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Abstract: We examined phenotypic relationships among radial growth-related, physical (i.e., related
to wood density), and anatomical (i.e., related to tracheid dimensions) wood properties in white
spruce (Picea glauca (Moench) Voss), in order to determine the strength and significance of their
correlations. Additionally, principal component analysis (PCA) was used to establish if all of the
properties must be measured and to determine the key properties that can be used as proxies for
the other variables. Radial growth-related and physical properties were measured with an X-ray
densitometer, while anatomical properties were measured with a Fiber Quality Analyzer. Fifteen
wood properties (tracheid length (TL) and diameter (TD), earlywood tracheid length (ETL) and
diameter (ETD), latewood tracheid length (LTL) and diameter (LTD), ring width (RW), ring area (RA),
earlywood width (EWW), latewood width (LWW), latewood proportion (LWP), ring density (RD),
intra-ring density variation, earlywood density (EWD), and latewood density (LWD)) were assessed.
Relationships were evaluated at intra-ring and inter-ring levels in the juvenile wood (JW) and mature
wood (MW) zones. Except for a few cases when mature tracheid diameter (TD) was involved, all
intra-ring anatomical properties were highly and significantly correlated. Radial growth properties
were correlated, with stronger relationships in MW compared to JW. Physical properties were often
positively and significantly correlated in both JW and MW. A higher earlywood density coupled with
a lower latewood density favored wood uniformity, i.e., the homogeneity of ring density within a
growth ring. Managing plantations to suppress trees growth during JW formation, and enhancing
radial growth when MW formation starts will favor overall wood quality. In order, RW-EWW-RA,
TL-ETL-LTL, and RD-EWD-LWP are the three clusters that appeared in the three wood zones, the
whole pith-to-bark radial section, the juvenile wood zone, and the mature wood zone.
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1. Introduction

White spruce (Picea glauca (Moench) Voss) is widely distributed across North America. Its territory
extends from Newfoundland, Labrador, and northern Quebec in the east to west across Canada along
the northern tree limit to northwestern Alaska and south to southwestern Alaska, southern British
Columbia, southern Alberta, northwestern and southeastern Manitoba, central Minnesota, central
Michigan, southern Ontario, northern New York, and Maine [1]. White spruce wood is valuable for both
lumber and pulpwood, and is therefore of vital economic importance. In eastern Canada, substantial
artificial regeneration programs as well as tree improvement research and breeding programs have
targeted this species. The positive effects of these management programs on tree growth and stem
quality are documented [2–5].

Wood quality must normally have a sense only with respect to its final end-use [6]. However,
one must keep in mind that overall wood quality depends on all its properties, and selection for one
character may cause a change to the population mean of other correlated properties [7–9]. For example,
maturation of tracheid length (TL), ring density (RD), and microfibril angle have been found to
contribute equally to the improvement of wood mechanical properties with age and to explain more
than 80% of this improvement [10]. Furthermore, the growth rate is known to alter correlations among
properties [11,12]. However, end-use properties are often neglected in tree breeding and management
programs [13–15]. Only a few studies have investigated correlations among the growth rate and wood
quality of white spruce, and only for a small number of wood properties (all acronyms used in this text
are listed in Table 1) at the ring level [9,15–17]. These studies pointed out the need for more carefully
planned management if the improvement of many end-use properties was envisioned [9,16]. Therefore,
correlations among the radial growth rate and physical (i.e., related to wood density) and anatomical
(i.e., related to tracheid dimensions) properties of white spruce remain to be clarified.

Table 1. Acronyms used in the text and their descriptions.

Acronym Description

BA Basal area
BH Breast height

ETD Earlywood tracheid diameter
ETL Earlywood tracheid length

EWW Earlywood width
EWD Earlywood density

JW Juvenile wood
LTD Latewood tracheid diameter
LTL Latewood tracheid length

LWW Latewood width
LWD Latewood density
LWP Latewood proportion
MW Mature wood
RA Ring area
RD Ring density
RW Ring width
TD Tracheid diameter
TL Tracheid length

RD is probably the most studied wood property [18]. It is considered as the key property
affecting both the stiffness and strength of structural timber [19], and is therefore used to predict wood
stiffness [20]. It guides raw material selection in veneers and appearance products manufacturing [19,21],
since it determines wood machinability and surface hardness. RD is considered as a key indicator of
pulp yield and the quality of paper products [6,22], and also an important variable in determining the
biomass calorific value and carbon sequestration [23,24]. Investigations must now extend to neglected
but relevant wood properties, such as the ring area (RA), TL, tracheid diameter (TD), and wood
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uniformity (intra-ring density variation). RA tells us about tree growth in both the radial and tangential
directions [25]. TL is one of the most important wood properties for paper products because it has a
significant impact on the quality of the pulp and paper and fiber-based products, such as wood–plastic
composites and fiberboards. In addition, the TL radial pattern of variation clearly defines the juvenile
wood (JW) and mature wood (MW) zones [26]. TD is an important property in pulp industries [27]
and its radial and longitudinal variations explain a tree’s adaptation strategy to overcome hydraulic
resistance [28,29]. Because measuring anatomical properties is time consuming and expensive [30], TL
and, even more, TD have not been addressed enough [31]. Intra-ring density variation is an indication
of the variation of wood density inside a growth ring. A greater uniformity is valuable for veneer
production [21].

