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Abstract: Global climate change has raised concerns about the relationship between ecosystems and
forests, which is a core component of the carbon cycle and a critical factor in understanding and
mitigating the effects of climate change. Forest models and sufficient information for predictions are
important for ensuring efficient afforestation activities and sustainable forest development. Based
on the theory of difference equations and the general rules of tree growth, this study established a
difference equation for the relationship between the ratio of tree diameter at breast height (DBH)
to the tree height and age of age of China’s main arbor species. A comparison with equations that
represent the traditional tree growth models, i.e., Logistic and Richards equations, showed that the
difference equations exhibited higher precision for both fitting and verification data. Moreover, the
biomass carbon stocks (BCS) of Chinese forests from 2013 to 2050 were predicted by combining the
8th Chinese Ministry of Forestry and partial continuous forest inventory (CFI) data sets. The results
showed that the BCS of Chinese forests would increase from 7342 to 11,030 terra grams of carbon
(Tg C) in 2013–2050, with an annual biomass C (carbon) sink of 99.68 Tg C year−1, and they indicated
that the Chinese land-surface forest vegetation has an important carbon sequestration capability.

Keywords: growth difference equation; growth prediction; biomass carbon stocks (BCS); Chinese
forest

1. Introduction

As the "lung of the earth", forests are the material and spiritual basis for human survival and
promote circulation of the ecosystem. Regardless of their geographical locations, they play an important
role in climate changes such as precipitation, temperature, nitrogen and sulfur deposition, and carbon
dioxide fixation [1,2]. Climate policy and the role of forests in reducing global warming have been
important research agendas since the 1990s [3]. The potentially important role of carbon sinks has been
recognized by the Kyoto Protocol of the Framework Convention on Climate Change, which includes
carbon sequestration in the calculation of a country’s net carbon emissions [4]. Only approximately
half of the carbon dioxide emitted by fossil fuel combustion and deforestation accumulates in the
atmosphere, and the remainder is found in the oceans and the terrestrial biosphere [5]. Uptake of net
carbon by terrestrial ecosystems from the atmosphere plays a key role in slowing global warming in
the global carbon cycle, and a large part of this absorption is due to forest ecosystems, which account
for 30% of the land area [6,7]. Therefore, forest resource management is a concern of researchers in a
broad range of fields, including forestry, economics, ecology, and other industries.

The vitality of trees is among the most important indicators of forest conditions and illuminates
the dynamics of forest systems [8]. In these cases, the individual tree growth model is expected to
replace the yield table as an appropriate aid for management decisions [9,10]. From a management
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perspective, effective, efficient, long-term, and sustainable forest management relies on useful and
reliable information, such as the self-thinning rule and stand density index as well as models of
existing and future forest conditions [11–13]. Growth and yield models have been and continue to
be an important part of forestry research, and growth models are the most important components of
long-term forest planning systems [14,15].

Empirical and theoretical equations have been applied mainly to study the population growth
of trees, and their differential forms (i.e., the growth status at a certain time) are relatively complex.
Difference equations, which reflect one of the essential properties of the real world, occupy an important
place in mathematics and in real-world applications due to their discreteness, and these equations open
up new approaches in solving one of the central problems of modern science, namely, the problem of
turbulence [16]. The difference equation and discrete expression of differential equations belong to
the field of nonlinear analysis in mathematics and can elucidate highly complex properties through
a simple defined recursive relationship [17–19]. The theory of difference equations arises from the
modeling of many aspects, including system theory, economics, inventory analysis, learning probability
models, population genetics, and so on [20,21]. The theory of difference equations has been used in
forestry and has shown a great advantage despite the fact that these equations have not been widely
applied [22].

Up to 2010, China’s forests constituted 5% of the global total and included a variety of forest
biomes ranging from boreal forests in the north to subtropical/tropical evergreen broadleaf forests
in the south [23,24]. Research on the growth of forest trees in China and their volumes, biomasses,
and carbon stocks has attracted an increasing amount of attention. The tree diameter at breast height
(DBH) and tree height are two important tree measurement factors that provide indispensable data for
volume calculations and tree growth and harvest estimations [25]. Natural environmental factors and
the spatial structure of forest stands affect the growth of trees. Weather, including precipitation and the
average air temperature, also affects tree growth, but its effect is small, and the sizes and ages of tree
species have a significantly greater impact on tree growth than do climatic variables [26–28]. Based on
the general rule of the difference equation and tree growth, including certain empirical and theoretical,
equations such as those of Schumacher (1939), the Logistic equation (1838), and Richards (1959) [29],
this study proposed a new tree growth difference equation. The main feature of this equation is that
it evaluates the relationship between the ratio of DBH and tree height with tree age. We tested and
applied this differential equation considering the following aspects:

(1) Selection of 80% of the data to fit the model and use of the remaining 20% to validate the precision;
(2) Partial use of continuous forest inventory (CFI) data to test the practicability of the model;
(3) Combining data from the 8th Chinese Ministry of Forestry and CFI data sets to predict the growth

status and biomass carbon stocks (BCS) of Chinese forests from 2013 to 2050.

2. Materials and Methods

2.1. Data

More than 120 tree species were obtained via analysis of the analytical wood data from “China’s
main tree growth compilation”, which was compiled by the forestry survey team and other related
units. These data were obtained by analyzing harvested trees. The DBH, size without bark and tree
height were actual measured values. According to the 8th Chinese Ministry of Forestry data sets, China
is extremely rich in tree species resources, with more than 8000 species of woody plants that account for
approximately 54% of the world’s resources. The woody plants in China include more than 2000 arbor
trees. According to the dominant tree species statistics (groups), the top 10 tree genera and species
are Quercus spp., Betula spp., Cunninghamia lanceolate (Lamb.) Hook., Larix spp., Pinus massoniana
Lamb., Populus L., Pinus yunnanensis Franch., Eucalyptus robusta Smith, Picea spp., and Cupressus spp.
These forests occupy 86.49 million hectares, accounting for 52.54% of the country’s area, and their total
accumulation of 7.015 billion cubic meters accounts for 47.47% of the country’s area.
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This study mainly investigated the dominant tree species in China according to the proportions of
the main tree species groups and constructed a growth difference equation model for more than 10 tree
species (groups), including Quercus spp., Betula platyphylla Suk., Cunninghamia lanceolate (Lamb.) Hook.,
Larix spp., Pinus massoniana Lamb., Populus L., Pinus yunnanensis, Picea spp., and Pinus tabuliformis
Carrière. Due to the difficulties of early investigative work, the essential data for each species were
taken from some of the main growth distribution areas. For example, the Quercus spp., Betula platyphylla
Suk., Populus L., Pinus tabuliformis Carrière, and Larix principis-rupprechtii Mayr data are primarily from
the Shanxi Province; the Picea likiangensis (Franch) Pritz, Pinus yunnanensis Franch., and Abies georgei
Orr data are primarily from the Yunnan Province; the Pinus massoniana Lamb. data are mainly from
the Sichuan Province; the Abies fabri (Mast.) Craib data are mainly from the Gansu and Shanxi
Provinces; the Larix gmelinii (Ruprecht) Kuzeneva data are primarily from Inner Mongolia; and those
for Cunninghamia lanceolata are primarily from the Fujian, Jiangxi, Anhui, and Hunan Provinces and
other areas in South China. A database was established for each tree species, with the information
shown in Table 1 and the area is shown in Figure 1.

Table 1. Model establishment and testing data for different tree species.

