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Abstract: Research Highlights: In this study, we classified natural forest into four forest types using
time-series multi-source remotely sensed data through a proposed semi-supervised model developed
and validated for mapping forest types and assessing forest transition in Vietnam. Background
and Objectives: Data on current forest state and changes detection are always essential for forest
management and planning. There is, therefore, a need for improved tools to classify and evaluate
forest dynamics more accurately and effectively. Our objective is to develop such tools using a
semi-supervised model and landscape metrics to classify and map changes in natural forest types by
using multi-source remotely sensed data. Materials and Methods: A combination of Landsat data
with PALSAR and PALSAR-2 was used for forest classification through the proposed semi-supervised
model. This model turned a kernel least square into a self-learning algorithm, trained by a small
number of samples with given labels, and then used this classifier to assign labels to the unlabeled
data. The overall accuracy, kappa, user’s accuracy, and producer’s accuracy were used to evaluate
the classification accuracy by comparing the classified image with the results of ground truth
interpretation. Based on the classified images, forest transition was evaluated using certain landscape
metrics at the class and landscape levels. Results: The multi-source data approach achieved improved
discrimination of forest types compared to only using single data (optical or radar data). Good
classification accuracies were obtained, with kappas of 0.81, 0.76, and 0.74 for the years 2007, 2010,
and 2016, respectively. The analysis of landscape metrics indicated that there were different behaviors
in the four forest types, as well as provided much information about the trends in spatial pattern
changes. Conclusions: This study highlights the utilization of a semi-supervised model in forest
classification, and the analysis of forest transition using landscape metrics. However, future research
should include a comparison of different models to estimate the improvement of the proposed model.
Another important study that should be conducted is to test the proposed method on larger areas.

Keywords: forest types classification; forest transition; semi-supervised model; landscape metrics;
Landsat data; synthetic aperture radar

1. Introduction

Since the early 1990s, the tropical forest in several countries has been undergoing a transition
period from degradation to reforestation [1–3]. Forest transition is considered from the perspective
of forest area changes and the conversion from other land use/land cover types to forest. With the
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rapid development of remote sensing technology and the wide application of landscape ecology,
they supply effective tools to analyze spatial-temporal changes and related ecological processes.
Improved understanding of forest transition provides many benefits, such as global carbon balance
or land use and forest policy implementation [4,5]. Therefore, there is a need to further develop new
methods for forest type classification and forest transition assessment.

Recently, remote sensing combined with the conventional method to supply validation data has
been extensively used in forest inventory. The advantages of the remote sensing technique are cost-
and labor-saving as well as swift observation of large scale forest changes over the long term. However,
the classification accuracy associated with using remote sensing is affected by many factors, such as
the classification techniques, training samples, and the signal reflected from objects.

A natural forest [6] is a naturally regenerated forest comprising native species, where there are no
clear or clearly visible indications of human activities and the ecological processes are not significantly
disturbed. In this study, we classified natural forests based on the timber reserve of standing trees
into four main types: rich, medium, poor, and restoration forest. Although these four types differ in
species composition and timber reserves, we found that with only a single source of data (optical or
radar data) it is often difficult to discriminate between different kinds of natural forest types because
of the very similar information on canopy and forest structure captured by remotely sensed data [7].
This highlights the need for multi-source remote sensing data to extract more information of interest
regarding the objects for classification. By using multi-source data, the classification accuracy is
improved compared to single data source. This has been shown, for example, with a combination of
optical data and synthetic aperture radar (SAR, Congo Basin and Malawi city, Mzimba) [8,9]. The fusion
of different frequencies (L– and P–band) of SAR products has also received much attention in recent
years [10–12].