Wood properties of spruces change in a single ring from earlywood to latewood when considering
growth, density [15,32], and anatomical [15,29,33] properties. The earlywood zone is produced under
the strong influence of growth hormones, especially indole-3-acetic-acid (auxin) in the beginning of the
growth season, when newly formed buds are actively elongating, and it proceeds basipetally towards
the tree [18,34,35]. Latewood production coincides with the cessation of shoot elongation, proceeds
acropetally, and has thicker cell walls, as a result of greater photosynthates availability [18,35,36].
Significant variations in wood properties are observed in spruces when one moves in the radial
direction from JW to MW for growth [15,16], physical [15,37], and anatomical [15,16,26] properties.
This pattern is due to many interrelated factors. The most important ones are the distance of the
tracheid to the active living crown [18,38], the age of the cambial initial during xylogenesis [39], and
the growth rate [34]. Variation from earlywood to latewood [18] and from JW to MW [16,40] have led
to the statement that these woods have to be considered as different populations [12]. Earlywood and
latewood properties have been used to predict whole-ring values of wood properties. RD has been
predicted from the earlywood density (EWD) and latewood proportion (LWP) [37,41,42]. It has been
found [41] that the earlywood width (EWW) is more correlated with RW than latewood width (LWW).
Similarly, juvenile wood TL was used to predict whole section TL at breast height [29].

Understanding the phenotypic correlations among wood properties and especially clarifying
those of poorly studied ones, such as RA, TL, TD, and intra-ring density variation with RD, may be
very instructive. Indeed, despite its great relevance in wood industries, predicting RD remains a very
difficult task. Therefore, more thorough analyses are needed using many physical, growth-related, and
anatomical properties, and subdividing the tree-ring between earlywood and latewood zones, and
the tree radial profile between juvenile wood and mature wood period. A high correlation between
RD and other wood properties may shed light on the drivers of their variations, and help build more
efficient predictive models. When increasing RW, a negative influence can be registered on TL for Sitka
spruce (Picea sitchensis) [43] and Norway spruce (Picea abies (L.) Karst) [44,45]. RD is also negatively
influenced by increasing RW in white spruce (Picea glauca (Moench) Voss) [16,17], black spruce (Picea
mariana (Mill.) B.S.P.) [37], and Norway spruce [12]. However, other researchers rather found positive
relationships between increased RW and RD in balsam fir (Abies balsamea Mill) [41] and jack pine (Pinus
banksiana Lamb.) [3]. A positive relationship between RW and TL was also documented for Sitka
spruce [43] and white spruce [16]. TD did not vary with the growth rate in radiata pine (Pinus radiata
D. Don) [46], while Brändström [33] reported an increase in TD with RW in Norway spruce. TL does
not appear to be significantly influenced by social status in Norway spruce [47]. Although an increased
RW could be associated with reduced RD and TL, the variation of RD [18,44,48–50] and TL [45,51] with
the growth rate is limited and without practical implications. These have led to the conclusion that
stand productivity may be improved without sensible loss of wood quality [44,48,52]. Given the cost
and tedious work associated with measuring several wood properties, one may also be interested in
evaluating how close two given properties are. This could thus establish if all of the properties must be
measured, or there are key properties that can be used as proxies for the other variables.

In order to improve our understanding of how wood properties are correlated at the intra-ring
and inter-ring levels, and whether these correlations may be used for prediction models, this study
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addressed the following objectives: (1) Establish phenotypic correlations between earlywood and
latewood among the selected wood properties, (2) establish phenotypic correlations between juvenile
wood and mature wood among the selected wood properties, (3) group wood properties and select
key properties that can be used as proxies for the other variables in the group, and (4) describe radial
variations of selected wood properties in white spruce.

2. Materials and Methods

2.1. Stand Description

Material comes from 32 trees in a plantation established in 1936 in the Petawawa Research Forest,
Ontario, Canada (lat. 45.59◦ N, long. 77.25◦ W, elev. 168 m). Initial stocking was 3068 trees/ha
(1.8 m × 1.8 m spacing). The plantation had three thinning treatments and a control. Heavy, medium,
and light thinning intensities were applied for target basal area (BA) of 18, 25, and 32 m2/ha, respectively.
For each of the target BA, thinning operations were conducted threefold, in 1962, 1972, and 1982.
The target BA remained the same during all thinning operations. In 2002, BA in the control plot was
44 m2/ha. Eight trees (two dominants, four codominants, and two suppressed) were randomly selected
from each of the three thinning intensities and from the control plot, for a total of 32 trees. Trees were
felled in July 2008 and pruned once on the ground. Discs at 1.3 m (breast height, BH) were collected for
all sampled trees. Mean tree height (± SD) of the sampled trees was 21.1 ± 3.1 m, and mean diameter
below bark at BH (± SD), measured with an electronic digital caliper, was 26.8 ± 6.4 cm.