Location
(Province/Autonomous

Region)
Species Number

Ranges

DBH (cm) Height (m) Age (year)

Sichuan Pinus massoniana Lamb. 44 0.35–59.27 0.3–40.09 5–112
Sichuan, Gansu Abies fabri (Mast.) Craib 16 0.25–45.9 0.11–27.3 5–161

Shandong Platycladus orientalis (L.) Franco 9 0.3–39.6 0.3–16.06 5–264
Jiangxi, Fujian, Hunan,

Guizhou, Anhui
Cunninghamia lanceolate

(Lamb.) Hook. 388 0.35–42.95 0.3–30.5 5–106

Inner Mongolia Larix gmelinii (Rupr.) Kuzen 44 0.5–36.7 0.3–31.8 5–210

Shanxi

Larix principis-rupprechtii Mayr 71 0.13–25.82 0.22–17.8 5–56
Pinus tabuliformis Carrière 230 0.3–17.03 0.2–11 10–79

Betula platyphylla Suk. 75 0.03–23 0.2–13.2 5–80
Populus davidiana Dode 38 0.38–35.75 0.21–26.5 5–151

Populus L. 31 0.3–21.9 1–14.7 5–104

Picea spp.
Picae asperata 48 0.25–30.3 0.3–14.7 5–104
Picea meyeri

Rehd. et Wils 91 0.2–23.9 0.3–13.5 5–107

Picea wilsonii
Mast 18 0.2–43.75 0.3–19.05 5–195

Quercus spp.

Quercus aliena
Bl 11 0.3–23.8 0.4–18.5 5–79

Quercus
dentata Thunb 19 0.5–20.8 0.5–15.1 5–66

Quercus
wutaishansea

Mary
22 0.4–37.3 0.6–31.3 5–85

Yunnan
Picea likiangensis (Franch) Pritz 49 0.8–88.8 0.5–52.7 10–349

Pinus yunnanensis Franch. 48 1.5–55.5 0.63–38.8 5–149
Abies georgei Orr 55 0.3–50 0.2–28.1 10–342
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Cutting down trees not only involves a large amount of work in the field but is also not a renewable 
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improper treatment may have a certain impact on tree growth. To determine the ages of trees, 
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In the absence of a true external data set, the best method of validating the predictive ability
of a model is to perform a statistical external validation, where the overall data set is divided into
training and test data sets [30]. To test the applicability of the model and improve its application, 20%
of our wood independent samples were used as testing sets to evaluate the model’s precision. At the
same time, we further validated and predicted China’s carbon stocks in 2020, 2030, and 2050 using
the National Forest Inventory (NFI) data, which were collected regularly at five-year intervals from
1999–2003, 2004–2008, and 2009–2013 [31]. In this study, the tree ages were calculated according to the
DBH difference equation based on the 1999–2003 and 2004–2008 data, and the precision was tested by
using actual and estimated values from 2009–2013. Finally, the carbon stocks in 2020, 2030, and 2050
were predicted and analyzed using NIF data from 2013 and the 8th Chinese Ministry of Forestry data.

2.2. Model Construction

The main empirical and theoretical equations for traditional tree growth, i.e., the Schumacher
(1939), Korf (1939), Logistic (1838), and Richards (1959) equations, are primarily used to study the
total growth process curve of tree growth [29]. Since the site conditions, environmental factors, stand
conditions, and remote sensing information for the same tree will not change or will only change very
slightly over a certain period of time except for during natural disasters, the influence of external
environmental factors can be regarded as a fixed value k [27]. A difference equation is an equation that
recursively defines a sequence, and each item of the sequence is a function defined as the previous
item [32]. To predict the growth trend of trees over a certain period of time according to the general
rule that tree growth is irreversible and slows as trees age, the DBH, tree height and age are taken into
account to construct difference equations for the main tree species in China. The model is as follows:

k·Yt+1 = k·Yt·e
b/t + k·εt, or Yt+1 = Yt·e

b/t + εt, (1)

Equation (1) can be extended to (2) as follows:

Yt+n = Yt·e
b/t
·eb/t + 1

·eb/t + n− 1 + εn, (2)

where t is the tree age at the time of the investigation, Yt is the DBH or tree height at the time of the
investigation, Yt+1 is the DBH/tree height for the next year, Yt+n is the DBH or tree height for the
future nth year to be predicted, and b is the model coefficient.

Generally, tree age is determined by cutting down the tree or coring with growth cones [33].
Cutting down trees not only involves a large amount of work in the field but is also not a renewable
use of forest resources. Coring involves bringing in individuals outside of the research team, and
improper treatment may have a certain impact on tree growth. To determine the ages of trees, previous
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studies have mainly used the DBH or tree height at a certain time [34]. In this study, the difference
model determined by Equation (1) can be used to predict the tree age without cutting down or coring.
Age estimation is mainly based on a comparison of the DBH growth of two periods. To some extent,
using multiperiod data can improve the estimation precision, such as for Equation (3):

t =
b

ln Yt+1
Yt

. (3)

Equation (3) can be extended to (4) as follows:

1
t
+

1
t + 1

+ . . .+
1

t + n− 1
=

ln Yt+n − ln Yt

b
, (4)

where t is the tree age at the time of the investigation, Yt is the DBH/tree height at the time of the
investigation, Yt+1 is the DBH or tree height for the next year, Yt+n is the DBH or tree height of the
future nth year to be predicted, and b is the model coefficient.

The Logistic equation was first used to describe population growth and is commonly used for
simulating population dynamics in ecology. The curve is a typical symmetric “S” curve with initial
values. The equation is as follows:

y =
A

1 + me−rt (A, m, r > 0), (5)

where A is the maximum parameter value of tree growth, m is the parameter related to the initial value,
and r is the intrinsic growth rate.

The Richards equation, which is based on the Von Bertalanffy growth theory and reflects the
process of bio-energy assimilation and dissimilation, is widely used to describe the growth process of
trees and has strong adaptability [28]. The equation is as follows:

y = A
(
1− e−rt

)c
(A, r, c > 0), (6)

where A is the maximum parameter value for tree growth, r is the growth rate parameter, and c is the
parameter related to assimilation.

2.3. BCS Model

The mean biomass density, volume-derived, and remote sensing methods are three commonly
used methods for estimating BCS [35]. The volume-derived method is considered to be the most
effective and reliable method for forecasting BCS at large scales [36]. Therefore, this study employed
the volume-derived method and used the NFI data to calculate China’s forest volume M and its
growth ∆M, which were calculated by the DBH-height model and the Chinese binary volume model,
respectively, as shown in Equations (7)–(10). The parameters of the Chinese binary volume model are
compiled by the Chinese agricultural department based on 197,000 samples of 180 tree species, and
Cheng obtained the parameters of the DBH-height model tree model based on data consisting of 2082
samples. The specific parameters are shown in Table A1 [37].

M =
∑ j

1
c j·d

g j

j ·H
f j

j ·N·k j, (7)

∆M =
∑ j

1
c j·

[(
d j + ∆d j

)g j
·

(
H j + ∆H j

) f j
− d

g j

j ·H
f j

j

]
·N·k j, (8)

∆M ≈M·

g j·
∆d j

d j
+ f j·

∆H j

H j

, (9)
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∆M ≈M·
∆d j

d j
·

(
g j + f j·b j

)
, (10)

where M is the forest volume; b j, c j, g j, and f j are model parameters for species j; k j is the ratio of the
tree species; N is the stand density; ∆M is the growth volume; ∆d j and ∆H j are the growth of the DBH
and tree height, respectively; and d j, and H j are the average DBH and tree height, respectively.

