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Abstract: Research Highlights: Regenerating northern white-cedar (Thuja occidentalis L.) is challenging
throughout much of its range. This study attempts to relate differences in natural regeneration to stand-
and seedbed-level factors. Background and Objectives: Lack of regeneration of northern white-cedar
is often attributed to overbrowsing by white-tailed deer (Odocoileus virginianus Zimmerman) because
white-cedar is a preferred winter browse species. However, there are many other factors that may
contribute to regeneration failure for white-cedar including its specific seedbed requirements and
competition from other, often faster-growing trees and shrubs. Materials and Methods: We surveyed
five mature white-cedar stands in Wisconsin, USA that have had little to no management in the
past 50+ years to find stem densities of natural white-cedar regeneration in three height classes.
We also collected data at each stand on potential predictor variables including overstory attributes,
competitive environment, seedbed, and browsing by deer. We used model selection to create separate
models to predict stem density of each white-cedar regeneration height class. Results: None of
the measures of deer browsing used in this study were found to be associated with white-cedar
regeneration. Soil pH, competition from other seedlings and saplings, and stem density of white-cedar
in the overstory were found to be potentially associated with white-cedar regeneration. Conclusions:
While browsing by deer is likely a factor affecting white-cedar regeneration in many areas, this study
highlights the challenge of quantifying deer browse effects, as well as showing that other factors
likely contribute to the difficulty of regenerating white-cedar.
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1. Introduction

Northern white-cedar (Thuja occidentalis L.) is widely recognized for ecological, cultural, and
commodity-production values. This species contributes to biodiversity through its association with
rare plants such as the showy lady slipper (Cypripedium reginae Walter) [1], is a preferred winter browse
for white-tailed deer (Odocoileus virginianus Zimmerman), and has traditionally been used by Native
American peoples for ceremonies, tools, and medicinal healing. In addition to these non-commodity
values, white-cedar’s unique wood properties make it highly resistant to decay after harvesting and
thus desirable for production of house siding, log homes, fence posts, and specialty products such as
outdoor furniture [2]. However, our understanding of white-cedar ecology and management across
its range is incomplete, especially with regard to the conditions that favor successful regeneration
establishment and growth.
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A long-lived, shade-tolerant tree, white-cedar has a native range that spans across the northeast
portion of the United States into Canada and as far west as the Great Lakes [2]. White-cedar is an
ecologically versatile species that can grow in both early and secondary successional forests, and in
well-drained upland or poorly-drained wetland settings. In the Great Lakes region, where this study is
focused, most white-cedar harvested for timber products grows in alkaline wetlands as nearly-pure
stands [2,3].

Establishment and growth of white-cedar regeneration are problematic in many parts of its
range [4–6]. As a result, there is concern that harvested white-cedar will not be maintained in the
future forest. Regeneration failures have been linked to several factors and combinations of factors
including germination substrate, overstory, and stand attributes, understory competition, browsing by
whitetail deer, and hydrologic conditions in wetlands [5,7–9].

Substrate requirements for germination by white-cedar are thought to be very specific.
This light-seeded species germinates best in moist environments, which on drier sites may include
decaying wood or exposed mineral soil [9–11]. On wetland sites, seed rot and seedling mortality from
seasonal flooding can occur and therefore white-cedar regeneration is positively correlated with the
number of hummocks or proportion of area with hummocks [8]. While substantial work on white-cedar
substrates in the eastern portions of the range has been conducted [11–13], the importance of substrate
traits may not be consistent across the entire range of the species. Therefore, further understanding of
substrate traits that are important for regeneration success in the Great Lakes region is needed.

White-cedar regeneration may also be affected by other stand-level attributes including overstory
stocking, composition, and competition. In the overstory, white-cedar is the seed source for regeneration,
but higher light transmittance in thinned canopies can lead to increased growth rates for white-cedar [7].
As a slow-growing species, white-cedar is vulnerable to competition from other tree species and shrubs,
especially in gaps and larger openings [8,13,14].

In many areas, white-cedar seedlings rarely make it to the sapling height class [7]. White-tailed
deer browsing is thought to be a main impediment to white-cedar regeneration. Since the mid-1990s,
white-tailed deer populations in northern Wisconsin have been 2–3 times higher than they were in the
1950s and 1960s and as much as 12 times higher than pre-settlement populations [15,16]. This long
period of high deer populations has likely significantly affected sapling recruitment of white-cedar and
other palatable species [17]. Browsing is considered a significant bottleneck to white-cedar regeneration
across its range [5,18].