2.2. Sample Collection, Preparation, and Wood Quality Attribute Assessments

Two 1.86 mm (tangential) adjacent strips centered on the pith were sawn bark to bark from each
disc. One single radius per strip was carefully selected for the analyses. Direction was random.
Compression wood and knots were avoided. The first strip per disc was used for measurement of
radial growth-related and physical properties. These properties were measured at a 25 µm linear
resolution step size with an X-ray densitometer (Quintek Measurements Systems QMS model QTRS-01X,
Knoxville, TN, USA). The boundary between earlywood and latewood was delineated using the
intra-ring wood density profile and the maximum derivative method [21]. RA was computed from
RW assuming a circular shape. Intra-ring density variation, which is a measure of wood density
homogeneity in a ring, was computed as the difference between the maximum and minimum densities
of the ring. Wood sticks from earlywood and latewood were taken at 3, 6, 9, 12, 15, 20, 25, 30, 35, 40, and
45 growths rings (or cambial age) from the second wood strip. It is important to note that samples were
collected at a fixed growth ring and not at determined calendar years. Indeed, the sampling strategy
is a relevant issue when describing anatomical properties [29]. Wood sticks were macerated using
a Franklin [53] solution consisting of (1:1 v/v) hydrogen peroxide diluted to 30% and concentrated
glacial acetic acid. Each stick was placed in a test tube. The test tube was immersed in the Franklin
solution and kept in hot distilled water (85–90 ◦C) for 5 to 6 hours until complete lignin dissolution.
Delignified wood sticks were gently shaken in water with a laboratory blender to obtain a tracheid
suspension. Earlywood and latewood TL were measured with a Fiber Quality Analyzer, LDA02 FQA
(Op Test Equipment Inc. Hawkesbury, Ontario, Canada). A total of 4000 tracheids were measured in
every sample. The TL in each zone was measured as the weight weighted length, LWW = ΣniLi

3/ΣniLi
2

(where i = 1, 2, 3 . . . N categories; n = fiber count in the (ith) category; L = contour length). Using this
method, measurements were similar to true TL measurements and controlled for the bias caused by
the large number of fines generated during the preparation process [30,47]. Average ring TL and TD
were computed by weighting TL and TD of each wood zone with the relative RW.

2.3. Multivariate Analysis

All statistical analyses were performed using the R statistical software [54]. Correlations were
computed for JW and MW separately, assuming that the transition age occurred at 15 years, as found
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in a previous study that used TL from this material [26]. This transition age was similar to RD [17,55],
and the RA [25] transition age in spruce. We preferred Pearson’s correlations compared to other
techniques since we wanted to establish a 1 by 1 relationship between two given wood properties at
a given wood zone. These correlations could help in choosing explanatory variables for prediction
models. Correlations were computed for all sampled trees, without distinguishing among thinning
intensities. The rationale was that we wanted to establish general correlations among properties for
different stands, which can largely differ in terms of growth rate, as the material of this study.

Standard errors of the Pearson’s correlations coefficients were computed from Equation (1).

se =
√
((1− r2)/(n− 2)), (1)

where r = correlation estimate, n = number of observations, and n − 2 = degree of freedom.
Estimated variations induced by both thinning and social class on many wood properties (including

those considered in this study) are being studied in a separate project. Principal component analysis
(PCA) was performed on standardized datasets using the FactoMineR package [56]. PCA was used
to observe any clustering in the 15 wood properties considered in this study and was carried out
separately on the whole pith-to-bark, the juvenile wood, and the mature wood dataset.

3. Results

3.1. Intra-Ring and Inter-Ring Variations of Selected Wood Properties

Values of all radial growth-related properties investigated in the JW, defined as the first 15 growth
rings, were higher than the values in the MW (Table 2). The large RA of the MW zone compared to the
JW zone was the reverse of the pattern observed with RW (Table 2).

Variation of the radial growth-related properties is shown in Figure 1a. RW and EWW increase
sharply during the first five growth ring (Figure 1a), while LWW presented a reverse pattern. All radial
growth-related properties decreased steadily from the 5th to the 30th growth ring (around 2.5 mm
for RW, 2.9 mm for EWW, and 0.4 mm for LWW), and showed a leveling tendency toward the bark
(Figure 1a), but the decrease was sharper for EWW compared to LWW. LWP initially decreased during
the first five growths rings, before continually increasing toward the bark, with yearly fluctuations
(Figure 2). There was an acute increase of RA during the first 10 growth rings, where it was around
940 mm2, followed by a somewhat leveling off, with yearly fluctuations (Figure 3).

EWD is higher in the JW compared to the MW, while the reverse is true for RD, LWD, and
intra-ring density variation (Table 2). Intra-ring density variation showed a rapid increase from pith
to the 25th growth ring, where it was around 647 kg/m3, and gently decreased thereafter (Figure 4).
RD and EWD show similar patterns, decreasing slowly from a maximum near the pith to a minimum
(around 433 kg/m3 for RD and 380 kg/m3 for EWD) around the 15th growth ring, and EWD decreased
gently toward the bark while RD remained relatively constant (Figure 1b). Latewood density (LWD)
was almost constant during the first 10 growths rings (around 674 kg/m3 at the 10th growth ring),
increased steadily to a maximum around the 25th growth ring, and slowly decreased toward the bark
(Figure 1b).

Tracheid length and diameter were shorter and smaller in juvenile than in mature wood (Table 2)
and displayed a curvilinear pattern in the radial direction (Figure 1c,d). Overall, wood properties in
the whole ring followed similar patterns to those of earlywood (Figure 1a–d).

3.2. Intra-Ring and Inter-Ring Pearson’s Correlations of Selected Wood Properties

As a rule, anatomical properties were significantly correlated (Table 2). Few exceptions were found
when mature TD was involved. All these correlations were positive. All correlations of anatomical
properties were stronger in JW than in MW.
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Overall, radial growth properties were significantly correlated (Table 2). Except for a few cases
involving LWP, these correlations were positive and stronger in MW compared to JW. RA and RW
followed this rule, with a strong Pearson’s correlation only in the mature wood. EWW correlations
with both RW and RA was stronger than LWW ones. As one can expect, LWP was negatively correlated
to EWW and positively correlated to LWW. LWP was negatively correlated to both RW and RA.