According to the Chinese Ministry of Forestry, the average annual total wood loss from 1999 to
2013 was 4.342 × 108 m3, which accounted for approximately 14.94% of the forest volume M. The
values of growth rate c j are shown in Table A1, and the gross growth of wood can be obtained from
Equation (8). The wood consumption for each tree species was calculated proportionally to obtain the
net increase. If forest biomass is calculated based on forest inventory data, then a biomass conversion
factor (BEF) between biomass and stock volume must be established. The forest stand volume reflects
the changes in forest age, site, forest density, and stand status [36]. To reflect the continuous changes of
BEF, continuous variations of the conversion factor method were established to obtain the biomass and
its growth component [38]. Qiu obtained the parameters of 41 tree species based on the 1607 fixed
plot-point data according to Equations (11)–(12). The parameters are shown in Table A2 [39].

B = p jM + q j, (11)

∆B = p j∆M, (12)

where M is the forest volume, ∆M is the growth volume, B is the biomass, ∆B is the growth part of the
biomass, and p j and q j are model parameters for species j.

A certain proportional relationship exists between the BCS and biomass. Fang et al. [36] used a
ratio of 0.5 to convert the biomass to C stocks. Saud et al. [40] assumed that species-specific gravity
would help obtain the biomass and carbon stocks. Huang et al. [41] found that the carbon content
of arbors ranges between 46.75% and 54.89% and averages 51.09%, and the parameters are shown in
Table A3. The present study used different conversion factors to calculate the BCS and biomass C
(carbon) sink according to Huang et al. as shown in Equations (13)–(14).

C = r j·B, (13)

∆C = r j·∆B, (14)

where C is the BCS, B is the biomass, ∆C is the biomass C sink, ∆B is the growth part of the biomass,
and r j is a model parameter for species j.

2.4. Model Evaluation and Validation

To validate the methodology introduced in the previous subsection, we examined the prediction
accuracies achieved when estimating tree growth in terms of height h and diameter d. Typically,
models use an independent dataset or data derived from data splitting or bootstrapping procedures.
Huang et al. [42] provided a thorough review of these data selection methods and reported that
independently collected data were the best test for a model. To evaluate the prediction performance
and further test the applicability of these models, only 80% of the samples were randomly selected
to establish the nonlinear function model in the form of Equation (2), which is evaluated by R2,
whereas the remaining 20% were used for model validation. This data selection method and ratio have
been applied in many models, such as by Zeng et al., who developed individual tree crown biomass
equations, and Cai et al., who developed accurate probabilistic models for important functional regions
in DNA sequence through that [43,44]. The following goodness-of-fit statistics were used in the data
evaluation: Residual (R), bias (BIAS), relative bias (BIAS%), mean absolute error (MAE), root mean
square error (RMSE), relative root mean square error (RMSE%), empirical coefficient of correlation
(R2

emp), and Theil’s inequality coefficient (U2) [12,45]. BIAS was the difference between a population
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mean of the measurements or test results and an accepted reference or true value, MAE could explain
the stability of model fitting, R2

emp could judge the model, and RMSE, BIAS%, RMSE%, and U2 could
reflect the precision of the model directly and clearly [46,47]. Their formulas are as follows:

R squared:

R2 = 1 − (residual sum of squares)/(corrected sum of squares). (15)

Residual (R):
R = yi − ŷi. (16)

BIAS:

BIAS =
∑n

i=1

(
yi − ŷi

n

)
. (17)

Relative bias (BIAS%):

BIAS% =
BIAS

y
× 100. (18)

Mean absolute error (MAE):

MAE =
∑n

i=1

∣∣∣∣∣ yi − ŷi

n

∣∣∣∣∣. (19)

Root mean square error (RMSE):

RMSE =

√∑n
i=1(yi − ŷi)

2

n− 1
. (20)

Relative root mean square error (RMSE%):

RMSE% =

√∑n
i=1(yi − ŷi)

2/n− 1

y
·100. (21)

Empirical coefficient of correlation (R2
emp):

R2
emp = 1−


∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2

. (22)

Theil’s inequality coefficient U2:

U2 =
√∑n

i=1(yi − ŷi)
2
/∑n

i=1(yi)
2 . (23)

where yi and ŷi are the ith original observation and the predicted back-transformed value, respectively,
n is the number of observations, and y is the mean of the observed values. All summations range from
1 to n.

3. Results

3.1. Growth Difference Equation

3.1.1. Model Fitting

To evaluate the influence of location factors such as longitude, latitude, temperature, and rainfall
on tree growth, Abies fabri (Mast.) Craib in the Sichuan and Gansu Provinces and Cunninghamia
lanceolata in the Jiangxi, Fujian, Hunan, Guizhou, and Anhui Provinces were analyzed. Due to the
limited amount of data, 100% of the data were used to model each province. Equation (2) was estimated
by nonlinear regression analysis and used the Marquardt iterative method to make the square sum
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convergence and parameters converge to 1 × 10−8 and obtain the parameter estimation and model
fitting status with a 95% confidence interval. R2, standard error (SE), and the parameter estimation
results are shown in Table 2. The parameters of Abies fabri (Mast.) Craib showed no significant
difference in the Sichuan and Gansu, and the results of Cunninghamia lanceolata also presented similar
growth in five different provinces.

Table 2. Two-species growth difference equation to estimate differences between regions.

Species Location R2 SE Height (b) R2 SE DBH (b)

Abies fabri (Mast.) Craib Sichuan 0.986 0.065 1.174 0.986 0.069 1.273
Gansu 0.994 0.032 1.231 0.99 0.04 1.409

Cunninghamia lanceolata

Jiangxi 0.945 0.009 0.8 0.906 0.012 0.78
Fujian 0.947 0.02 0.808 0.933 0.027 0.867
Hunan 0.938 0.024 0.806 0.906 0.031 0.906

Guizhou 0.98 0.026 0.931 0.969 0.003 0.973
Anhui 0.914 0.066 0.927 0.922 0.069 0.926

Note: In the equation Yt+n = Yt·e
b/t
·eb/t + 1 . . . . . . ·eb/t + n− 1. Y represents the DBH/tree height ratio; b is the parameter

to be estimated; t is the year or age, and SE represents standard error.

We randomly selected 80% of all tree species for the modeling analysis, and 20% were selected
for precision validation, except for Platycladus orientalis (L.) Franco, which was chosen for the k-fold
cross-validation method due to the availability of fewer data sets. The results of the R2 and SE to
the model showed that the parameter of the model is reliable (Table 3). The parameter of Picea spp.
(Picea asperata, Picea meyeri Rehd. et Wils, and Picea wilsonii Mast) in Shanxi did not significantly differ
in the height or DBH models and the results of Quercus spp. (Quercus aliena Bl, Quercus dentata Thunb,
and Quercus wutaishansea Mary) presented the same trend. The independence of observations is a
fundamental assumption of ordinary least squares regression [17]. The estimated parameters are
shown in Table 3.

Table 3. Growth difference equation of similar tree species in the same province.

Species R2 SE Height (b) R2 SE DBH (b)

Quercus aliena Bl 0.91 0.091 0.822 0.983 0.059 1.225
Quercus dentata Thunb 0.98 0.034 0.872 0.945 0.093 1.21

Quercus wutaishansea Mary 0.981 0.026 0.825 0.986 0.039 1.301
Picea asperata Mast. 0.977 0.032 1.568 0.885 0.077 1.949

Picea meyeri Rehd. et Wils 0.98 0.023 1.589 0.92 0.053 1.919
Picea wilsonii Mast 0.99 0.049 1.333 0.98 0.078 1.739

Note: In the equation Yt+n = Yt·e
b/t
·eb/t + 1 . . . . . . ·eb/t + n− 1. Y represents the DBH/tree height ration; b is the parameter

to be estimated; and t is the year or age, and SE represents standard error.