Assessing the level of deer browsing pressure on tree regeneration can be challenging, especially
for foresters and land managers with limited time and resources. Deer population estimates based on
deer harvest data collected on a county level are too coarse to determine browsing pressure within
a particular stand. Alternatively, stem browsing indices can be collected for one or multiple tree
species, such as the sugar maple (Acer saccharum Marshall) browse index [19], but these data are only
applicable when there are enough stems and/or species to browse. Many dense stands lack understory
regeneration and especially palatable species due to their stage of stand development rather than
browsing pressure. At the stand level, regeneration tallies by species and height class may show that
some species are not reaching heights tall enough to escape browse pressure [e.g., 8]. In this case, deer
exclosures often show dramatic differences from unprotected areas but represent an unnaturally altered
condition and are often impractical on a large scale [20]. The use of indicator plants such as Trillium
and Maianthemum spp. has been shown as an effective measure of deer browse pressure in some
locations [21,22], but this practice may be time-consuming for a forester and can only be used during
a limited part of the year in stands where these species are present. Additionally, Kirschbaum and
Anacker found that indicator species characteristics were not correlated with signs of browse in a study
in McKean County, Pennsylvania, USA, possibly because of the effects of additional environmental
factors or legacy effects of historically high deer populations [23].

The objectives of this study were to (1) quantify natural regeneration in mature white-cedar stands
and (2) assess relationships between density and height of white-cedar regeneration and explanatory
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factors such as deer population density, browsing intensity, available regeneration substrate, and
competitive environment. We hypothesized that the amount of bare soil and deadwood substrate
would be positively related to white-cedar regeneration, while local deer population size and browsing
intensity would be negatively related. In addition, we anticipated that stand-level browsing intensity
would be a stronger predictor of white-cedar regeneration than other metrics such as county deer
population estimates.

2. Materials and Methods

2.1. Study Sites

Five white-cedar stands in northern Wisconsin were selected for in situ measurements (Figure 1).
Climate conditions for the selected stands varied in average annual temperature from 4.4 to 6.4 ◦C,
with precipitation varying from 750 to 820 mm (Table 1). Variation in average annual snowfall was
high among the five stands, with an average of 151 cm per year at the southernmost sites (Marathon
and Langlade Counties), and 281 cm per year at the northernmost site (Iron County; Table 1). Soils in
these stands were mostly Lupton and Cathro poorly drained organic soils on 0 to 1% slopes [24].
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Figure 1. Locations of 2016 Wisconsin white-cedar study sites (red) and basal area of white-cedar across
the state [25].

Table 1. Climate and stand conditions at five study site locations included in this work. Climate data
are averages from 1981 to 2010 [26].

Site
Annual

Temperature
(◦C)

Annual
Precipitation

(mm)

Annual
Snowfall

(cm)

Stand Basal
Area

(m2 ha−1)

White-Cedar
Basal Area
(m2 ha−1)

County Deer
Density

(deer km−2)

Iron 4.4 810 281 33.6 32.0 2
Florence 5.7 750 175 42.9 31.8 7
Langlade 5.5 820 151 43.6 30.6 7
Marinette 5.7 750 189 44.3 37.6 9
Marathon 6.4 820 151 44.0 29.4 12
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Site selection criteria for our study required that stands be at least 24 ha in size with at least 60%
of overstory basal area being white-cedar (Table 1). Basal area of all trees greater than 10 cm diameter
at breast height (dbh, 1.4 m) ranged from 33.6 to 44.3 m2 ha−1 across study stands. Each stand is
considered a study site. Other overstory species included tamarack (Larix laricina (Du Roi) K. Koch) and
balsam fir (Abies balsamea (L.) Mill.). Woody species frequently occurring in the understory were balsam
fir, mountain maple (Acer spicatum Lam.), bog Labrador tea (Ledum groenlandicum Oeder), and black
ash (Fraxinus nigra Marshall). Estimated county level deer densities ranged from 2 to 12 deer km−2 [27]
(Table 1). All study sites occurred in lowland swamp areas with organic soils and had little to no
management in the last 50 years.

