CHM variables as better predictors
than DSM for the target classes. However, one DSM-related variable was an outlier. DSM standard
deviation ranked 18th place, while CHM standard deviation ranked 31st. It is possible that some of the
local variability of the DSM was lost when subtracting a terrain model to generate the CHM, which
could explain why RF ranks higher this one instance of DSM vs. CHM variables.

We found that accurate CWD detection could be achieved with as few as 15 predictor variables.
As more attributes are added completeness seems to rise indefinitely, while correctness peaks around
45 attributes, after which it stabilizes around 88.5%. This effect suggests that RF is highly effective in
boosting the effect of more important variables in its classification trees, minimizing the influence of
redundant or ineffective variables.

4.4. Effect of Training-Sample Size

Larger training-sample sizes yielded higher accuracy results, as expected. However, this effect
seemed to be more drastic for the log class than the snag or CWD union classes. Since there were more
snag samples (537) than log samples (364) in the calibration area, and since the number of samples in
this experiment was decreased while maintaining the original proportion of samples for each class, it
is logical to expect that the class with less samples will be more strongly affected when reducing the
sample size. Completeness and correctness above 90% could be achieved in the CWD union class with
as few as 512 samples. Good distinction between logs and snags, with accuracy metrics higher than
70%, could be achieved with about 1000 training samples.

4.5. Sources of Error

One important limitation to note is that the proposed method is only as reliable as the quality
of the remote sensing data used, since blurriness, shadows, and occlusions can interfere with the
identification of CWD. The accuracy tests performed in this study were based on what the human
interpreter was capable to identify on the segmented orthomosaic, therefore human mistakes, as well



Forests 2019, 10, 471 14 of 22

as unidentifiable objects caused by small size, segmentation problems, and image processing artifacts,
could not be fully accounted for in the accuracy assessments. These factors add a certain degree of
uncertainty to our reported results. However, we consider the error sources related to pre-processing
and segmentation to be minor relative to the number of meaningful identifiable objects in the images,
as explained in Appendix A.

Some initial tests comparing leaf-on (summer) and leaf-off (spring) data of the study area suggested
that there are trade-offs in accuracy when using either. Leaf-on has the advantage of much stronger
NDVI contrast between live and dead vegetation, increasing the correctness of CWD detection. Leaf-off
enables a more complete view of logs, since the occlusion caused by canopy is lessened, increasing
the completeness of CWD detection. In this study, we prioritized correctness and used leaf-on data;
future studies may compare and combine data obtained at different times for an assessment of the best
configuration of input images for CWD classification.

Given the variability built into the selection process of the training and testing samples, as well
as the creation of the random forest classifier, we suggest that the accuracy metrics be considered
alongside their respective standard deviations. For example, given the results of Table 1, and given
the normal distribution of completeness and correctness for CWD union in the calibration area, test
metrics could be expressed as 93.4 + 4.2% and 94.5 + 3.2%, respectively, 19 out of 20 times.

4.6. Application and Next Steps

The developed method could be promptly applied to studies interested in CWD detection under
any environmental context, be it forestry, biogeography, or disaster management. All that is required is
for the user to possess aerial data of equivalent resolution to this study and produce a modest number
(~100) of training samples. A sample CWD map, derived from a small subset of the study area, is
shown in Figure 8.

CWD map product example

A

6136420
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©
©
©
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©
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0 5 10 20

Figure 8. Application example of the developed method in a small subset of the study area without (A)
and with (B) the classified CWD objects.

Assuming that a hypothetical application area has similar variability in terms of CWD distribution
and image-object attributes to the areas in this study, reliable accuracy could be expected by using the
top 35 predictor variables listed in Appendix C. If an end user was not concerned with the distinction
between logs and snags, then our experience suggest that a minimum of 100 training samples, assuming
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a NDVI-based random stratified sampling strategy, should suffice. If the distinction between logs and
snags was important, then our results suggests that 1000 training samples would be required.