The parameters of Abies fabri (Mast.) Craib in the Sichuan and Gansu province revealed no
significant differences and that of Cunninghamia lanceolata in five different areas showed the similar
results (shown in Table 2). In addition, the same tree genera such as the three species of Picea spp. in
the Shanxi revealed no significant differences and that is similar to Quercus spp. in the Shanxi province
(shown in Table 3). To improve the precision of the model and expand its applicability, the Abies fabri
(Mast.) Craib data from the Sichuan and Gansu province were merged to establish a tree growth
difference model suitable for a wider region and do the same processing for Cunninghamia lanceolata
data from the Jiangxi, Fujian, Hunan, Guizhou, and Anhui provinces. A total of 80% of these data
were randomly selected, and the remaining 20% were used to validate the precision and ensure the
independence of the data. Meanwhile, other species were modeled and analyzed too. The estimated
parameters and model indexes of Equations (1)–(4) for all tree species are shown in Table 4. Our results
showed that the fitting determination coefficients (R2) of the DBH difference model were all greater
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than 0.91 and that the R2 of the tree height difference models were greater than 0.93, which indicates
that the model could accurately represent the tree growth curve.

Table 4. Fitting results for the difference equation for different species.

Location Species (Groups) Height DBH

R2 SE b R2 SE b

Sichuan Pinus massoniana Lamb. 0.969 0.025 0.823 0.984 0.025 1.008
Sichuan, Gansu Abies fabri (Mast.) Craib 0.991 0.034 1.186 0.991 0.038 1.338

Shandong Platycladus orientalis (L.) Franco 0.986 0.045 0.717 0.987 0.065 0.938
Jiangxi, Fujian, Hunan,

Guizhou, Anhui Cunninghamia lanceolata 0.952 0.009 0.82 0.93 0.001 0.829

Inner Mongolia Larix gmelinii (Ruprecht)
Kuzeneva 0.979 0.019 0.785 0.984 0.002 0.906

Shanxi

Larix principis-rupprechtii Mayr 0.949 0.032 1.348 0.918 0.045 1.578
Picea spp. 0.984 0.018 1.527 0.94 0.038 1.889

Quercus spp. 0.965 0.026 0.842 0.966 0.041 1.250
Pinus tabuliformis Carrière 0.975 0.012 1.065 0.968 0.02 1.306

Betula platyphylla Suk. 0.959 0.022 1.016 0.962 0.028 1.356
Populus davidiana Dode 0.94 0.03 0.981 0.964 0.033 1.405

Populus L. 0.951 0.03 0.728 0.956 0.034 1.008

Yunnan
Picea likiangensis (Franch) Pritz 0.994 0.015 0.885 0.995 0.015 0.842

Pinus yunnanensis French. 0.939 0.022 0.758 0.966 0.019 0.729
Abies georgei Orr 0.997 0.016 1.016 0.996 0.02 1.089

Note: In the equation Yt+n = Yt·e
b/t
·eb/t + 1 . . . . . . ·eb/t + n− 1 Y represents the DBH/tree height ration; b is the parameter

to be estimated; and t is the year or age, and SE represents standard error. Picea spp. includes Picea asperata, Picea
meyeri Rehd. et Wils, and Picea wilsonii Mast., Quercus spp., includes Quercus aliena Bl, Quercus dentata Thunb, and
Quercus wutaishansea Mary.

To test the applicability of the difference equation, the Logistic and Richards equations (5)–(6)
were applied separately to the same data; the results are shown in Tables A4 and A5. Significant
differences were not observed between the R2 values of the Logistic and Richards equations, and both
can be effectively applied to most tree species; however, the equations cannot be applied to several
species, such as Populus L., whose R2 value was approximately 0.4.

3.1.2. Model Precision Evaluation Using the Testing Data

To obtain the prediction precision for the different modeled tree species, 20% of the samples were
used for data validation. The evaluation employed BIAS, BIAS%, MAE, RMSE, RMSE%, R2

emp, and
U2 as indicators for precision testing, and the results are shown in Tables 5 and 6.

In Table 5, height difference models for all species show that the BIAS values were all near 0;
BIAS% and RMSE% were less than 5.49% and 11.45%, respectively; R2

emp values were greater than
0.93; and most MAE values were less than 1. These results indicate that the models were relatively
stable and could be used to predict the height growth. For the DBH difference model precision shown
in Table 6, the BIAS% values were less than 5% except for those of Abies fabri (Mast.) Craib, Picea spp.
and Populus L., and Abies fabri (Mast.) Craib was the highest, at 10.17%. The MAE values were mostly
less than 1, and the maximum RMSE% value was 16.05%; the R2 values were greater than 0.91 except
for that of Picea spp., and the U2 values were close to 0. These findings indicated that the model had
high fitting stability and could achieve good prediction precision.

As with the difference equation, BIAS, MAE, RMSE, and R2
emp were used to validate the Logistic

and Richards equations for DBH and tree height. The results are shown in Tables A6 and A7. The
precision of each tree height index was higher than the DBH precision, indicating that the equation was
better suited to simulating tree height growth. The R2

emp values of different species were significantly
different, indicating that it could be applied to some species well but not to others.
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Table 5. Validation precision of tree height difference equations for different tree species.

Species (Groups) BIAS BIAS% MAE RMSE RMSE% R2
emp U2

(m) (m) (m)

Pinus massoniana Lamb. 0.004 0.02 0.905 1.163 6.85 0.976 0.062
Abies fabri (Mast.) Craib 0.198 2.2 0.366 0.542 3.9 0.994 0.048

Platycladus orientalis (L.) Franco −0.036 −0.411 0.317 0.410 4.88 0.993 0.043
Cunninghamia lanceolata −0.042 −0.31 1.03 1.333 7.75 0.943 0.091

Larix gmelinii (Ruprecht) Kuzeneva 0.171 1.02 0.841 1.175 4.74 0.972 0.065
Larix principis-rupprechtii Mayr 0.096 1.3 0.657 0.83 11.24 0.961 0.097

Picea spp. 0.096 2.3 0.341 0.466 11.14 0.999 0.09
Quercus spp. −0.096 −1.06 0.448 0.597 6.64 0.993 0.119

Pinus tabuliformis Carrière 0.128 2.193 0.452 0.670 11.45 0.952 0.101
Betula platyphylla Suk. −0.164 −1.89 0.737 0.942 10.87 0.934 0.1

Populus davidiana 0.031 0.31 0.685 0.847 8.52 0.975 0.088
Populus L. 0.516 5.49 0.636 0.968 10.28 0.942 0.094

Picea likiangensis −0.177 −0.72 0.669 0.848 3.48 0.995 0.031
Pinus yunnanensis −0.342 −1.47 1.525 1.922 8.28 0.941 0.078
Abies georgei Orr −0.075 −0.64 0.415 0.555 4.69 0.996 0.038

Table 6. Validation precision of the tree diameter at breast height (DBH) difference equations for
different tree species.