2.2. Field Methods

Six plots were located systematically on a grid across each study site. The distance between
adjacent plot centers ranged from 175 to 615 m depending on the size and shape of the site. In each plot
trees greater than 10 cm dbh were recorded in a 400 m2 area. Saplings (height ≥ 1.83 m, dbh < 10 cm)
of all woody species were tallied by species in a 100 m2 subplot and were considered to have escaped
from browsing by deer based on personal observation. All woody plants within browsing range as
defined for this study (<1.83 m) were tallied by species in four 7 m2 subplots on each 400 m2 plot (10 m
from plot center in each cardinal direction). Because small seedlings are often unavailable to deer
during the winter months due to snowfall, all seedling counts were divided into two classes: small
seedlings <20 cm tall (potentially hidden by a snow layer [28] and large seedlings 20 cm to <1.83 m tall
(potentially exposed year-round).

Site-level deer browsing was determined using a categorical measure for palatable tree species
between 20 cm and 1.83 m tall in each of the 400 m2 plots. Palatable species were identified as species
with a browse preference I or II rating according to Dahlberg and Guettinger [29]. The most common
palatable species found in this study were mountain maple, Ilex spp., red maple (Acer rubrum L.),
and white-cedar. Deer browsing on twigs can be visually differentiated from hare browsing as deer
tear off twigs leaving a frayed edge, while hares use their incisors and leave a sharp, smooth cut [30].
Deer browsing categories included 1 = None: no visible evidence; 2 = Low: light browsing evidence
(1%–25% stems browsed); 3 = Medium: browsing evidence observed but not common, seedlings are
present (26%–50% stems browsed); 4 = High: browsing evidence common, and/or seedlings are rare
(51%–75% stems browsed); 5 = Very High, browsing evidence omnipresent, severe browse line (>75%
stems browsed) [31]. County-level deer density estimates were provided by the Wisconsin Department
of Natural Resources [27]. We also used the WISCLAND 2 land cover dataset to determine the area of
agricultural land and grassland/grazing land, both land cover types that may support a greater number
of deer [32]. Based on the deer home range size of 178 ha found by Larson et al. in Wisconsin [33], the
amount of agriculture or grassland area was calculated in 1.5 km wide buffers around each study site.

Substrate and competing vegetation were measured at four 1 m2 subplots per 400 m2 plot. Percent
cover of graminoids, ferns and fern allies, moss, trailing woody species, other forbs, standing water,
and leaf litter were all recorded within the 1 m2 subplots. Percent cover categories included 0 = 0%,
1 = 1%–25%, 2 = 26%–50%, 3 = 51%–75%, and 4 ≥ 75%. Standing water was estimated as the percent of
the plot regularly covered by standing water as evidenced by standing water impeding the growth of
vegetation. In each 1 m2 subplot, leaf litter layer was recorded as mostly deciduous, coniferous, or
mixed coniferous/deciduous. Depth of undecomposed leaf litter (Oi soil horizon) was measured to the
nearest 0.5 cm at three locations in each subplot, for a total of 12 litter depth measurements per plot.
Spherical convex densiometer readings were taken as an indicator of light levels in the understory.
Densiometer measurements were taken at breast height (1.4 m) at each cardinal direction, 5 m from
plot center using the method of Strickler [34]. Coarse woody debris (CWD, diameter ≥ 10.4 cm) was
measured on four 20 m transects per plot. Decay class (1–5, [35]) was evaluated and it was noted
whether or not the CWD was white-cedar. Total volume of CWD, volume of white-cedar CWD, and
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volume of white-cedar CWD in decay classes 3–5 were calculated using the line-intercept method of
Marshall et al. [36], with the assumption that all pieces lay horizontally.

One soil sample was collected at the center of each plot. Samples were taken just below the duff

layer at a depth of 0–30 cm using a 5 cm diameter soil corer. Soils were dried and ground with a mortar
and pestle. They were then analyzed at the University of Wisconsin-Madison Soil and Plant Analysis
Laboratory to determine pH, percent organic matter, Ca2+, K+, Mg2+, P, and cation exchange capacity
(CEC).