Physical properties were significantly and positively correlated in both JW and MW (Table 2).
Intra-ring density variation increased with LWD and RD, while decreasing with EWD. However, LWD
was more strongly correlated to intra-ring density variation than both EWD and RD. EWD was highly
correlated with LWD, especially in the MW. We found EWD to be more strongly correlated to RD than
LWD. However, the EWD correlation with RD decreased with age while that of LWD increased.

3.3. Inter-Ring Pearson’s Correlations of Selected Wood Properties

Anatomical properties significantly increased with intra-ring density variation (Table 2). TL was
not significantly correlated with RD for the whole pith-to-bark section, while TD was only weakly and
negatively correlated to RD. Higher correlation between both TL and TD with RD was found in the
juvenile wood. These correlations were not significant in the mature wood. TL and TD decreased with
RW (Table 2), but the effect was more pronounced for TL. As one may expect, average TL tended to
increase with LWP. However, TL–LWP correlations were not significant in both juvenile and mature
wood. The weakly decreasing trend of TD with LWP was not significant (Table 2). RD significantly
decreased with RW, and increased with LWP, but the magnitude was weak in both cases (Table 2).
Intra-ring density variation significantly decreased with both RW and LWP. However, the decrease of
intra-ring density variation with both RW and LWP was limited (Table 2).

3.4. Principal Component Analysis of Selected Wood Properties

The first two dimensions of PCA explained 60.0% of the variables cloud total variability for
the whole pith-to-bark section. This percentage was 57.7% and 52.9% for the mature wood section
and the juvenile wood section, respectively. All these values were greater than the 32.9% threshold
for 31 individuals and 15 variables. Overall, the average pith-to-bark section and the mature wood
shared a similar quality of the representation, contribution to the axis, and correlation with the axis
(Table 3). In all wood zones, the first dimension represented radial and circumferential growth (Table 3).
The second dimension was associated with the tracheid length in the whole pith-to-bark section and
the mature wood zone, while it represented ring density in the juvenile wood zone (Table 3). The three
clusters that appeared in the whole pith-to-bark radial section, the juvenile wood zone, and the mature
wood zone were RW-EWW-RA, TL-ETL-LTL, and RD-EWD-LWP (Table 3).
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Table 2. On the diagonal, in bold and italic, the mean and standard deviation (between parentheses) of the 15 wood properties measured at breast height. Above
the diagonal, intra-ring Pearson’s correlations between radial growth-related properties, anatomical properties, and density-related properties for the whole ring,
earlywood zone, latewood zone, whole pith-to-bark radial section, juvenile wood zone, and mature wood zone. Below the diagonal, standard errors of the
Pearson’s correlations.

WP Zone LTD
(µm)

LTL
(mm)

LWW
(mm)

LWP
(%)

LWD
(kg/m3)

ETD
(µm)

ETL
(mm)

EWW
(mm)

EWD
(kg/m3)

TD
(µm)

TL
(mm)

RW
(mm)

RA
(mm2)

RD
(kg/m3)

IDV
(kg/m3)

LTD
(µm)

Juv. 27.2 (3.6) 0.45 *** −0.07 ns −0.02 ns 0.08 ns 0.55 *** 0.45 *** −0.11 ns −0.35 *** 0.63 *** 0.46 *** −0.12 ns 0.46 *** −0.29 ** 0.39 ***
Ave. 28.4 (3.4) 0.35 *** −0.09 ns 0.11 * 0.04 ns 0.41 *** 0.41 *** −0.20 ** −0.29 *** 0.53 *** 0.41 *** −0.20 ** 0.27 *** −0.16 * 0.28 ***
Mat. 27.8 (3.6) 0.19 * 0.03 ns 0.19 * −0.11 ns 0.16 * 0.36 *** −0.1 ns −0.19 * 0.35 *** 0.35 **** −0.07 ns 0.04 ns −0.1 ns 0.05 ns

LTL
(mm)

Juv. 0.073 2.5 (0.6) −0.2 * −0.04 ns 0.18 * 0.58 *** 0.92 *** −0.41 *** −0.41 *** 0.57 *** 0.95 *** −0.43 *** 0.53 *** −0.33 *** 0.45 ***
Ave. 0.054 3.4 (0.4) −0.35 *** 0.13 * 0.33 *** 0.39 *** 0.91 *** −0.65 *** −0.27 *** 0.39 *** 0.94 *** −0.66 *** 0.34 *** 0 ns 0.46 ***
Mat. 0.082 2.9 (0.7) −0.16 * 0.05 ns 0.03 ns 0.02 ns 0.65 *** −0.24 * −0.09 ns 0.09 ns 0.75 *** −0.26 * −0.08 ns −0.01 ns −0.02 ns

LWW
(mm)

Juv. 0.081 0.08 0.7 (0.5) 0.84 *** −0.64 *** 0.03 ns −0.23 * 0.07 ns −0.15 * −0.15 ns −0.2 * 0.43 *** 0.11 * −0.02 ns −0.11 *
Ave. 0.058 0.055 0.3 (0.3) 0.48 *** −0.52 *** 0.08 ns −0.34 *** 0.47 *** −0.07 * −0.11 * −0.33 *** 0.65 *** 0.28 *** −0.09 ** −0.05 *
Mat. 0.083 0.082 0.4 (0.4) 0.49 *** −0.44 *** 0.4 *** −0.09 ns 0.43 *** −0.21 *** 0.13 ns −0.11 ns 0.65 *** 0.58 *** −0.08 * 0.27 ***

LWP
(%)