Species (Groups) BIAS (cm) BIAS% MAE (cm) RMSE (cm) RMSE% R2
emp U2

Pinus massoniana Lamb. 0.326 1.53 0.972 1.368 6.44 0.987 0.056
Abies fabri (Mast.) Craib 1.85 10.17 1.852 2.257 12.41 0.946 0.109

Platycladus orientalis (L.) Franco 0.164 0.920 0.689 0.891 4.994 0.991 0.044
Cunninghamia lanceolata 0.231 1.35 1.605 2.158 13.66 0.912 0.116

Larix gmelinii (Ruprecht) Kuzeneva 0.209 1.23 0.874 1.123 6.59 0.984 0.058
Larix principis-rupprechtii Mayr 0.347 3.59 0.923 1.167 12.1 0.944 0.107

Picea spp. 0.431 5.19 1.012 1.333 16.05 0.884 0.145
Quercus spp. −0.059 −0.47 0.664 1.066 8.42 0.983 0.064

Pinus tabuliformis Carrière 0.442 4.90 0.807 1.073 11.88 0.954 0.104
Betula platyphylla Suk. −0.262 −2.75 0.836 0.998 10.5 0.953 0.094

Populus davidiana −0.159 −1.16 0.883 1.057 7.68 0.982 0.066
Populus L. 0.606 6.85 0.761 1.02 11.53 0.955 0.1

Picea likiangensis −0.259 −0.75 1.031 1.335 3.84 0.993 0.035
Pinus yunnanensis −0.603 −2.1 1.333 1.567 5.45 0.983 0.05
Abies georgei Orr −0.086 −0.36 0.827 1.158 4.82 0.995 0.039

3.1.3. Model Precision Evaluation Using the CFI Data

To test the practicability of the model, this study used CFI data. Since the age of each tree could
not be determined, Equation (4) was used to estimate these values. The DBH data investigated from
1999–2003 and 2004–2008 could be used to estimate the ages of the trees. These data were gathered from
the province in which the model was built. At the same time, the estimated ages and the data from
2004–2008 were used to forecast the growth in 2009–2013 with Equation (2), with n = 5. The comparison
between the predicted status and the actual true value is shown in Figure 1. The residual can be
obtained from this equation and can be used to evaluate the uniformity and normality. The results
showed that the residuals were distributed homogeneously, meaning that they had no heterogeneity,
which conformed to the general law of error distribution [46].

The growth results obtained using the model estimation were regarded as predicted values,
whereas those obtained by the actual measurements were seen as actual values. Figure 1 shows that
the predicted value and the true value of each species were linearly fitted; the linear relationship is
shown by the red line, and that the R2 value was greater than 0.91. The R2 values of some species,
such as Picea asperata Mast (Figure 2g), Quercus spp. (Figure 2h), and Picea likiangensis (Figure 2l),
reached 0.99, indicating that these values were linearly related, and the slope of each species was very
close to 1, showing that the predicted and true values were not significantly different. In addition,
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Larix gmelinii (Ruprecht) Kuzeneva (Figure 2e) fell below the 1:1 line, which indicated that the overall
prediction effect was less than the actual growth. All other species presented a fitting curve closer to
the 1:1 line, especially Pinus massoniana Lamb. (Figure 2a), Quercus spp. (Figure 2h), and Abies georgei
Orr (Figure 2n) et al.
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Figure 2. Fitting curve of the DBH between the predicted and actual values. The names of the tree
species are as follows: (a): Pinus massoniana Lamb.; (b): Abies fabri (Mast.) Craib; (c): Platycladus
orientalis (L.) Franco; (d): Cunninghamia lanceolata; (e): Larix gmelinii (Ruprecht) Kuzeneva; (f): Larix
principis-rupprechtii; (g): Picea asperata Mast; (h): Quercus spp.; (i): Pinus tabuliformis Carrière; (j): Betula
platyphylla Suk.; (k): Populus L.; (l): Picea likiangensis; (m): Pinus yunnanensis; and (n): Abies georgei Orr.

3.2. BCS Forecast for Chinese Forests in 2050

The forest volumes and their areas in 2013 can be obtained using the 8th Chinese Ministry of
Forestry data sets. The difference equation was used to predict the DBH growth in China using
continuous forest inventory (CFI) data, which were randomly and evenly distributed in various
provinces of China. By combining the average DBH with the annual increase in DBH, volume, biomass
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and BCS in 2013, the increases in the volume, biomass, and BCS were predicted for 2050. The results
are shown in Table 7.

Table 7. The volume and area of Chinese forests in 2013 and the annual increases in DBH, volume,
biomass, and biomass carbon stocks (BCS) in 2013–2050.

Species (Groups) M (108 m3) AREA (104 ha) ∆d (year−1) (cm) ∆M (year−1) (108 m3) ∆B (year−1) (Tg) ∆C (year−1) (Tg C)

Quercus spp. 12.94 146 0.3 0.23 21.92 10.59
Betula spp. 9.14 1112 0.2 0.15 12.03 5.94
Larix spp. 10.01 1070 0.24 0.16 15.01 7.89

Pinus massoniana
Lamb. 5.91 1000 0.42 0.12 7.61 3.91

Pinus yunnanensis 4.77 410 0.25 0.08 5.85 3.09
Picea asperata Mast 9.87 385 0.24 0.16 7.5 3.87
Abies fabri (Mast.)

Craib 11.65 308 0.24 0.18 9.53 4.81

Cupressus funebris
Endl. 2 366 0.18 0.03 1.7 0.89

Cunninghamia
lanceolata 7.26 1097 0.34 0.14 7.32 3.93

Populus L. 5.03 854 0.38 0.09 6.8 3.37
Pinus tabuliformis

Carrière 0.66 161 0.31 0.01 0.94 0.5

Other species 68.53 8027 0.27 1.18 99.03 50.89
Total 147.77 14936 – 2.53 195.24 99.68

Note: M is the volume of each species, ∆M is the growth volume, ∆d is the growth of the average DBH, ∆B is the
growth part of the biomass, ∆C is the biomass C sink, year−1 represents annual growth, and Tg C represents terra
gram of carbon.

Table 7 shows that the average growth rates for trees of each species were similar. The annual
growth was approximately 0.2–0.4 cm in 2013–2050, Cunninghamia lanceolate (Lamb.) Hook. and
Populus L. (up to 0.34 cm and 0.38 cm, respectively) had relatively high growth rates, and the growth
rate of Pinus massoniana Lamb. was the highest, reaching at 0.42 cm. The area of Quercus spp. species
was the smallest, but its volume, annual growth volume and biomass C sink were the largest. The
highest biomass C sink was 10.61 Tg C·year−1 and the lowest was 0.37 Tg C·year−1, which may be
related to the volume of this species. From 2013 to 2050, the total growth of China’s forests will increase
by 2.53× 108 m3

·year−1 and the BCS will increase by 99.68 Tg C·year−1.
The natural growth and the consumption of timber resources resulted in a certain amount of wood

loss per year. According to the wood loss ration of the annual total volume in 1999–2013, the total
loss could be predicted, and timber harvesting shifted from earlier clear-cutting to include selective
and staged cuttings, which did not change overall forest cover, thus, the loss of various tree species in
2013–2020, 2020–2030, and 2030–2050 was predicted according to their proportion in this study [48].
The DBH growth and the gross growth of timber volume could be predicted by the difference equations
(Equation (2) and Equation (10)) in order to obtain the net increase. The results were shown in Table 8
and Figure 3, the volume and proportion of net growth to gross growth both increased (Figure 3).
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Table 8. The gross growth, loss, and net increase of the volume of different tree species in Chinese
forests from 2013 to 2050.