2.3. Model Selection

We created three models to determine the effect of predictor variables on stem density of
white-cedar saplings, large white-cedar seedlings, and small white-cedar seedlings. The VSURF
package in R was used to pare down from the full list of potential predictor variables to the variables in
the VSURF “prediction” step [37]. A list of all predictor variables can be found in Table 2. The variables
selected with VSURF were then used to create linear mixed models using the lme4 package in R [38].
Small and large white-cedar seedlings were measured at the subplot level, so plot nested within site
was used as a random effect. White-cedar saplings were measured at the plot level, so site was used as a
random effect. In all models, the response variable was transformed with a square root transformation
in order to meet assumptions of constant variance in the residuals. All possible models with all
interactions using the variables selected with VSURF were compared using the Akaike information
criterion, corrected for small sample sizes (AICc). These models were also compared to models that
used each of the three measures of deer browse pressure from this study: estimated county-level deer
population density (CTY_DEER), acres of agriculture and grassland within at 1.5 km buffer of the stand
(BUFF_AG.GRASS), and categorical estimate of percent of palatable stems browsed (DEER_BROWSE).
Of the models that scored within 10 of the lowest AICc score, the model with the fewest predictor
variables and interactions was selected.

Table 2. List of potential predictor variables for stem density of white-cedar regeneration. Factors are
defined as follows: CE = competitive environment, SS = seed source, Sbed = seedbed, Br = deer browse.

Factor Symbol Description

CE OTHERSMSEED Stem density of small seedlings of other species (stems ha−1, <20 cm tall)
CE OTHERLGSEED Stem density of large seedlings of other species (stems ha−1, 0 cm ≤ height < 1.83 m)
CE OTHERSAP Stem density of saplings of other species (stems ha−1, 1.83 m tall to <10 cm dbh)
CE CANOPY_STHA Stem density of all trees ≥ 10 cm dbh (stems ha−1)
CE BSLA Basal area (m2 ha−1) of all trees ≥ 10 cm dbh
CE DENSIOMETER Percent canopy closure as measured with densiometer
CE GRAM Percent cover of plot by graminoids
CE FERN Percent cover of plot by ferns and fern allies
CE FORB Percent cover of plot by other forbs (not including ferns or graminoids)
CE MOSS Percent cover of plot by moss
CE VINE Percent cover of plot by woody vines
SS CEDAR_BA Basal area (m2 ha−1) of all white-cedar ≥ 10 cm dbh
SS CEDAR_STHA Stem density of all white-cedar ≥ 10 cm dbh (stems ha−1)

Sbed VOL_CWD Volume of all coarse woody debris (m3 ha−1)
Sbed VOL_CWD_CEDAR Volume of white-cedar coarse woody debris (m3 ha−1)
Sbed VOL_CWD_3PLUS Volume of coarse woody debris in decay classes 3–5 (m3 ha−1)
Sbed WATER Percent of the subplot regularly covered by standing water
Sbed L_LITTER Percent cover of subplots by undecomposed leaf litter
Sbed LITTER_TYPE Main type of leaf litter on the plot: Deciduous, Conifer, Mixed
Sbed LITTER_DEPTH Mean depth of litter layer in centimeters
Sbed CEC Soil cation exchange capacity (cmol kg−1)
Sbed CA Soil calcium (ppm)
Sbed pH Soil pH
Sbed OM Percent organic matter in top 30 cm of soil
Sbed P Soil phosphorus (ppm)
Sbed K Soil potassium (ppm)
Sbed MG Soil magnesium (ppm)

Br CTY_DEER Estimated deer population density (deer km−2) in county where stand occurs
Br BUFF_AG.GRASS Total hectares of agricultural land and grassland in a 1.5 km buffer around the stand
Br DEER_BROWSE Categorical browse assessment, percent of stems browsed on palatable species
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3. Results

3.1. White-Cedar Regeneration

Total stem densities of white-cedar regeneration, which ranged from 1300 stems ha−1 at the
Iron County site to 15,600 stems ha−1 at the Marinette County site, were not significantly different
between sites, though within-site variation was high. When stratified by height class, we found
that the Marinette County site had significantly more white-cedar saplings than the other four sites,
with an average of 880 saplings ha−1. Large white-cedar seedling density ranged from an average of
60 stems ha−1 at the Florence County site to just under 2000 stems ha−1 at the Langlade County site
but were also highly variable (Figure 2). For example, five of six plots at the Florence County site had
no large white-cedar seedlings and plot densities ranged from 0 to 6800 stems ha−1 at the Marathon
and Marinette County sites. Small white-cedar seedlings were absent on at least one plot at all sites,
except Marinette County which had white-cedar seedlings in this height class present on all six plots;
plot-level stem density of small white-cedar seedlings at the Marinette County site ranged from 1000
to 54,000 stems ha−1. Overall, stem density of white-cedar regeneration generally decreased with
increasing height class.
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Figure 2. White-cedar regeneration by height class at each study site. Letters indicate significant
differences (p < 0.05) in stem densities among study sites using Tukey’s HSD. Error bars indicate one
standard deviation. Saplings were 1.83 m tall to less than 10 cm dbh, large seedlings were 20 cm to
<1.83 m tall, and small seedlings were less than 20 cm tall. Note that y-axes differ in each row.