Juv. 0.082 0.082 0.026 17.4 (10) −0.65 *** 0.09 ns −0.08 ns −0.4 *** −0.14 * −0.12 ns −0.05 ns −0.04 ns −0.07 ns 0.07 ns −0.13 *
Ave. 0.058 0.058 0.021 20.4 (9.6) −0.56 *** 0.13 * 0.13 * −0.37 *** −0.21 *** −0.08 ns 0.15 * −0.19 *** −0.10 *** 0.14 *** −0.17***
Mat. 0.081 0.083 0.024 19.7 (9.8) −0.65 *** 0.11 ns 0.10 ns −0.39 *** −0.21 *** −0.13 ns 0.12 ns −0.19 *** −0.14 *** 0.14 *** −0.27 ***

LWD
(kg/m3)

Juv. 0.081 0.08 0.037 0.037 688 (96) 0.12 ns 0.17 * 0.04 ns 0.31 *** 0.25 * 0.14 ns −0.2 *** 0.03 ns 0.33 *** 0.55 ***
Ave. 0.058 0.055 0.021 0.020 780 (120) 0.11 * 0.31 *** −0.13 *** 0.34 *** 0.24 *** 0.30 *** −0.24 *** 0.11 *** 0.43 *** 0.67 ***
Mat. 0.083 0.083 0.026 0.021 757 (121) −0.04 ns −0.02 ns 0.2 *** 0.48 *** 0.12 ns −0.03 ns 0.05 ns 0.07 * 0.46 *** 0.65 ***

ETD
(µm)

Juv. 0.068 0.067 0.082 0.081 0.081 34.6 (5.1) 0.57 *** −0.19 * −0.39 *** 0.95 *** 0.58 *** −0.16 * 0.59 *** −0.28 ** 0.53 ***
Ave. 0.053 0.054 0.058 0.058 0.058 36.8 (3.9) 0.39 *** −0.17 * −0.31 *** 0.94 *** 0.39 *** −0.12 * 0.53 *** −0.15 * 0.46 ***
Mat. 0.082 0.084 0.076 0.083 0.083 35.7 (4.7) 0.03 ns 0.32 *** −0.17 * 0.92 *** 0.03 ns 0.41 *** 0.43 *** −0.1 ns 0.27 **

ETL
(mm)

Juv. 0.073 0.031 0.080 0.082 0.081 0.068 2.3 (0.6) −0.39 *** −0.38 *** 0.58 *** 0.99 *** −0.43 *** 0.49 *** −0.33 *** 0.40 ***
Ave. 0.053 0.025 0.055 0.058 0.056 0.054 3.3 (0.4) −0.64 *** −0.23 *** 0.40 *** 0.99 *** −0.65 *** 0.36 *** 0.03 ns 0.45 ***
Mat. 0.078 0.064 0.084 0.083 0.084 0.084 2.8 (0.7) −0.19 * 0.01 ns 0.11 ns 0.98 *** −0.19 * −0.03 ns 0.07 ns 0.00 ns

EWW
(mm)

Juv. 0.081 0.075 0.048 0.044 0.048 0.08 0.076 3.2 (1.2) 0.07 ns −0.13 ns −0.41 *** 0.93 *** 0.28 *** −0.11 * −0.05 ns
Ave. 0.057 0.044 0.021 0.022 0.024 0.057 0.045 1.2 (0.8) 0.18 *** −0.12 * −0.65 *** 0.97 *** 0.34 *** −0.14 *** −0.05 *
Mat. 0.083 0.081 0.025 0.026 0.027 0.079 0.082 1.7 (1.2) 0.07 * 0.34 *** −0.23 * 0.97 *** 0.8 *** −0.13 *** 0.43 ***

EWD
(kg/m3)

Juv. 0.077 0.075 0.048 0.048 0.046 0.075 0.076 0.048 402 (44) −0.33*** −0.41 *** 0 ns −0.51 *** 0.94 *** −0.34 ***
Ave. 0.055 0.056 0.024 0.024 0.023 0.055 0.057 0.024 383 (40) −0.25 *** −0.25 *** 0.14 *** −0.21 *** 0.82 *** −0.07 *
Mat. 0.081 0.083 0.027 0.027 0.025 0.082 0.084 0.028 388 (42) −0.09 ns −0.03 ns 0 ns −0.1 ** 0.84 *** 0.12 ***

TD
(µm)

Juv. 0.063 0.067 0.081 0.081 0.079 0.025 0.067 0.081 0.077 33.3 (4.6) 0.58 *** −0.17 * 0.57 *** −0.27 ** 0.5 ***
Ave. 0.049 0.054 0.058 0.058 0.056 0.020 0.054 0.058 0.056 35.1 (3.2) 0.40 *** −0.13 * 0.48 *** −0.15 * 0.44***
Mat. 0.078 0.083 0.083 0.083 0.083 0.033 0.083 0.078 0.083 34.2 (4.1) 0.12 ns 0.32 *** 0.38 *** −0.1 ns 0.28 **

TL
(mm)

Juv. 0.073 0.026 0.081 0.082 0.081 0.067 0.008 0.075 0.075 0.067 2.3 (0.6) −0.43 *** 0.51 *** −0.34 *** 0.42 ***
Ave. 0.053 0.021 0.055 0.058 0.056 0.054 0.005 0.044 0.057 0.054 3.3 (0.4) −0.66 *** 0.35 *** 0.02 ns 0.45 ***
Mat. 0.078 0.055 0.083 0.083 0.084 0.084 0.015 0.082 0.084 0.083 2.8 (0.7) −0.22 * −0.05 ns 0.05 ns −0.02 ns



Forests 2019, 10, 589 8 of 17

Table 2. Cont.