Species (Groups) 2013–2020 (108 m3) 2020–2030 (108 m3) 2030–2050 (108 m3)

Growth Loss Increase Growth Loss Increase Growth Loss Increase

Quercus spp. 1.89 1.07 0.82 2.83 1.29 1.54 5.01 1.94 3.07
Betula spp. 2.22 1.31 0.91 3.29 1.58 1.71 5.76 2.34 3.42
Larix spp. 2.82 2.17 0.65 3.76 2.52 1.24 5.32 2.88 2.44

Pinus massoniana Lamb. 1.57 1.1 0.47 2.04 1.16 0.88 3.03 1.33 1.7
Pinus yunnanensis 1.8 0.94 0.86 2.79 1.16 1.63 5.31 2.02 3.29
Picea asperata Mast 1.77 0.78 0.99 3.1 1.2 1.9 5.68 1.92 3.76

Abies fabri (Mast.) Craib 0.41 0.23 0.18 0.59 0.26 0.33 1 0.35 0.65
Cupressus funebris Endl. 3.26 2.48 0.78 4.18 2.71 1.47 5.85 2.99 2.86
Cunninghamia lanceolata 2.04 1.52 0.52 2.76 1.76 1 4.03 2.06 1.97

Populus L. 0.22 0.15 0.07 0.32 0.19 0.13 0.52 0.27 0.25
Pinus tabuliformis Carrière 20.69 14.08 6.61 28.76 16.24 12.52 45.18 20.49 24.69

Other species 20.69 14.07 6.62 28.77 16.23 12.54 45.19 20.44 24.75

Note: Loss (mortality and cut) = total loss × (volume of the species/volume total).
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Figure 3. The gross growth, loss, and net increase of the volume of different tree species in Chinese
forests from 2013 to 2050. Meaning of each letter: a: Quercus spp.; b: Betula spp.; c: Larix spp.; d: Pinus
massoniana Lamb.; e: Pinus yunnanensis; f: Picea asperata Mast; g: Abies fabri (Mast.) Craib; h: Cupressus
funebris Endl.; i: Cunninghamia lanceolata; j: Populus L.; k: Pinus tabuliformis Carrière; and l: Other species.

As shown in Table 9 and Figure 4, the average DBH values of all species in 2013 were in the middle
diameter group, and most were 15 cm. Picea asperata Mast and Abies fabri (Mast.) Craib had DBH values
of 19.26 and 21.64 cm, respectively, and the two species presented a relatively high growth (Table 9 and
Figure 4I), indicating that small trees occupy a large proportion. Moreover, the volume, biomass, and
carbon stock of all tree species will increase significantly and the accumulation of the species will not
significantly differ between 2013 and 2050. By 2050, the timber volume (Table 9 and Figure 4II) will
increase by 93.77× 108 m3, the biomass C sink (Table 9 and Figure 4IV) will reach 3688.05 Tg C and the
carbon stock (Table 9 and Figure 4IV) will reach 11,030 Tg C, showing that Chinese forests will play an
important role in carbon sequestration.
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Table 9. DBH, volume, biomass, and BCS of Chinese forests in 2013 and 2050.

Species (Groups) D (cm) M (108 m3) B (Tg) BCS (Tg C)

2013 2050 2013 2050 2013 2050 2013 2050

Quercus spp. 14.94 26.02 12.94 21.39 1305.1 2116.09 630.63 1022.49
Betula spp. 14.08 21.38 9.14 14.57 950.53 1395.6 469.37 689.15
Larix spp. 16.75 25.48 10.01 16.05 785.67 1341.1 413.18 705.29

Pinus massoniana Lamb. 15.25 30.67 5.91 10.24 641.76 923.19 330.12 474.89
Pinus yunnanensis 14.35 23.6 4.77 7.82 416.54 632.87 219.98 334.22
Picea asperata Mast 19.26 28.2 9.87 15.65 786.16 1063.64 405.66 548.84

Abies fabri (Mast.) Craib 21.64 30.54 11.65 18.3 688.14 1040.68 347.51 525.54
Cupressus funebris Endl. 14.27 20.79 2 3.16 279.46 342.34 145.62 178.39
Cunninghamia lanceolata 14.29 26.94 7.26 12.37 636.59 907.31 341.53 486.77

Populus L. 15.67 29.61 5.03 8.52 575.08 826.59 285.01 409.66
Pinus tabuliformis Carriifo 14.76 26.25 0.66 1.11 73.84 108.59 39.24 57.7

Other species 14.73 24.66 68.53 112.36 7227.59 10891.71 3714.2 5597.16
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4. Discussion

4.1. Arbor Growth Difference Equation

Tree growth is an important facet of forest dynamics and can provide information on the health,
productivity, and sustainability of a forest as well as the spatial and temporal variability in growth
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rates [49]. DBH and tree height growth models are considered to be effective projections of tree growth,
and studies of tree growth models are the basis of forest research [15]. The DBH and tree height model
fitting and precision validation data showed that the growth difference equation was adequate for
these data.

Many scholars believe that validation is an important part of modeling, because validation
precision can show the model’s reliability [50]. Aggregating similar species into one species can
increase the amount of modeling data and improve the fitting precision, and using the nonlinear
function to fit the equation directly can avoid transformation bias [51,52]. Model efficiencies can
commonly exceed 0.50 for distance-independent individual-tree diameter growth models fit for related
forest types [53]. As important decision-making tools in forestry, individual-tree growth models
have been the subject of considerable research, such as that by Schliep et al. [54], Lhotka et al. [55],
Moreno et al. [12], etc. Schliep et al. [54] modeled individual tree growth by fusing diameter tape and
increment core data. Lhotka et al. [55] developed an individual-tree model that presented R2 values
from 0.26 to 0.57, and better fit was observed for oak species based on a mixed-effects regression and
290 inventory plots. Moreno et al. [12] used the AIDBH model with the cross-validation (CV) and
LASSO regression selection variable procedures and found that the R2

emp of annual DBH growth
predictions was 0.56 and DBH projections at six and 12 years 0.98 and 0.97, respectively. The model
structure represented by the form of the difference equation is convenient and easy to use for such
applications [53]. In this study, the difference equation for the relationship between the DBH/tree
height ratio and tree age was an individual-tree growth model, which was developed for China’s main
arbor species. The fitting R2 values and validation R2

emp values for this model were greater than 0.91
and the BIAS, MAE, RMSE, and U2 values were relatively small, indicating the goodness-of-fit of the
model. Although some deviations were observed in certain data predictions, these deviations could be
due to the heterogeneity of the growth environments, measurement errors, or model shortcomings.
The influence of different tree shapes and the growth environment (water, nutrients, light, crown and
root space, etc.), which is seen as a fixed value, has been reflected by the difference in the DBH and
height at the same age. Additionally, the model assumes that the growth environment of an individual
tree will not change suddenly and thus can be expanded for use. Meanwhile, comparing the fitting
and validation precision among the Logistic, Richards, and difference equations based on the same
data set reveals that the difference equation had a higher precision than the Logistic and Richards
equations for tree height and DBH. This phenomenon may occur because the difference equation was
predicted based on the DBH or tree height of a certain year, which contained information related to
the growth environment/site conditions, etc. Therefore, the difference equation had a remarkable
parameter estimation effect and could obtain higher precision for rapid, simple, and efficient tree
growth predictions.

Difference equations have been applied in forestry research [22,56]. Kiviste et al. [56] constructed
an algebraic difference model to explore the relationship between stand height, diameter, and volume
growth with the present state of stand description data. Faster and slower growth rates are biological
phenomena, and tree growth is affected by several biotic and abiotic factors [19,57]. In this study, the
difference equation parameters showed that tree growth was less affected by the spatial positioning
of the tree species. A certain similarity was observed among different tree species in the same group
that grow in the same region, and the growth rates of different tree species were significantly different.
All of these findings indicated that external factors, such as the environmental climate and stand
density, had few influences, whereas internal factors, such as the tree species, age and size, were the
main reasons for tree growth. Relevant studies also showed that tree growth reacted dynamically to
climate change with aging, which is a continuous process [58,59]. Therefore, an important relationship
occurs between studies of tree growth and the ecological environment and climate, and numerous
studies remain to be performed.