3.2. Model Selection

A comparison of white-cedar regeneration to all variables used as model parameters in at least
one model is shown in Figure 3. Site level means for all measured variables can be found in Table A1.
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Figure 3. White-regeneration in three height classes versus variables tested as model parameters in at
least one model. Saplings were 1.83 m tall to less than 10 cm dbh, large seedlings were 20 cm to <1.83 m
tall, and small seedlings were less than 20 cm tall. Note that y-axes differ in each row. In the first row,
white-cedar regeneration is compared to regeneration of other woody species (trees and shrubs) in the
same height class.

The VSURF package was used in initial variable selection utilizing the list of site measures
(Table 2) as potential predictors of white-cedar regeneration. Two variables were selected as potentially
describing stem density of white-cedar saplings; those variables were soil CEC (CEC) and stem density
of white-cedar in the overstory (CEDAR_STHA). When AICc was compared for all possible models
including the predictor variables listed above, the selected most parsimonious model included only
the predictor variable for stem density of overstory white-cedar (Table 3). When AICc of the selected
model was compared with the null model (intercept only), it was shown that the selected model had
significantly more explanatory power (Table 3). The selected model also had a lower AICc score than
any model of deer browse effects (Table 3). In the selected model, stem density of white-cedar in the
overstory was found to be positively related to stem density of white-cedar saplings (Table 4).
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Table 3. Comparison of models for white-cedar regeneration density by height class created using the
predictors selected by VSURF; k is the number of parameters, AICc is Akaike information criterion
corrected for small sample size, and ∆AICc is the difference in AICc from the model with the lowest
value. This table includes the model with the lowest AICc, the null model that includes only random
effects (site for saplings, plot nested within site for large and small seedlings), three models of deer
effects, and the model selected with ∆AICc < 10.

Regeneration
Height Class Model Model Parameters (Fixed Effects) k AICc ∆AICc

Saplings Lowest AICc CEDAR_STHA + CEC +
CEDAR_STHA*CEC 6 218.62

Null Intercept only 3 235.11 16.49
County deer CTY_DEER 4 236.91 18.30

Habitat buffer BUFF_AG.GRASS 4 237.56 18.95
Deer browse DEER_BROWSE 4 237.75 19.13

Selected model CEDAR_STHA 4 221.75 3.13

Large seedlings Lowest AICc

BSLA + CEC + OTHERLGSEED +
BSLA·CEC +

BSLA·OTHERLGSEED +
CEC·OTHERLGSEED +

BSLA·CEC·OTHERLGSEED

11 1122.02

Null Intercept only 4 1152.91 30.89
County deer CTY_DEER 5 1155.08 33.06

Habitat buffer BUFF_AG.GRASS 5 1148.58 26.56
Deer browse DEER_BROWSE 5 1150.09 28.07

Selected model OTHERLGSEED 5 1128.31 6.29

Small seedlings Lowest AICc
pH + OTHERSMSEED +

CANOPY_STHA +
OTHERSMSEED·CANOPY_STHA

8 1284.09

Null Intercept only 4 1303.08 18.99
County deer CTY_DEER 5 1303.93 19.84

Habitat buffer BUFF_AG.GRASS 5 1305.24 21.15
Deer browse DEER_BROWSE 5 1305.19 21.11

Selected model pH + OTHERSMSEED 6 1289.90 5.82

Table 4. Most parsimonious models predicting stem density of white-cedar regeneration by height
class. Confidence intervals (CI) are two standard deviations. All models also included random
effects for site (saplings) or plot nested within site (small and large seedlings). β = model coefficient,
SE = standard error.