WP Zone LTD
(µm)

LTL
(mm)

LWW
(mm)

LWP
(%)

LWD
(kg/m3)

ETD
(µm)

ETL
(mm)

EWW
(mm)

EWD
(kg/m3)

TD
(µm)

TL
(mm)

RW
(mm)

RA
(mm2)

RD
(kg/m3)

IDV
(kg/m3)

RW
(mm)

Juv. 0.081 0.074 0.043 0.048 0.047 0.081 0.074 0.018 0.048 0.08 0.074 3.9 (1.3) 0.29 *** −0.1 * −0.09 ns
Ave. 0.057 0.043 0.018 0.024 0.024 0.058 0.044 0.005 0.024 0.058 0.044 1.5 (0.9) 0.36 *** −0.14 *** −0.06 *
Mat. 0.083 0.081 0.021 0.028 0.028 0.076 0.082 0.007 0.028 0.079 0.082 2.1 (1.5) 0.84 *** −0.13 *** 0.44 ***

RA
(mm2)

Juv. 0.072 0.069 0.048 0.048 0.048 0.066 0.072 0.046 0.042 0.067 0.071 0.046 688 (442) −0.49 *** 0.50 ***
Ave. 0.056 0.055 0.023 0.024 0.024 0.049 0.055 0.023 0.024 0.051 0.055 0.023 905 (625) −0.21 *** 0.50***
Mat. 0.083 0.083 0.023 0.028 0.028 0.075 0.084 0.017 0.028 0.077 0.084 0.015 850 (592) −0.17 *** 0.48 ***

RD
(kg/m3)

Juv. 0.078 0.077 0.048 0.048 0.046 0.078 0.078 0.048 0.017 0.079 0.077 0.048 0.042 445 (42) −0.18 **
Ave. 0.057 0.058 0.024 0.024 0.022 0.057 0.058 0.024 0.014 0.057 0.059 0.024 0.024 453 (46) 0.15 ***
Mat. 0.083 0.083 0.028 0.028 0.025 0.083 0.084 0.028 0.015 0.083 0.084 0.028 0.028 451 (45) 0.22 ***

IDV
(kg/m3)

Juv. 0.075 0.072 0.048 0.048 0.04 0.069 0.075 0.048 0.045 0.071 0.075 0.048 0.042 0.048 509 (126)
Ave. 0.056 0.052 0.024 0.024 0.018 0.052 0.052 0.024 0.024 0.052 0.052 0.024 0.021 0.024 609 (124)
Mat. 0.083 0.083 0.027 0.027 0.021 0.08 0.084 0.025 0.028 0.08 0.084 0.025 0.025 0.027 584 (132)

WP (wood properties), Juv. (juvenile wood), Mat. (mature wood), Ave. (average pith-to-bark value), TL (tracheid length), TD (tracheid diameter), ETL (earlywood TL), ETD (earlywood
TD), LTL (latewood TL), LTD (latewood TD), RW (ring width), RA (ring area), EWW (earlywood width), LWW (latewood width), LWP (latewood proportion), RD (ring density), IDV
(intra-ring density variation), EWD (earlywood density), and LWD (latewood density). *, **, and ***, indicate significance at p < 0.05, p < 0.001, and p < 0.0001, respectively. ns indicates not
significant at p ≤ 0.05.
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Figure 1. Intra-ring and inter-ring radial variations of growth-related, density-related, and anatomical wood properties: (a) Ring width (RW), earlywood width 
(EWW), and latewood width (LWW). (b) Ring density (RD), earlywood density (EWD), and latewood density (LWD). (c) Average ring tracheid length (TL), 
earlywood tracheid length (ETL), and latewood tracheid length (LTL). (d) Average ring tracheid diameter (TD), earlywood tracheid diameter (ETD), and latewood 
tracheid diameter (LTD). Bars indicate standard errors of the mean. 
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(EWW), and latewood width (LWW). (b) Ring density (RD), earlywood density (EWD), and latewood density (LWD). (c) Average ring tracheid length (TL), earlywood
tracheid length (ETL), and latewood tracheid length (LTL). (d) Average ring tracheid diameter (TD), earlywood tracheid diameter (ETD), and latewood tracheid
diameter (LTD). Bars indicate standard errors of the mean.
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Figure 2. Inter-ring radial variations of latewood proportion (LWP). Bars indicate standard errors of 
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Figure 2. Inter-ring radial variations of latewood proportion (LWP). Bars indicate standard errors of
the mean.
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Figure 4. Inter-ring radial variations of the intra-ring density variation (IDV). Bars indicate standard 
errors of the mean. 
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Figure 4. Inter-ring radial variations of the intra-ring density variation (IDV). Bars indicate standard
errors of the mean.

Table 3. Quality of the representation, contribution to the axis, and correlation with the axis of the
radial growth-related properties, anatomical properties, and density-related properties for the whole
ring, earlywood zone, latewood zone, whole pith-to-bark radial section, juvenile wood zone, and
mature wood zone.

WP

Average Mature Juvenile

Rep. Cont.
Corr. Rep. Cont.

Corr. Rep. Cont.
Corr.