When applying this method to a different area, differences in CWD spatial distribution, species
composition, class distribution, and climate will affect the accuracy of this method and importance
of its predictor variables. The verification area test demonstrated that it is possible to apply a model
developed in a different area of the same natural sub-region and overall structure without additional
training and obtain reliable results. Studies outside of the boreal forest context or containing different
unique features, such as an urban environment, should utilize their own training samples as explained
above and expect similar results given an appropriate number of training samples. The more different
the ecosystem of an application area is from the boreal context, the larger the anticipated difference
between the results of this hypothetical application area and the results of this study in terms of
accuracy, significance, and importance of predictor variables. However, given the robustness of random
forests in prioritizing important variables based on the reference data, a new round of training on a
hypothetical area should produce a random forest classifier well prepared for the specific features
of this area. Additionally, the relative effect of transferability on classification accuracy, as observed
in the verification area test, should be similar in different ecosystems when using a unique training
set, assuming that these environments have similar within-ecosystem variability to the study area
presented here.

This study achieved accurate detection of logs and snags in high-resolution (centimetric) images
of an extensive and complex application area, located in the boreal forest of Alberta. We note
the results in this paper are relative to what is visible in the input images. Occlusion caused by
superimposed vegetation and visual ambiguities, such as similarities between live and recently dead
trees or any other factor that may hinder manual visual identification of CWD objects, should also be
expected to affect CWD detection based on supervised classification. For example, Inoue et al. (2014)
evaluated manually identified remotely-sensed CWD relative to ground-truth and achieved about 85%
completeness in a broadleaf forest of Japan. Further research could involve validating this method
according to field-measured CWD and modelling the volume of the detected CWD objects, similar to
Davis [29], but concerning both logs and snags in both forested and disturbed areas within the boreal
application context.

5. Conclusions

We applied random-forest classification within a GEOBIA workflow to identify logs and snags
in aerial four-band centimetric images (5.5 cm GSD) and LiDAR data (20 cm pixel CHM and DSM
derived from 20 points/m? ALS) of the boreal forest. Great accuracy results—93.4 + 4.2% completeness
and 94.5 + 3.2% correctness—were documented when training samples were present in the application
area. Good accuracy results—80.6 + 6.0% completeness and 92.3 + 5.8% correctness—were found when
training samples were detached from the application area. Experiments with CHM and DSM height
variables as predictor variables revealed that even though height data did not increase overall CWD
classification accuracy by more than 2% overall, it significantly improved the distinction between logs
and snags. The CHM was significantly better than the DSM for this purpose. An attribute-importance
test revealed that the most important predictor variables were a mix of NDVI, spectral, spatial, and
CHM variables, and that a minimum of 15 attributes was required to obtain accurate classification.
Adding more than 45 variables did not increase overall correctness. A test of training-dataset size
showed that accurate results for the CWD union class could be achieved with as few as 512 training
samples, but about 1000 samples were required to distinguish between logs and snags. Our results
suggest that researchers, foresters, biogeographers, and government agencies can reliably make use of
the developed workflow for mapping CWD on complex environments, such as the boreal forest of
Alberta, and generate accurate products of strong ecological value.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/6/471/s1.
Data Sheet S1: CWD_SamplesCalibration.csv, Data Sheet S2: CWD_SamplesVerification.csv, Code S1: RF_CWD.R.
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Appendix A

Since the reference objects used for training or testing were randomly selected in this study, there
were many instances where the objects were imperfect or unidentifiable. The meaningful classes used
in random forest classification are described in Table Al.

Artificial objects, such as ground control points, buildings, and power lines, were tagged as
man-made. In cases where the human analyst was unable to discern if the object belonged to any
specific class, it was tagged as unidentified. These two classes were not used for training or testing,
and are described in Table A2.

Given the inability of assigning unidentified objects as any of the classes used in training and their
small total area (9.5% of testing objects), unidentified objects are not considered to significantly affect
the accuracy of the method and were not used for either training or testing purposes. However, their
existence makes it evident that even though the ground sampling distance was quite dense in this study
(5cm pixel-size), some objects would require an even denser sampling distance for better identification.

Appendix B

The tables used for the pairwise difference-of-means t-test, performed on random forests using
different combinations of height predictor variables, are provided in Tables A3-A6.
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Table Al. Detailed description and examples of the classes in the reference dataset of the verification area that were used for random forest classification, including

count (N) and area. Example images provide both the visible (RGB) spectrum and a false-color image using near infrared (NIR).