Another challenge is that sampling is restricted because of the complexity of ecosystems and
inaccessible regions [13]. In this study, we used semi-supervised classification to overcome the paucity
of ground truth samples. Semi-supervised classification focuses on enhancing supervised classification
by minimizing errors in the labeled examples, but it must also be compatible with the input distribution
of unlabeled instances [14]. While supervision often provides higher classification accuracy, it requires a
good dataset to ensure both the quantity and quality of training samples collected from the field survey.
The constraint of field data collection is that it is not always achievable, owing to limitations in finance,
terrain, or availability of the data source. To avoid this issue, semi-supervised classification aims at
solving the limited number of labeled samples and taking advantage of the abundant unlabeled samples.
Many semi-supervised classification algorithms such as expectation-maximization, co-training, and
self-training have been developed. The graph-based method has also attracted an increasing amount
of interest [15–18]. This method works by summarizing base model outputs in a group-object bipartite
graph and maximizing the consensus by promoting smoothness of label assignment over the graph
and consistency with the initial labeling. Recently, machine learning has received much attention and
has been applied to the semi-supervised learning problem. This technology has been successfully
developed for binary classification, such as in [19], where a Laplacian Twin Support Vector Machine
was used for semi-supervised classification that can exploit the geometry information of the marginal
distribution embedded in unlabeled data to construct a more reasonable classifier-semi-supervised
classification with graph convolutional networks [20] which scales linearly in the number of graph
edges and learns hidden layer representations that encode both the local graph structure and the
features of nodes.

For land use/land cover, semi-supervised classification has been successfully adopted in the
literature. For instance, in [21], semi-supervised logistic regression was applied. This is a specific
instance of the generalized maximum entropy that finds a probability distribution that minimizes a
divergence based on the entropy of the weights of classifiers. In [22], a semi-supervised clustering was
presented that is simultaneously optimized using a modern multi-objective optimization technique
based on the concepts of simulated annealing. In [23], the weight support vector machine was used
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to keep the training effort low with a manually-collected set of pixels of the class of interest and a
random sample of pixels. In [24], extended label propagation and rolling guidance filtering that uses
superpixel propagation were applied to assign the same labels to all pixels within the superpixels that
are generated by the image segmentation method.

In this paper, we present a self-learning approach for forest classification that can propagate labels
from labeled samples to unlabeled data to build a large volume of training data. This model does not
make any specific assumptions for the input data, but it does accept that its own predictions tend to
be correct [14]. Self-learning, also known as Yarowsky’s algorithm, is a rule-based semi-supervised
classification. The term “self-learning” is used because the algorithm uses its own prediction to teach
itself. Self-learning is very popular, with an initial classifier trained by a small number of training
data with given labels, before using this classifier to assign labels to the unlabeled sample. For each
unlabeled sample, confidence values are extracted from the probabilistic of learning models [14,25].
The samples that have been labeled with the most confident prediction are then selected to combine
with the training data and create a new training set. The classifier is then retrained on that new
training set and the procedure repeated. Self-learning has been applied in several text processing
tasks in the last few years. Recently, it has been applied with some developed supervisor classifiers to
image classification [23,26]. This study developed self-learning with a kernel least square classifier
for forest types classification. Least squares is a standard approach of statistical analysis and has
been well-known for a long time. It was developed by applying kernel functions in high dimensional
feature space to solve the problem of a large number of parameters [27]. Kernel functions are an
algorithm with the advantage of being able to flexibly transform an originally non-linear vector into a
linear version in feature space. Therefore, they are widely applied in solving classification problems
involving multiple features [28–30].

In this study, we also used time-series remotely sensed data for the evaluation of forest changes by
landscape ecology. Landscape ecology can be generally defined as the science and art of studying and
improving the relationship between spatial patterns and ecological processes on a multitude of scales
and organizational levels [31]. One fundamental aspect has been its explicit attention to the spatial
dimension of ecological processes [32]. Landscape metrics are one of the classical landscape ecological
tools for measurement, analysis, and interpretation of spatial patterns [33]. The contribution of remote
sensing to landscape planning and conservation is mainly in the inventory and determination of
objects of interest and in monitoring changes by time-series satellite data [34]. A basic concern in forest
management is spatial processes over time, such as deforestation, degradation, or restoration. The
analysis of landscape structure is a classic approach for the understanding of spatial processes using
various landscape metrics [32,35–37]. Several studies provide evidence of the value of remote sensing
and landscape metrics for forest management [38–42].