Response Variable
(White-Cedar Density) Fixed Effects β SE Lower CI Upper CI t Value

Saplings 1 Intercept 0.718 3.023 −5.328 6.765 0.238
CEDAR_STHA 0.010 0.002 0.006 0.015 4.905

Large seedlings 1 Intercept −2.418 4.895 −12.208 7.373 −0.494
OTHERLGSEED 0.000412 0.0000747 0.000263 0.000561 5.515

Small seedlings 1
Intercept −151.15 64.82 −280.80 −21.50 −2.332

pH 26.56 10.59 5.36 47.74 2.507
OTHERSMSEED 0.000706 0.000158 0.000391 0.001022 4.480

1 In all models, the response variable was transformed with a square root transformation.

The variables that were most related to stem density of large white-cedar seedlings using VSURF
were soil CEC (CEC), stem density of other large seedlings (OTHERLGSEED), overstory basal area
(BSLA), depth of leaf litter (LITTER_DEPTH), and plot cover by graminoids (GRAM). When AICc
was compared for all possible models including the predictor variables listed above, the selected most
parsimonious model included only the predictor variable for density of other large seedlings (Table 3).
When AICc of the selected model was compared with the null model (intercept only), it was shown
that the selected model had significantly more explanatory power (Table 3). The selected model also
had a lower AICc score than any model of deer browse effects (Table 3). In the selected model, stem
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density of large seedlings of other species was found to be positively related to stem density of large
white-cedar seedlings (Table 4).

Based on the VSURF package, four predictor variables potentially affecting small white-cedar
seedling density were identified: density of other small seedlings (OTHERSMSEED), overstory stem
density (CANOPY_STHA), soil pH (pH), and soil cation exchange capacity (CEC). When AICc was
compared for all possible models including the predictor variables listed above, the selected most
parsimonious model included predictor variables for density of other small seedlings and soil pH
(Table 3). When AICc of the selected model was compared with the null model (intercept only), it was
shown that the selected model had significantly more explanatory power (Table 3). The selected model
also had a lower AICc score than any model of deer browse effects (Table 3). In the selected model,
both pH and stem density of other small seedlings were found to be positively related to stem density
of small white-cedar seedlings (Table 4).

3.3. Measures of Browsing by Deer

This study used the following variables as direct or indirect measures of browse pressure at
each site: percent of palatable woody stems browsed (DEER_BROWSE), county deer population
density (CTY_DEER), and amount of agricultural and grassland in a 1.5 km buffer around the site
(BUFF_AG.GRASS). None of these variables were significant predictors in the selected models for
white-cedar seedling or sapling stem densities. Models of white-cedar regeneration using measures of
browsing by deer also did not perform well. We found that at each plot in the study the percent of
palatable stems browsed was at least 25%–50% and as high as 75%–100%, but observed browse was
not correlated with white-cedar regeneration in any height class (Figure 3). County-level deer density
estimates were not a good predictor of white-cedar regeneration but were also not related to observed
browsing level at the site (Figure 4).Forests 2019, 10, x FOR PEER REVIEW 10 of 15 
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4. Discussion

White-cedar serves important roles in social and ecological systems. Its value as a decay resistant
building material and its traditional uses by Native American peoples make it an important forest
product. However, this species is often difficult to regenerate. Our study focused on inventories of
mature stands of white-cedar to uncover factors related to success or failure of natural white-cedar
regeneration. Based on existing studies, we anticipated white-cedar regeneration densities to increase
with more exposed soil (minimal litter layer) and coarse woody debris [10,11] and decrease with
higher deer densities [7]. The inventoried stands in Wisconsin did not meet our expectations but were
influenced by other biotic and abiotic factors that we discuss in the following paragraphs.
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One of the most surprising findings from this study was that none of the measures of deer
abundance or deer browse pressure were associated with density of white-cedar regeneration.
The negative effect of deer browsing on white-cedar has been well documented in many studies and is
often cited by foresters as the biggest challenge to white-cedar regeneration [4,5,7,9,18]. However, deer
browsing pressure can be difficult to quantify and varies seasonally and year-to-year [39]. While the
stands in this study were not known to be used as deer yards and deer yarding is likely to be less
common in this area than farther north [40,41], the use of white-cedar stands as winter deer yards can
further complicate attempts to quantify deer browsing pressure. This study attempted to quantify
deer impacts in three ways, using county-level deer population estimates, estimating browse intensity
on palatable species at the plot level, and by using surrounding land-use as a proxy for deer habitat.
County-level deer estimates did not relate to stem density of white-cedar regeneration or to observed
browsing level in the stand. It is not surprising because these measures of deer populations are
coarse, and we would not expect them to represent the deer browsing pressure in an individual
stand. While we do recognize that the chances of over-browsing increase with increasing county-level
deer population, when measuring a highly palatable species like white-cedar, even stands where
county-level deer populations are low may still have high white-cedar browse impact due to deer
congregating in white-cedar-rich stands. Additionally, we estimated browse intensity in 25% classes
(ex. 1%–25% of stems browsed) and estimated most of the plots in the study to have 51%–75% of
palatable stems browsed. These estimates of browse intensity may not be fine enough to capture
differences that are important ecologically. We did observe a large decrease in white-cedar stem density
between the small seedling height class (which is protected from browsing by snow for much of the
winter [28]) and the large seedling height class, which is vulnerable to browsing year-round. This drop
off in seedling density could have been due to browsing by deer but could also be related to many
other factors such as nutritional demands and competition [8,42]. Other measures of browse pressure,
such as density and diversity of seedlings by height class [31] or browsing quantified at the species
level may be necessary to better understand stand-specific challenges.