Dim1 Dim2 Dim1 Dim2 Dim1 Dim2

TL 0.92 27.75 - 0.88 0.93 30.29 - 0.96 0.37 10.83 - -
TD 0.59 10.00 0.77 - 0.58 10.75 0.74 - 0.50 11.13 0.70 -
ETL 0.91 27.72 - 0.88 0.92 29.98 - 0.95 0.30 8.79 - -
ETD 0.59 9.99 0.77 - 0.59 10.57 0.76 - 0.50 11.14 0.69 -
LTL 0.85 25.36 - 0.83 0.72 23.14 - 0.83 0.34 9.99 - -
LTD 0.32 5.47 - - 0.28 7.66 - - 0.33 7.24 - -
RW 0.81 13.72 0.89 - 0.84 15.03 0.91 - 0.80 17.89 0.88 -
RA 0.77 13.08 0.87 - 0.83 14.92 0.90 - 0.80 17.88 0.88 -
EWW 0.80 13.59 0.89 - 0.85 15.25 0.91 - 0.77 16.99 0.87 -
LWW 0.59 9.84 0.76 - 0.64 11.40 0.80 - 0.60 14.44 0.66 -
LWP 0.19 5.19 - - 0.13 2.32 - - 0.16 4.78 - -
RD 0.35 10.60 - - 0.29 6.90 - - 0.75 21.05 - −0.80
IDV 0.67 11.84 0.79 - 0.59 10.74 0.76 - 0.33 8.33 - -
EWD 0.41 11.25 - - 0.35 8.00 - - 0.68 18.93 - −0.74
LWD 0.24 4.60 - - 0.12 3.04 - - 0.72 20.59 - −0.82

WP (wood properties), TL (tracheid length), TD (tracheid diameter), ETL (earlywood TL), ETD (earlywood TD), LTL
(latewood TL), LTD (latewood TD), RW (ring width), RA (ring area), EWW (earlywood width), LWW (latewood
width), LWP (latewood proportion), RD (ring density), IDV (intra-ring density variation), EWD (earlywood density)
and LWD (latewood density), Rep. (Quality of the representation), Cont. (contribution to the axis), Corr. (correlation
with the axis), Dim1 (dimension 1), and Dim2 (dimension 2). Only correlations significant at p < 0.0001 are presented.

4. Discussion

4.1. Intra-Ring and Inter-Ring Variations of Selected Wood Properties

The large radial growth near the pith is typical of the first growing year, where the competition
between crowns is limited and tree growth is vigorous [18]. Larson, Kretschmann, Clark III, and
Isebrands [18] explained the reverse pattern of RA compared to RW by the fact that tree circumference
invariably grows with age. Therefore, a stable RW or slightly decreasing RW along the tree radius will
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invariably increase the RA and tree volume. Both RA and RW are an expression of tree growth [57].
However, RA provides information about the radial and tangential growth, and its radial pattern is not
as misleading as that of RW [25].

The radial patterns of RW, EWW, and LWW are similar to those reported by Zhang and Koubaa [32]
and Lenz et al. [15] for white spruce. The initial decrease of LWP followed by a continual increase was
expected because LWW decreased during the first five growths rings and the reverse was observed for
EWW. After the fifth growth ring, both LWW and EWW decreased toward the bark, with a sharper
decrease for EWW. This trend can be explained by the growth regulation of the active living crown. At a
given height, the distance from the active living crown increases with growth ring. As a consequence
of auxin influence, the earlywood proportion lowers, resulting in a higher LWP as the tree ages [18].

The radial patterns of TL [58] and TD [15] agree with previous reports on white spruce. Longer
latewood than earlywood tracheids [58], as well as smaller latewood than earlywood tracheids [18]
were found, consistent with previous reports. These intra-ring variations are related to the division of
labor, with earlywood tracheids devoted to conduction, and latewood tracheids serving for mechanical
strength [59,60].

4.2. Intra-Ring and Inter-Ring Pearson’s Correlations of Selected Wood Properties

TD changed at a slower rate than TL in the radial direction [11]. TD radial pattern also stabilized
much earlier and was very flat in the MW compared to that of TL [29]. Coupling these facts explains
why the correlations were generally weaker when involving mature TD. It was surprising to have
stronger correlations in JW than in MW, since JW is known to be the zone of rapid changes in wood
properties [39]. This result suggests that one must consider all pith to bark sections when establishing
phenotypic correlations. The positive relationship between TL and TD at the intra-ring level agrees
with findings at tree level [11]. Altogether, relationships among anatomical properties at the intra-ring
level in this study suggest that factors that favor increasing an anatomical dimension will also favor
increasing all dimensions of this category. This agrees with a related study that aimed to predict the
white spruce average ring TL and TD [29]. In that study, we found TD to be a significant predictor of
TL at the whole tree level. We also found single juvenile ring TL to be significant predictors of the
whole pith-to-bark TL at breast height. However, cambium ageing in the case of TL and the distance
from the apex in the case of TD remained the most important predictors [29]. Indeed, cambial initials
are the precursors of xylem cells, and their dimensions are known to increase with tree age, even at the
intra-ring level [18,34] and for long-living trees [61].

The correlations between RW and RA found in this study suggest that RA must be used as a
surrogate for RW only in the MW zone. Correlations between EWW and LWW suggest that EWW
can be used to predict LWW in the MW, but not in the JW, in agreement with a previous study [41].
The stronger correlations of EWW to both RW and RA compared to LWW agree with previous studies
in black spruce [37] and balsam fir (Abies balsamea) [41]. EWW was also better correlated to LWP than
RW, in agreement with a previous study in Douglas fir (Pseudotsuga menziesii) [51]. The LWP–RW
relationship agrees with previous studies in Norway spruce [7] and black spruce [37,62].