In summary, there are two main objectives in this study. The first objective is to assess the potential
of a semi-supervised model to classify natural forest types by using multi-source remote sensing data.
The second objective is to assess the process of forest transition from the perspective of landscape
ecology by using multi-temporal data.

2. Study Area

In Vietnam, the forest plays an important role in the socio-economic system in the mountainous
province, where local people have a low income and agroforestry-based livelihoods. Although
centralization of forest resource management began in Vietnam very early in the 1950s [4], the natural
forest experienced a rapid decrease over the long term [43], causing negative impacts to the environment,
such as loss of carbon stock, biodiversity degradation, and habitat fragmentation [44]. Since 2005,
however, Vietnam has been experiencing a positive period in the application of forestry policies [45],
which is contributing to development of the forested area. This dramatic forest transition has resulted
in changes to the biophysical, ecological process, as well as to the spatial landscape. However, there is
a lack of up-to-date information on forest changes in Vietnam in the period from 2005 to the present,
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particularly in central Vietnam where the socio-economic dynamics have recently been increasing.
To create a reliable forest management strategy, an improved understanding of forest changes is
essential. This can be achieved by spatial analysis through multi-temporal remote sensing images
processing, combined with landscape metrics assessment.

Thua Thien Hue province, located in central Vietnam (Figure 1d), has a surface area of 5054 km2

and the natural forest area accounts for approximately 40% of the total area. According to the General
Statistics Office (GSO) in Vietnam, the natural forest in this study area slightly decreased from 203,800 ha
in 2008 to 202,700 ha in 2010, with the principal causes of deforestation comprising the conversion
from forest to other land uses (e.g., hydropower, roads, cultivation) and illegal exploitation of forest
products. Conversely, from 2010, there was a significant extension of natural forest with the area
reaching 212,200 ha in 2016. These fluctuations have not only caused changes in the area, but also in
the forest landscape structure.

Figure 1. Cover of synthetic aperture radar (SAR) images and in-situ data in (a) 2007, (b) 2010, (c) 2016,
and (d) location map of the study area in Landsat data with pseudo colors (R: SWIR 2, G: near-infrared,
B: green).

We classified the natural forest into four types based on the specific condition of the study site as
well as circular number 34/2009/TT-BNNPTNT of June 10, 2009 [46] published by Vietnam Ministry
of Agriculture and Rural Development, on the criteria for forest identification and classification
in Vietnam:

1. Rich forests are forests with a timber reserve of standing trees of between 201 and 300 m3/hectare;
2. Average forests (or medium forests) are forests with a timber reserve of standing trees of between

101 and 200 m3/hectare;
3. Poor forests are forests with a reserve of standing trees of between 10 and 100 m3/hectare;
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4. Forests with no reserve (“Restoration forest” in the case of our study site) are forests with a
timber tree average diameter of less than 8 cm and a timber reserve of standing trees of less than
10 m3/hectare.

3. Data and Methods

3.1. Data

We used time-series SAR data and Landsat data acquired in 2007, 2010, and 2016 (Figure 1a,b,c).
Two scenes of SAR data were collected per year, which were then used to create a mosaic covering
77% of the study area. The SAR data differed in term of acquisition mode, which led to a difference in
the incidence angle and the size of the range and azimuth. Therefore, preprocessing was necessary to
synchronize these data. Two polarization HH (horizontal transmitting, horizontal receiving) and HV
(horizontal transmitting, vertical receiving) were used to process the data in this study. Landsat data
were also selected to combine with SAR data for forest type classification. Landsat data were provided
by the United States Geological Survey (USGS) with moderate resolution and wide spectral coverage.
The swath width of Landsat is 185 km; therefore, it could cover the full study area. The characteristics
of these data are described in Table 1.

Table 1. Characteristics of satellite image data used in this study.