Regeneration of white-cedar was poor overall and highly variable among plots within sites. Large
white-cedar seedlings were found on only 19% of the subplots in this study. Management guidelines
suggest that adequate stocking can be achieved with 60% milacre (4 m2) stocking of young, seed-origin
seedlings greater than 30 cm tall [43]. In this study, no sites achieved at least 60% white-cedar stocking in
the large seedling height class. The Langlade County site had the highest stocking of large white-cedar
seedlings, with 46% of subplots having at least one seedling present, while at the Florence County site,
only one subplot of the 24 sampled subplots (4%) had any white-cedar seedlings in the large seedling
height class.

While stem densities of white-cedar regeneration were low in all height classes, they were
comparable to stem densities found in other recent studies. Site-level mean stem densities ranged
from 500–13,500 small white-cedar seedlings per hectare and 60–1200 large white-cedar seedlings
per hectare in this study. In mixedwood stands in Quebec and Maine, Larouche and Ruel observed
natural regeneration densities of about 3000–8000 white-cedar seedlings per hectare [7]. In a lowland
white-cedar stand in Wisconsin, Forester et al. observed a median stem density for small white-cedar
seedlings of 1800 stems ha−1 [44]. A study conducted in poorly drained stands in Wisconsin in the
early 1980s found much higher densities of white-cedar regeneration in unharvested stands, with
mean stem densities of over 30,000 stems ha−1 [9].

Of the 30 potential factors analyzed in this study, three were found to be related to the density of
at least one height class of white-cedar regeneration: soil pH, stem density of regeneration of other
species, and stem density of mature white-cedar in the overstory. Soil samples in this study had pH
values from 4.6 to 6.7 and stem density of small white-cedar seedlings increased with increasing soil
pH. These results are similar to other studies both in the Lake States and in the Northeast. In Michigan,
Nelson found lower densities of white-cedar seedlings when the soil pH was less than 6.0 [45]. In Maine,
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Kell found that white-cedar growth was positively correlated with pH [46], and Curtis found optimal
white-cedar growth when soil pH was between 5.5 and 6.7 [47].

Stem density of mature white-cedar in the overstory was positively related to stem density of
white-cedar saplings in the study. One potential reason for this positive correlation could be increased
seed rain with more white-cedar in the overstory. In some cases, seed rain may be the most limiting
factor to white-cedar regeneration, or at least very high seed rain may increase the likelihood of
some individuals surviving against other challenges [13]. Cornett et al. found an effective seed
rain dispersal distance of about 20 m for white-cedar [48], which could lead to a strong correlation
between overstory white-cedar and regeneration at the plot level. Alternately, since we did not age the
saplings in this study, it is possible that they are older, suppressed individuals that established at the
same time as the larger, mature trees in the overstory after a disturbance or extended period of low
browsing intensity [49]. Finally, layering (asexual reproduction resulting from branches rooting to
the ground) has been reported as the predominant white-cedar regeneration mechanism on some wet
sites [45,47]; this could explain the correlation we observed between density of overstory white-cedar
and regeneration of this species. Mode of regeneration was not determined in the present study.

We found both small and large white-cedar seedlings to increase with increasing stem density
of regeneration of other species in the same height classes. This seems to be inconsistent with other
studies that found negative impacts of competition on white-cedar regeneration [14,42]. Chimner and
Hart also found that white-cedar seedlings decreased when shrub density increased [8]. The findings
in this study could mean that there were additional (unmeasured) factors that made certain plots or
sites more favorable to regeneration overall, not just regeneration of white-cedar or there could be
associational resistance to deer browsing due to increasing stem density of other species [50].