Our results suggest that a higher EWD coupled with a lower LWD will favor wood uniformity
in white spruce. This result is in agreement with findings on juvenile black spruce [62], but in
disagreement with Balsam fir results [41], where reducing both EWD and LWD was seen as the way
to improve wood uniformity. In the present study, and both Koga and Zhang [41] and Zhang [62]
studies, changing LWD seems to be the most efficient way to control wood uniformity. This property
is relevant for veneers and appearance products manufacturers [21]. The EWD–LWD correlations
found in this study agrees with the finding in the JW [37,41,63], but conflicts with correlations in
MW [37,41]. We found EWD to be more strongly correlated to RD than LWD, in agreement with
previous studies [37,41]. However, the strength of the EWD correlation with RD decreased with age
while that of LWD increased, demonstrating the growing impact of LWD as the tree ages [37].



Forests 2019, 10, 589 13 of 17

4.3. Inter-Ring Pearson’s Correlations of Selected Wood Properties

Longer and smaller tracheids are likely to be found in latewood, compared to earlywood. Therefore,
when considering that both TL and TD increase with intra-ring density variation, one can hypothesize
that the latewood section plays a major role in increasing intra-ring density variation compared
to the earlywood section. This hypothesis is supported by the LWP increasing trend from pith to
bark. When TL and TD correlations with RD were taken separately, they suggested that anatomical
properties were not sensitive to density variation after maturity. These relationships with tree ageing
contrast with the finding of Dutilleul, Herman, and Avella-Shaw [12], where TL-RD was uncorrelated
during early growth (6–21 years) but positively correlated thereafter (22–40 years). The decreasing
pattern among anatomical properties and radial growth-related properties concurs with previous
studies [11,12,51]. A contrasting result, an increase of TD with RW, was reported by Brändström [33]
in Norway spruce. Many studies found no correlations between TL and RW [7,16], and between TD
and RW [46]. Although an increased RW could be associated with reduced TL, the impact is limited
and without practical implications [45]. Tracheids are known to be longer [16] and smaller [18] in
latewood compared to earlywood. This general tendency explains why TL increased with LWP, while
TD decreased with LWP.

The decrease of RD with RW agrees with the RD–RW relationship previously found in Norway
spruce [12,55], black spruce [37,62,64], and white spruce [16,17]. However, it contrasts with the RD–RW
relationship described by Koga and Zhang [41] for balsam fir. RD is closely related to solid wood
physical and mechanical properties and to fiber product yield. Therefore, a large RD decrease will be
detrimental for these industries. The week negative correlation between RD and RW found in this
study concurs with previous studies [18,48], which suggest that the impact of the reduction in ring
density due to the RW increase is limited and without practical implications. Consequently, it is often
advised to put the emphasis on volume production in selection processes and thereafter, consider
anatomical and physical properties [17,27,52,65]. The increase of RD with LWP found in this study
agrees with the LWP–RD relationship previously reported [7,51,62,63]. LWP is a good predictor of
overall RD [37,41,42]. Its higher correlation with RD in MW compared to JW is likely due to the
growing influence of LWD as the tree ages. Intra-ring density variation slightly decreases with an
increase in LWP, contrasting with Koga and Zhang’s [41] results. Practically, this means that a higher
LWP favor wood homogeneity.

4.4. Principal Component Analysis of Selected Wood Properties

As expected, the PCA percentages found for the first two dimensions in all wood sections suggest
that the studied variables are not independent. Overall, the three clusters observed in this study are in
agreement with their radial pattern and their Pearson’s correlations. Based on this finding, one can
only measure the most relevant wood properties on these clusters (RW, TL, and RD) and use them
as proxies for the other variables in the cluster. The similarity of the whole pith-to-bark section and
the mature wood in the PCA could be explained by the fact that mature wood represented a larger
proportion of the whole pith-to-bark section than juvenile wood.

4.5. Practical Implications

The many Pearson’s correlations established could be used to select wood properties to be used
for prediction models, as we did in a related study [29]. However, when the assessment of many
wood properties is not mandatory, the PCA established that some properties could be used as proxies
for variables belonging to the same cluster. Our material was collected from the same managed
plantation, and all wood properties were measured at breast height only, using the Fiber Quality
Analyzer for anatomical properties and the X-ray densitometer for radial growth-related properties
and physical properties. Therefore, although the sampled trees represent a wide range of tree sizes,
and the results are indicative of the relationships one could find in such material, care must be taken
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when generalizing the results to white spruce plantations or natural forest. In addition, phenotypic
and genetic correlations may differ [66], so caution is advised when comparing the reported results
with those from genetically improved trees.

5. Conclusions

This study investigated the variation of white spruce wood properties, and established intra-ring
correlations among radial growth, anatomical dimensions, and physical wood properties. Variations
largely differed after maturity for radial growth-related properties and tracheid length, but were more
limited for physical properties and tracheid diameter. Except for a few cases, intra-ring values of
anatomical, radial growth-related, and physical properties were significantly and positively correlated.
Earlywood values were better indicators of ring values than latewood ones. One of the most striking
aspects when several wood properties are considered is to know the real impact of fast growth on
these properties, and therefore on wood quality. The negative correlation between ring width (RW)
and tracheid length (TL) mainly occurred in the juvenile wood (JW). Although significant, the negative
correlations between the RW and physical properties were weak. When anatomical properties and
physical properties were considered, the larger and significant impacts were found only in the JW,
while these correlations were generally not significant in the mature wood (MW). Based on the three
clusters established with the PCA, RW, TL, and ring density could be used as proxies for variables
belonging to the same cluster. Our samples came from plantation grown trees. Managing plantations
to suppress tree growth during JW formation, and enhancing radial growth when MW formation starts
will favor overall wood quality.
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