Date Types Level
Incidence

Angle at Scene
Center

Resolution (m) Polarization/Band

2016/05/29 PALSAR2 1.1 38.99 3.12 × 4.55 HH + HV + VH + VV
2016/09/04 PALSAR2 1.1 40.5 3.4 × 6.6 HH + HV
2010/07/10 PALSAR 1.1 38.7 3.2 × 15 HH + HV
2010/07/27 PALSAR 1.1 38.7 3.2 × 15 HH + HV
2007/07/02 PALSAR 1.5 38.7 12.5 HH + HV
2007/07/19 PALSAR 1.5 38.7 12.5 HH + HV
2007/04/24 Landsat TM 1 - 30 5
2010/02/11 Landsat TM 1 - 30 5
2016/04/16 Landsat OLI 1 - 15, 30 11

A ground sample was also collected to support training data and accuracy assessment. These data
were provided by the Central Sub Forest Inventory and Planning Institute, Thua Thien Hue province,
Vietnam (Sub-FIPI). The data collection was evenly distributed over the entire study area at three
time periods—In 2007, 2010, and 2016. The samples were then divided into 80% training data and
20% validation data. In 2007, 13 measured plots were covered by the PALSAR scene, with each plot
measuring 1 km2 (1000 × 1000 m), while in 2010, there were 10 such plots. In each plot, 40 subplots
of 25 × 20 m were set to measure forest parameters and describe characteristics. However, not all
40 subplots were measured and selected for classification; only some met the conditions of being natural
forests with reserves, not separated by other obstacles such as rivers, streams and roads, and terrain.
In 2007, 170 subplots were selected for this study, while in 2010, 115 subplots were selected. In 2016,
106 plots were covered by PALSAR-2 data. Each rectangular plot measured 30 × 33 m with the longer
aspect running in an east-west direction and the shorter aspect running north-south. The distribution
of samples for the four forest types is described in Table 2.
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Table 2. Ground data for the four forest types in the study area in 2007, 2010, and 2016.

Types Number of Samples

2007 2010 2016

Rich forest 17 20 29
Medium forest 68 34 23

Poor forest 48 34 37
Restoration forest 37 27 17

Total 170 115 106

Apart from these samples, a larger amount of unlabeled data was supplied for forest types
classification. A total of 200 unlabeled samples was randomly created over the study area.
The proportion of unlabeled samples accounted for approximately 40–60% of the total samples
to ensure the accuracy of the classification results. In particular, the number of unlabeled samples was
equivalent to 55% for 2007, 64% for 2010, and 65% for 2016.

3.2. Methods

A flowchart of the methodology employed in this study is presented in Figure 2.

Figure 2. Flowchart of the methodology employed in this study.

3.2.1. Preprocessing

Landsat digital numbers (DNs) were converted to reflectance and atmospheric correction using
the fast line-of-sight atmospheric analysis of hypercubes (FLAASH) tool. The enhanced vegetation
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index (EVI) was then calculated using band near-infrared (0.7–1.1µm), red (0.6–0.7 µm), and blue
(0.45–0.52 µm) in accordance with the work of Liu and Huete (1997) [47]:

EVI = G×
ρnir − ρred

ρnir + (C1 × ρred −C2 × ρblue) + L
(1)

where L is a soil adjustment factor, and C1 and C2 are coefficients used to correct aerosol scattering in
the red band by using the blue band. In general, G = 2.5, C1 = 6.0, C2 = 7.5, and L = 1.

In this study, when observing the relationship between reflectance value and the cosine of the
solar incidence angle, there was a low correlation coefficient with the value of 0.0075 and 0.0197 for
TM and OLI data, respectively. This means that the terrain does not significantly affect this test site.
Therefore, topography correction is unnecessary in this case.

For radar data, dual-polarized images (HH, HV polarizations) were created in the single-look
complex (SLC) format. The preprocessing data were operated to convert the digital number value into
sigma naught (σo) values using the following equation:

σo = 10.log10(I2 + Q2) + CF − A (2)

where I and Q are the real and imaginary parts of the SLC product. A is a conversion factor equal to
32.0. The calibration factor CF is -83.

A refined Lee filter was used with a window size of 7× 7 to reduce the speckle noise. The topography
effect was eliminated using range—Doppler terrain correction with digital elevation model (DEM)
from the Shuttle Radar Topography Mission, and all of the product images were resampled to reach
15 m in pixel spacing.