Forests 2019, 10, 582 16 of 23

4.2. BCS Forecast for Chinese Forests

Forests play an important role in regional and global carbon cycles. The long history of agricultural
exploitation, forest management practice, and changing land use and forestry policies suggests that
Chinese forests are vital. Recently, many scholars have conducted extensive research on BCS in various
countries [36,60–63]. Research on China’s forest carbon stocks has received extensive attention, and
many scholars have studied China’s carbon resources for several years. For the 1973–1976, 1977–1981,
1984–1988, and 1989–1993 periods, Fang et al. [36] estimated the BCS of forest stands in China to be
4440, 4380, 4450, and 4630 Tg C, respectively, with the continuous biomass expansion factor (CBEF)
method, whereas the estimates of Pan et al. [62] were 3510, 3600, 3690, and 4020 Tg C, respectively, with
an age-specific CBEF method. Fang et al. [38] and Guo et al. [63] estimated values of 5010 and 5850 Tg
C for the periods from 1994–1998 and 1999–2003, respectively, with the CBEF method. Zhang et al. [35]
estimated an increase from 4110 to 6240 Tg C and reported that the BCS of all types of forests in China
increased from 4930 to 8120 Tg C from 1973 to 2008.

Inventory-based estimation of BCS of forests at both regional and national scales may help to
reduce the uncertainties in accurately evaluating the role of forests in regional and global C budgets [34].
In this study, the difference equation was used to predict the DBH of trees and then to predict increases
in the volume, biomass, and BCS. Losses caused by forest fires, pests, wood harvesting, and other
human activities were considered. Thus, from 2013 to 2050, we concluded that the BCS of Chinese
forest increased from 7342 to 11,030 Tg C, and the annual biomass C sink will be 99.68 Tg C·year−1.
Our estimate is in agreement with the work of Hu et al., who developed a stage-classified matrix
model to predict biomass C stocks of China’s forests from 2005 to 2050 by using data from China’s
forest inventories between 1994 and 2008, the results showed that total forest biomass C stock would
increase from 6430 Tg C in 2005 to 9970 Tg C (95% confidence interval: 8980–1107 Tg C) in 2050, with
an overall net C gain of 78.8 Tg C·year−1(56.7–103.3 Tg C·year−1) [64]. However, our result is similar
to Xu et al. [65], who showed that China’s forest biomass carbon storage will increase by 7230 Pg
C in 2000–2050, with an average carbon sink of 140 Tg C·year−1, and Yao et al. [66], who estimated
age-related forest biomass C sequestration to be 6690 Tg C (170 Tg C·year−1) from the 2000s to the
2040s, the total forest biomass in China would increase by 8890–1037 Tg C by the end of 2040s. Besides,
the ratio of net growth to gross growth will increase, and the ratio of net loss to gross loss will decrease.
Li et al. [67] estimated the regional carbon emissions of forest harvests with the Fifth and Seventh NFI
data sets (1994–1998 and 2004–2008) and found that the total biomass carbon loss caused by forest
fires, insect pests, timber harvesting, and other human activities was approximately 131 Tg C·year−1.
These results may be related to the general law of forests growth but mainly are related to the human
demand for wood. Biomass loss is affected by various factors; for example, biomass loss in Russia,
Canada, and the western United States is mainly due to changes in forest structure, the impact of fires
and pests, and drought stress, respectively.

Carbon sequestration of forests is mainly due to tree growth and area expansion [24]. In addition,
Pan et al. [60] suggests that extensive areas of relatively young forests have the potential to continue
sequestering C in the future in the absence of accelerated natural disturbance, climate variability,
and land use changes. Most of China’s forest stands are in the middle and young ages, as shown in
Figure 4I. Moreover, the government has paid increasing attention to protecting the ecosystem and
has implemented several major projects for afforestation to increase the forest area, indicating that
China will have great carbon sequestration potential in the future and will play an important role in
mitigating climate warming.

Although the difference equation can be used for rapid, simple, and efficient tree growth estimates,
it still has some limitation in forecasting the BCS. For example, (1) the influence of external environmental
factors in the equation was regarded as a fixed value k instead of dynamic change; and (2) the model
cannot be used to predict the soil carbon, as soil carbon research is also an important aspect of forest C
stock and sink studies.
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5. Conclusions

This study, which was based on the basic principle of the difference equation and the general
law of tree growth and empirical equations, developed and verified a growth difference equation
for the main arbor species in China. We found that the parameters of the difference equation for
DBH/tree height was less affected by the spatial position, a certain similarity existed between tree
species belonging to a single group, and the parameters of different species was significantly different.
Besides, the difference equation was used to predict the growth status and BCS of Chinese forests from
2013 to 2050. The results showed that from 2013 to 2050, the BCS of Chinese forests will increase from
7342 to 11,030 Tg C and the annual biomass C sink will reach 99.68 Tg C·year−1, which indicates that
Chinese land-surface forest vegetation have important carbon sequestration capabilities.

In a future study, we hope to (1) use data that distribute across the whole study area for the
difference equation fitting and do some application, and (2) investigate the increase of volume, biomass
and BCS both for the growth of trees and the expansion of forest area. Moreover, (3) a study related to
documenting the stand-level characteristics such as age-class distribution, species composition, stand
density, basal area, volume, etc. in BCS research, are also recommended to be carried out.
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Appendix A

Table A1. Modeling parameters of Chinese tree species forest stock volume.

Species (Groups) cj bj gj fj

Quercus spp. 5.63056 × 10−5 0.457 1.87350 0.99969
Betula spp. 5.36548 × 10−5 0.406 1.87113 0.99050
Larix spp. 5.64302 × 10−5 0.554 1.79286 1.07499

Pinus massoniana Lamb. 6.11955 × 10−5 0.663 1.86356 0.96431
Pinus yunnanensis 5.82901 × 10−5 0.527 1.97963 0.90715
Picea asperata Mast 6.18416 × 10−5 0.516 1.81373 1.03963

Abies fabri (Mast.) Craib 6.59102 × 10−5 0.489 1.85472 1.00400
Cupressus funebris Endl. 7.45729 × 10−5 0.531 1.87266 0.91363
Cunninghamia lanceolata 5.84195 × 10−5 0.610 1.96266 0.89525

Populus L. 5.77279 × 10−5 0.530 1.92099 0.92660
Pinus tabuliformis Carrière 6.64925 × 10−5 0.632 1.86556 0.93769

Other species 5.96868 × 10−5 0.485 1.92063 0.92505

Note: The parameter “Other species” is the average value of other tree species.
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Table A2. The Forest Stock—forest biomass conversion relationship model coefficients.

Species (Groups) pj qj

Quercus spp. 0.96 43.056
Betula spp. 0.82 18.08
Larix spp. 0.92 −12.64

Pinus massoniana Lamb. 0.65 25.761
Pinus yunnanensis 0.71 18.993
Picea asperata Mast 0.48 81.143

Abies fabri (Mast.) Craib 0.53 22.951
Cupressus funebris Endl. 0.54 46.846
Cunninghamia lanceolata 0.53 22.954

Populus L. 0.72 24.932
Pinus tabuliformis Carrière 0.78 13.889

Other species 0.836 18.668

Note: The parameter of Pinus yunnanensis was replaced with other pine parameters and the parameter “Other
species” is the average value of other tree species.

Table A3. Modeling parameter of Chinese tree species biomass carbon content.

Species (Groups) rj (%)

Quercus spp. 48.32
Betula spp. 49.38
Larix spp. 52.59

Pinus massoniana Lamb. 51.44
Pinus yunnanensis 52.81
Picea asperata Mast 51.6

Abies fabri (Mast.) Craib 50.5
Cupressus funebris Endl. 52.11
Cunninghamia lanceolata 53.65

Populus L. 49.56
Pinus tabuliformis Carrière 53.14

Other species 51.39

Note: The parameter “Other species” is the average value of other tree species.