Name N Area (m?) Area (%) RGB NIR Description
Log 40 518 1.4% Part of downed coarse woody debris. Io-Iorlzontal or
leaning with an angle > 45°.
Snag 51 8.63 23% Part of standmg coarse woody debrlso. Vertical or
leaning with an angle < 45°.
Water 7 142 0.4% Portions of puddles, ponds and lakes.
Dirt 253 100.27 26.6% Segment of road, soil and mud.
Low vegetation 325 90.50 24.0% Segment of grass, shrub and moss.
Oth Tree 315 43.13 11.4% Part of alive tree. Deciduous or coniferous canopy.
ther
Shadow 315 91.47 24.3% Object located in extremely shadowed area with

irregular or round shape.
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Table A2. Detailed description and examples of the classes in the reference dataset of the verification area that were not used for classification, including count (N) and
area. Example images provide both the visible (RGB) spectrum and a false-color image using near infrared (NIR). Normalized difference vegetation index (NDVI) is
used as one of the indicators for coarse woody debris (CWD).

Name N Area (m?) Area (%) RGB NIR Description

Part of human-made
feature: ground

- 00
Man-made 2 0.56 0.1% control, building,
power line.
Usually small, round
and dark object.
Unidentified object 192 35.97 9.5% Unclear if shaded

coarse woody debris,
dirt or water.




Forests 2019, 10, 471 19 of 22

Table A3. Average accuracy of tests using different height attributes as predictor variables: spectral
variables along with canopy height model (CHM) and digital surface model (DSM), only spectral and
CHM, only spectral and DSM, only spectral variables (no height), and only height variables. Average
completeness (Comp) and correctness (Corr) of 100 random forests for the classes: CWD union (Union),
logs, and snags.

Average Completeness and Correctness

Attributes Comp Union Corr Union Comp Log Corr Log Comp Snag Corr Snag
CHMandDSM 93.2% 94.6% 75.6% 87.5% 95.9% 91.8%
CHM 93.2% 94.2% 76.7% 86.3% 95.1% 91.5%
DSM 92.5% 94.5% 76.1% 83.1% 92.7% 91.9%
No height 91.3% 91.3% 70.9% 78.7% 87.6% 83.4%
Only height 10.8% 36.0% 11.7% 24.6% 9.4% 45.9%

Table A4. Accuracy standard deviation of tests using different height attributes as predictor variables:
spectral variables along with canopy height model (CHM) and digital surface model (DSM), only
spectral and CHM, only spectral and DSM, only spectral variables (no height), and only height variables.
Standard deviation of completeness (Comp) and correctness (Corr) of 100 random forests for the classes:
CWD union (Union), logs, and snags.

Standard Deviation

Attributes Comp Union Corr Union Comp Log Corr Log Comp Snag Corr Snag
CHMandDSM 2.3% 1.8% 6.3% 4.7% 1.9% 2.4%
CHM 2.3% 1.7% 6.3% 4.4% 2.1% 2.4%
DSM 2.4% 1.7% 6.5% 4.7% 3.0% 2.3%
No height 2.3% 2.6% 6.6% 5.6% 3.6% 3.5%
Only height 2.3% 7.7% 3.6% 9.1% 2.7% 11.8%

Table A5. Results of t-tests comparing average accuracies of tests using different height attributes as
predictor variables: spectral variables along with canopy height model (CHM) and digital surface
model (DSM), only spectral and CHM, only spectral and DSM, only spectral variables (no height), and
only height variables. P-values are provided for completeness (Comp) and correctness (Corr) for the
classes: CWD union (Union), logs, and snags.

Two-Sample Difference of Means: HO: x1 =x2 HA: x1 # x2
P Values
Reference Comparison Comp Union Corr Union Comp Log  Corr Log Comp Snag Corr Snag
CHMandDSM CHM 0.950 0.080 0.229 0.071 0.003 0.427
CHM DSM 0.034 0.190 0.532 <0.001 <0.001 0.296
DSM No height <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
No height ~ Only height <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table A6. Results of t-tests comparing average accuracies of tests using different height attributes as
predictor variables: spectral variables along with canopy height model (CHM) and digital surface
model (DSM), only spectral and CHM, only spectral and DSM, only spectral variables (no height), and
only height variables. Provided for completeness (Comp) and correctness (Corr) for the classes: CWD
union (Union), logs, and snags.