The preprocessed SAR data were next transformed into covariance matrix elements, and then
eigenvalue and eigenvector polarimetric parameters. The cross-pol ratio of HH and HV was also
calculated and used as a variable for the classification model. In addition, SAR data and Landsat data
were fused and resampled to 15 m. The parameters set for polarimetric SAR (PolSAR) and Landsat
data comprise the input features for classification, as detailed in the next section.

To illustrate the polarimetric data, we adopted eigen decomposition of the 2 × 2 covariance matrix
for dual polarization data as defined by [48]:[

CHH,HH CHH,HV

CHV,HH CHV,HV

]
H/A/Alpha decomposition was used to decompose the backscatter value into three components:

entropy, anisotropy, and alpha (H/A/α). The H/A/α is a polarimetric parameters decomposition based
on eigenvalue and eigenvector that was introduced by Cloude and Pottier [49]. In this technique,
backscattering is decomposed into entropy (H), anisotropy (A), and alpha angle (α). Entropy is a
parameter describing randomness in target scattering, which is defined as:

H = −
(
λ1lnλ1 + λ2lnλ2

)
/ln2 with λi = λi/(λ1 + λ2) (3)

where HT is target entropy and λi (i = 1 to 2) are eigenvalues.
Entropy values vary from 0 for a single scattering mechanism to 1 for pure noise and random targets.
Mean alpha angle is defined as:

α = λ1α1 + λ2α2 (4)

The alpha angle varies between 0◦ for trihedral scattering from a planar surface to 90◦ for
dihedral scattering from a metallic surface. Another element is anisotropy (A), which is a parameter
complementary to entropy, which can be employed as a source of discrimination only when H >0.7
owing to the high effect of noise [50].
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3.2.2. Masking Undesirable Areas

In this study, we created a mask to remove undesirable areas before classifying natural forest
types. The classification method of the random forest algorithm was applied based on entropy,
alpha, and anisotropy parameters extracted from dual polarization data for images in 2010 and 2016.
For the image in 2007, the polarization data of HH, HV, and EVI from Landsat data were used for
classification. For other land use/land cover types, samples such as rivers, urban areas, and agricultural
land were collected through visual interpretation based on discrimination in color, geometric shapes,
and brightness. For the natural forest, 170 samples were collected for 2007 with a plot area of 25 × 40 m,
115 samples for 2010, and 106 samples for 2016 with the same area of 30 × 33 m. Polarimetric data
were derived from the image for each sample with a window size of 2 × 2 pixels, with a pixel size of
15 m. The classification results create natural forest maps for the study area.

Furthermore, in this study area, because the natural forest is mainly distributed on topography
at an elevation above 200 m, a digital elevation map (DEM) was applied to mask out low-altitude
forest areas while retaining forests with elevations above 200 m. This DEM map was downloaded
from NASA Shuttle Radar Topography Mission data. The masked forest images were then used for the
forest types classification.

3.2.3. Self-Learning with the Kernel Least Squares (SL-KLS) Classifier for Forest Types Classification

Kernel Least Squares (KLS)

In this study, the presence of a large number of parameters in the classification problem created
computational difficulties due to a high number of dimensions. To solve this problem, we used the KLS
technique in the R environment with RSSL package version 0.7. Here, KLS is described as a method
using least squares regression as a classification technique with numeric encoding of classes as targets.
A detailed description of KLS can be found in various studies [27,51], with the optimal parameter
vector identified by θ = [bα1α2 . . . αn]

T. The minimized vector has the form L(θ) = ‖Y − Pθ‖2,

with Y = [y1y2 . . . yn]
T and P =


1 k[x1, x2] · · · k[x1, xn]
...

...
...