Microtopography has been found to be an important factor for white-cedar regeneration in several
studies. In swamps and on wetter sites, the increased presence of hummocks has been associated
with increased white-cedar survival and growth [51] and decreased competition from shrubs and
hardwoods [8]. On drier and upland sites where white-cedar seedlings are more susceptible to
desiccation, decaying logs have been found to be a better seedbed [48,52,53] and soil moisture has been
suggested as one of the most important factors affecting white-cedar germination and early seedling
survival [10,13]. This study took place on sites with poorly drained, organic soils. While we did not
find the amount of standing water in a plot to have a significant effect white-cedar regeneration, we
did observe the majority of white-cedar seedlings growing on either hummocks or decaying logs.

There are several additional factors that may be important to white-cedar regeneration that were
not measured in this study. Hydrology, fire, and fire history of a stand may also play a significant
role in site preparation for white-cedar regeneration [8,9], but the fire history of the sites in this study
is not known and hydrology data were not collected for this study. Browsing by snowshoe hares
(Lepus americanus Erxleben) was not evaluated in this study but has historically had the potential to
be as or more important in affecting white-cedar regeneration than browsing from deer [54]. We also
acknowledge that this study was of limited geographic scope, with only five sites across northern
Wisconsin, USA. Additional study sites across a broader geographic area would increase the robustness
of this study.

5. Conclusions

This study suggests that in some locations site-level factors may potentially be as or more important
than deer densities in determining the success of natural white-cedar regeneration. Local (stand-level)
browsing pressure is difficult to quantify but is likely much more important in determining regeneration
success than broader population estimates, such as those done at the county level. Based on this study,
opportunities for regenerating white-cedar may be identified by other evidence in the stand, sufficient
white-cedar seed source must exist in the overstory, and higher densities of regeneration of other species
may indicate good regeneration conditions overall that may also benefit white-cedar regeneration.



Forests 2019, 10, 501 12 of 15

Author Contributions: L.F.R., C.C.K., L.S.K., and D.R.B. contributed to study conceptualization and development
of methodology. L.F.R. carried out formal analysis of data. L.F.R., C.C.K., L.S.K., and D.R.B. contributed to the
writing of the paper.

Funding: This research received no external funding.

Acknowledgments: Thanks to Teresa Pearson for leading field data collection as well as Jacob Coonen and
Meghan Sullivan for their work in the field. We greatly appreciate the assistance with data analysis provided by
Aaron Weiskittel. Thanks to Rodney Chimner and Jeanette Allogio for providing valuable editorial suggestions.
Funding was provided by the U.S. Forest Service, Northern Research Station and the Wisconsin Department of
Natural Resources.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Site-level means for all potential predictor variables measured. See Table 2 for definitions of
variable symbols.

Potential Predictor Variable Symbol Iron Florence Langlade Marinette Marathon

OTHERSMSEED 19,405 38,452 25,119 68,810 19,226
OTHERLGSEED 56,310 31,071 31,607 34,464 23,095

OTHERSAP 5833 3217 2350 2950 3450
CANOPY_STHA 1154 979 925 2296 1063

BSLA 33.6 42.9 43.6 44.3 44.0
DENSIOMETER 76 83 87 89 87

GRAM 1 1 1 1 1
FERN 1 1 1 0 1
FORB 1 1 2 1 1
MOSS 3 3 2 3 2
VINE 1 1 1 1 1

CEDAR_BA 32.0 31.8 30.6 37.6 29.4
CEDAR_STHA 1021 421 671 2004 746

VOL_CWD 8.1 81.9 47.3 7.7 30.8
VOL_CWD_CEDAR 4.4 66.6 6.1 4.0 13.2
VOL_CWD_3PLUS 3.3 50.8 24.5 3.4 14.8

WATER 1 1 0 1 1
L_LITTER 2 2 3 2 3

LITTER_DEPTH 2.5 2.4 2.8 2.5 3.0
CEC 54 98 103 115 102
CA 1897 3213 4350 3477 4338
pH 5.4 6.2 6.4 6.4 6.5
OM 61 71 64 71 58

P 5 6 5 6 10
K 46 92 43 40 52

MG 371 773 1114 798 873
CTY_DEER 2 7 7 9 12

BUFF_AG.GRASS 0.5 0 203.2 25.8 91.6
DEER_BROWSE 4 5 3 4 4
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