Significance («): 0.05
FAIL or PASS to Reject Null Hypothesis
Reference Comparison Comp Union Corr Union Comp Log  Corr Log Comp Snag Corr Snag
CHMandDSM CHM FAIL FAIL FAIL FAIL PASS FAIL
CHM DSM PASS FAIL FAIL PASS PASS FAIL
DSM No height PASS PASS PASS PASS PASS PASS
No height ~ Only height PASS PASS PASS PASS PASS PASS

If at least one of the classes in a test of Table A6 displayed significant improvement from one
group to the next, then the group with the higher results was considered to be significantly superior
for CWD prediction than the competitor. In this case, using both CHM and DSM was not significantly
better than only using CHM, which was significantly better than using only DSM (specifically for log
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correctness and snag completeness), which in turn was better than not using any height data. Using
only height data was significantly worse than any other scenario. In conclusion, the simplest, best
model used CHM predictor variables in conjunction with spectral variables.

Appendix C

Table A7 summarizes the predictor variable importance for the log and snag classes, as obtained
from the built in RF importance function, as well as the average CWD importance and the resulting
rank from highest to lowest importance.

Table A7. Image-object attributes obtained in eCognition [27] used as predictor variables for creating
the random forests (RF) and their importance for coarse woody debris classification according to the
RF importance function. The average between log importance and snag importance was used for
ranking (N) the variables. The types (T) of predictor variables are: spectral red, green, blue (RGB) and
near-infrared (NIR) combined (RGBN, R), normalized difference index (NDVI, N), spatial (S), digital
surface model (DSM, D) and canopy height model (CHM, C).

N Attribute T Avg. Log Snag N Attribute T Avg. Log Snag
1 Mean NDVI N 8.08 6.70 9.46 36 Brightness RGBN R 358 294 423
2 Mean inner border NDVI N 711 548 874 37 Polygon Width S 358 474 242
3 Green/RGB R 656 7.01 6.12 38 Mean green R 354 276 431
4 Mean CHM C 656 542 7.69 39 Green/RGBN R 343 254 431
5 Density S 630 751 5.08 40 Standard deviation green R 3.08 322 293
6 Mean inner border CHM C 623 530 716 41 Minimum CHM C 307 328 285
7 Minimum NDVI N 623 597 648 42 Standard deviation red R 3.01 330 272
8 Asymmetry S 593 691 495 43 Standard deviation NDVI N 284 228 340
9 Polygon length by width S 590 659 522 44 Mean Standard deviation R 281 323 238
10 Mean outer border CHM C 589 520 6.59 45 Standard deviation NIR R 272 167 378
11 Border length by length S 530 598 4.62 46 CHM skewness C 262 189 334
12 Blue/RGB R 515 597 434 47 DSM skewness D 252  0.64 439
13 Red border contrast R 510 7.02 319 48 Standard deviation Blue R 236 294 177
14 Red difference from neighbors R 503 6.10 3.96 49 Area in pixels S 224 296 152
15 Green border contrast R 500 675 3.25 50 Number of pixels S 219 296 142
16 Mean NIR R 498 508 4.87 51 Mean outer border DSM D 218 173 263
17 Blue/RGBN R 492 344 6.39 52 Mean DSM D 215 187 242
18 Standard deviation DSM D 490 435 544 53 Mean inner border DSM D 213 175 251
19 Blue difference from neighbors R 489 589 3.88 54 Border Index S 211 118 3.04
20 Mean outer border NDVI N 478 264 693 55 Maximum DSM D 204 140 267
21 Green difference from neighbors R 463 545 381 56 Main line width S 202 194 209
22 Maximum CHM C 461 357 5.65 57 Main line length by width S 198 126 270
23 Blue border contrast R 436 6.06 265 58 NDVI skewness N 1.85 091 2.80
24 Maximum NDVI N 426 327 526 59 Minimum DSM D 176 174 177
25 Mean blue R 424 296 552 60 Length in pixels S 1.54 111 1.98
26 NDVI difference from neighbors N 420 496 345 61 Rectangular fit S 1.36 0.63 2.09
27 Shape index S 418 432 405 62 DSM border contrast D 1.30 208 052
28 Red/RGBN R 394 311 477 63 Red skewness R 127 059 196
29 Red/RGB R 394 447 340 64 Perimeter S 120 060 1.80
30 NDVI border contrast N 388 540 235 65 Roundness S 118 021 215
31 Standard deviation CHM C 385 323 447 66 Green skewness R 111 0.67 156
32 Compactness S 3.80 378 3.82 67 Elliptic fit S 111 032 190
33 Brightness RGB R 372 277 4.68 68 Blue skewness R 094 092 095
34 Mean red R 370 291 448 69 CHM border contrast C 081 187 -025
35 NIR difference from neighbors R 363 292 433 70 Curvature by length S 050 017 0.83
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