...
1 k[xn, x1] · · · k[xn, xn]


A radial basis function was used with the form below:

k
(
xi, x j

)
= exp

−‖xi − x j‖
2

σ2

 (5)

where xi: are training data, xj is a feature vector, and σ is a free parameter. Kernel k has a value in the
range of 0 to 1. With αi as real numbers, the prediction function f (x) can be written as follows:

f (x) =
n∑

i=1

αik(xi, x) + b (6)

Self-learning with the Kernel Least Squares (SL-KLS) Classifier

In this study, a self-learning algorithm was used to turn the KLS classifier into a semi-supervised
model to solve the problem of the small amount of labeled data. Based on the training data, KLS
was applied to assign labels to unlabeled objects, which were then added to the set of labeled objects
for classification. There is a given set of labeled data (L) and a set of unlabeled data (U) (Figure 3).
By applying a KLS classifier, k number of labels are assigned to unlabeled data. The result of predicted
data U then joins with L to create a new training set for classifying the entire segmented images.
In this study, we classified the forest into four classes: rich forest, medium forest, poor forest, and



Forests 2019, 10, 673 9 of 25

restoration forest. The features of the four classes were extracted from Landsat bands reflectance, EVI,
HH, HV signals, covariance elements, and H/A/Alpha decomposition.

Figure 3. Flowchart of classification using the combination of self-learning with kernel least squares
classifier in this study.

The indicator of overall accuracy (OA), kappa, user’s accuracy, and producer’s accuracy were
used to evaluate classification accuracy by comparing the classified image with the results of ground
truth interpretation. The overall accuracy comprises the ratio of the sum of accuracy in an individual
class and the number of observed samples, with 100% as the perfect classification. Kappa, user’s,
and producer’s accuracy were proposed by Congalton and have been used widely to date. The function
of these indicators is clearly described in [52].

3.2.4. Forest Pattern Analysis Using Landscape Metrics

Extraction of Landscape Metrics

After the classification step, the forest was divided into four forest types: rich, medium, poor,
and restoration forest in the years 2007, 2010, and 2016. For each year, the classified images were then
clipped into 14 non-overlapping sub-landscapes of 2000 × 2000 m. This size was selected to ensure the
representativeness of the sample and to reduce computation time. To conduct spatial analysis of the
forest pattern, landscape metrics were computed at two levels, class and landscape, for all samples in
each year. We calculated 56 metrics at the class level and 63 metrics (Appendix A) at the landscape
level for each sub-landscape image using Fragstat version 4.2.1. With a large number of landscape
metrics, we then selected the appropriate metrics for analysis of the natural forest process for the study
area longitudinally.

Selection of a Set of Landscape Metrics

Principal components analysis was used to identify components and cluster them into various
groups. In these groups, the three indices of universality, consistency, and strength were then calculated
to select the group of metrics. This operation was conducted using PROC FACTOR in SAS.

Based on the assessment of metrics through the three indices of universality, consistency,
and strength, we created a list of selected metrics at the class and landscape levels. At the class
level, 11 clusters were created from 56 metrics. Through cluster analysis, two clusters (approximately
16 metrics) were selected with a high level of these three indices at a total percentage >90%, variation
explained >7%, and the average in-group correlation >0.8 (Appendix B). Similarly, two clusters
(approximately 20 metrics) were selected through analysis of the 10 clusters created from 63 metrics for
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the landscape level (Table 3). The other two metrics—total area (CA in hectares_ha) and percentage of
landscape (PLAND_%)—were also added for change analysis of the area in general.

Table 3. Set of high representative metrics for analyzing multi-temporal forest types structure at class
and landscape level in the study area.

No Metric Name Level Description

1

Aggregation/
Fragmentation

AI C Aggregation index
2 CLUMPY C Clumpiness index
3 COHESION C Patch cohesion
4 NLSI C Normalized landscape shape index
5 PLADJ C Proportion of like adjacencies
6 IJI L Interspersion/ juxtaposition index
7 MESH L Effective mesh size
8

Area and edge
metrics

AREA_AM L Area-weighted mean patch size
9 AREA_CV L Patch size coefficient of variation

10 GYRATE_AM L Area-weighted radius of gyration
11

Core area metrics

CAI_CV C Core area coefficient of variation
12 CORE_AM L Area-weighted mean core area
13 CORE_CV L Core area coefficient of variation
14 DCORE_AM L Area-weighted mean disjunct core area
15 DCORE_CV L Disjunct core area coefficient of variation
16