Table A4. Fitting results for the Richards (1959) equation for different species.

Species (Groups) DBH Height

A c r R2 A c r R2

Pinus massoniana Lamb. 46.837 1.689 0.026 0.755 26.515 1.905 0.046 0.89
Abies fabri (Mast.) Craib 32.527 3.545 0.032 0.691 19.553 2.728 0.032 0.669

Platycladus orientalis (L.) Franco 77.883 0.787 0.002 0.857 20.287 0.56 0.004 0.793
Cunninghamia lanceolata 29.314 1.309 0.043 0.592 19.7 1.724 0.073 0.622

Larix gmelinii (Rupr.) Kuzen 30.621 1.604 0.015 0.725 27.879 1.469 0.019 0.864
Larix principis-rupprechtii Mayr 14.322 7.699 0.108 0.558 12.035 5.201 0.104 0.74

Picea asperata Mast 68.147 1.234 0.005 0.519 13.135 1.83 0.025 0.596
Quercus 26.682 1.554 0.018 0.831 13.192 1.347 0.029 0.85

Pinus tabuliformis Carrière 45.718 1.051 0.007 0.629 12.031 1.278 0.027 0.722
Betula platyphylla Suk. 18.882 2.491 0.049 0.764 15.769 1.755 0.048 0.853

Populus davidiana 13.064 4.23 0.09 0.68 10.65 2.765 0.099 0.701
Populus L. 13.755 1.744 0.069 0.319 14.423 1.116 0.045 0.422

Picea likiangensis 93.367 0.98 0.004 0.772 46.196 1.277 0.009 0.855
Pinus yunnanensis 45.416 1.025 0.017 0.743 32.426 1.367 0.03 0.889
Abies georgei Orr 61.518 1.472 0.004 0.854 26.583 1.674 0.007 0.861

Note: The parameter “Other species” is the average value of other tree species.
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Table A5. Fitting results for the Logistic (1983) equation for different species.

Species (Groups) DBH Height

A m r R2 A m r R2

Pinus massoniana Lamb. 39.032 11.043 0.067 0.743 24.372 11.195 0.096 0.876
Abies fabri (Mast.) Craib 29.435 26.181 0.064 0.689 17.496 21.255 0.07 0.664

Platycladus orientalis (L.) Franco 36.559 6.155 0.019 0.836 14.265 3.225 0.023 0.742
Cunninghamia lanceolata 24.994 7.356 0.112 0.58 18.373 8.916 0.146 0.619

Larix gmelinii (Rupr.) Kuzen 26.766 9.469 0.036 0.718 25.262 8.169 0.042 0.85
Larix principis-rupprechtii Mayr 13.503 57.871 0.181 0.563 11.234 41.878 0.188 0.744

Picea asperata Mast 29.932 12.268 0.035 0.489 8.576 21.054 0.097 0.579
Quercus 19.826 10.596 0.056 0.81 11.56 7.323 0.071 0.835

Pinus tabuliformis Carrière 23.739 8.273 0.047 0.59 9.775 9.336 0.086 0.698
Betula platyphylla Suk. 16.204 16.859 0.109 0.754 13.537 11.386 0.116 0.841

Populus davidiana 12.373 26.342 0.155 0.687 10.195 15.103 0.175 0.707
Populus L. 13.301 7.129 0.119 0.319 13.093 5.281 0.104 0.41

Picea likiangensis 60.677 7.267 0.019 0.747 39.296 8.173 0.025 0.837
Pinus yunnanensis 37.445 5.494 0.051 0.728 29.654 6.805 0.065 0.875
Abies georgei Orr 41.049 12.414 0.017 0.848 21.068 13.646 0.02 0.856

Note: The parameter “Other species” is the average value of other tree species.

Table A6. Validation precision of Richards (1959) model for different tree species.

Species (Groups)
DBH Height

Bias MAE RMSE
R2

emp
Bias MAE RMSE

R2
emp(cm) (cm) (cm) (m) (m) (m)

Pinus massoniana Lamb. −2.74 5.369 7.004 0.697 −0.954 2.589 3.304 0.838
Abies fabri (Mast.) Craib −1.916 6.796 9.318 0.178 −2.086 4.521 5.999 0.248

Platycladus orientalis (L.) Franco −4.314 4.351 4.974 0.896 −2.365 2.405 2.862 0.683
Cunninghamia lanceolata 0.521 3.886 4.996 0.642 0.197 2.815 3.665 0.668

Larix gmelinii (Rupr.) Kuzen 0.108 3.384 4.395 0.792 −1.273 2.426 3.248 0.828
Larix principis−rupprechtii Mayr 0.165 2.459 3.167 0.663 0.231 1.364 2.153 0.823

Picea asperata Mast −0.488 2.667 3.159 0.486 −0.039 1.244 1.685 0.704
Quercus 1.502 2.523 3.601 0.761 0.978 1.931 2.801 0.637

Pinus tabuliformis Carritii 0.221 2.707 3.505 0.576 0.702 1.4 1.896 0.679
Betula platyphylla Suk. 0.719 1.589 2.014 0.843 0.521 1.538 2.115 0.745

Populus davidiana 3.933 4.167 6.232 0.395 2.363 3.111 4.219 0.483
Populus L. −0.55 2.325 2.815 0.616 −1.623 3.224 4.096 0.37

Picea likiangensis −1.294 7.3 9.383 0.709 −1.092 3.692 5.105 0.828
Pinus yunnanensis 2.52 7.124 8.454 0.581 0.682 3.572 4.575 0.761
Abies georgei Orr 8.054 9.242 13.433 0.409 2.587 3.71 5.334 0.609

Note: The parameter “Other species” is the average value of other tree species.
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Table A7. Validation precision of the Logistic (1983) model for different tree species.

Species (Groups)
DBH Height

Bias MAE RMSE
R2

emp
Bias MAE RMSE

R2
emp(cm) (cm) (cm) (m) (m) (m)

Pinus massoniana Lamb. −2.866 5.555 7.244 0.675 −0.887 2.677 3.383 0.831
Abies fabri (Mast.) Craib −2.029 6.517 9.23 0.193 −2.118 4.404 5.886 0.276

Platycladus orientalis (L.) Franco −4.314 4.351 4.974 0.896 −1.976 2.397 2.714 0.715
Cunninghamia lanceolata 0.319 4.008 5.065 0.632 0.123 2.861 3.697 0.663

Larix gmelinii (Rupr.) Kuzen −0.157 3.594 4.521 0.78 −1.139 2.629 3.275 0.825
Larix principis−rupprechtii Mayr 0.091 2.468 3.176 0.661 0.181 1.367 2.168 0.82

Picea asperata Mast −0.032 2.749 3.227 0.463 −0.055 1.289 1.701 0.699
Quercus 1.332 2.585 3.614 0.76 0.897 1.959 2.808 0.635

Pinus tabuliformis Carrière −0.033 2.87 3.639 0.543 0.678 1.478 1.943 0.663
Betula platyphylla Suk. 0.619 1.637 2.051 0.837 0.511 1.566 2.133 0.741

Populus davidiana 4.03 4.233 6.425 0.357 2.366 3.178 4.312 0.459
Populus L. −1.637 3.254 4.076 0.376 −0.57 2.412 2.855 0.605

Picea likiangensis −0.523 7.495 9.273 0.716 −1.327 3.981 5.254 0.817
Pinus yunnanensis 2.16 7.012 8.412 0.585 0.646 3.699 4.695 0.749
Abies georgei Orr 7.345 9.059 12.827 0.461 2.709 3.819 5.49 0.586

Note: The parameter “Other species” is the average value of other tree species.
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