Shape metrics

CIRCLE_AM C Area-weighted related circumscribing circle
17 CIRCLE_CV C, L Circumscribing circle coefficient of variation
18 CIRCLE_MN C, L Mean related circumscribing circle
19 CONTIG_AM C Area-weighted contiguity index
20 CONTIG_MN C, L Mean contiguity index
21 CONTIG_CV L Contiguity index coefficient of variation
22 SHAPE_MN C, L Mean shape index
23 SHAPE_AM L Area-weighted mean shape index
24 SHAPE_CV L Shape index coefficient of variation
25 FRAC_AM L Area-weighted mean fractal dimension
26 FRAC_MN C, L Mean fractal dimension
27 FRAC_CV C, L Fractal dimension coefficient of variation
28 PARA_MN C, L Mean perimeter–area ratio
29 PARA_AM C Area-weighted mean perimeter–area index

Analysis of Forest Pattern Change

From the set of representative metrics in the study area, we selected various metrics that support
the analysis of spatial processes over time, containing aggregation, compactness, and fragmentation.
To evaluate the spatial structure change of forest types in the period 2007–2016, we selected 11 metrics
for class level and five metrics for landscape level.

The aggregation is expressed by increasing the size of patches from the combination of
small fragments. Therefore, this indicator relates to the recovery of forests from the previously
deforested area. The metrics are related to aggregation including the aggregation index (AI),
proportion of like adjacencies (PLADJ), and clumpiness index (CLUMPY) for the class level, and
Interspersion/juxtaposition index (IJI) for the landscape level. Another term that is strongly involved in
the aggregation is forest connectivity, which evidently increases the patch cohesion index (COHESION)
that is related to the physical connectedness of the corresponding patch type.

Forest fragmentation is an opposite process to aggregation and occurs when a large contiguous
forest is broken down into many small fragments, leading to loss of biodiversity and animal habitat
and degradation of forest health and its economic and environmental functions. This process is closely
related to the shrinkage ratio of area-weighted mean patch size (AREA_AM) and effective mesh size
(MESH) of the landscape over time.



Forests 2019, 10, 673 11 of 25

Compaction involves the formation of rounded patches in a circular shape that makes them more
compact [53]. The more closely a patch shape is to a circle, the more it exhibits compaction. While a
natural forest has a complex and irregular shape, basic geometry patch shapes show unnatural objects.
Therefore, analysis of forest compaction enables us to assess disturbance in the forest using various
shape metrics such as the shape index (SHAPE_MN, _AM) and circumscribing circle (CIRCLE_MN,
_AM) at the class level. At the landscape level, area-weighted radius of gyration (GYRATE, _AM) is
used to analyze compaction. Furthermore, GYRATE_AM also provides the overall characterization of
the level of connectivity or subdivision of the landscape [53].

4. Results

4.1. Forest Type Classification

For the result of masking undesirable areas, we compared the predicted products with the reference
data and evaluated them based on the index of overall accuracy (OA) for each year. The results
obtained high accuracies for the images in 2007, 2020 and 2016 with an OA of over 0.87. The 2010
predicted image was the best with an OA of 0.99, followed by 2016 with 0.92 and 2007 with 0.87.

The behavior survey of only Landsat or only PolSAR data on forest objects does not show
observable discrimination (Appendix C). For radar images, polarimetric parameters are not used
to classify forest objects due to the saturation of entropy throughout the study area. Alpha and
anisotropy display slight fluctuations on different forest objects, but they do not create good results in
the discrimination. Nor does relying on the polarization of HH and HV signals provide better results.
Therefore, with efforts to improve accuracy in forest classification, we have used combined data from
optical and SAR data to extract information for forest types classification.

Another difficulty encountered in the classification process was the limited number of samples
collected from the field, particularly in 2016 when only 106 samples were collected for the four
forest types over the entire study area. The small number of samples was inadequate to develop a
reliable classification algorithm based on the supervised method. To solve this problem, we used
the semi-supervised classification with the addition of information from an unlabeled data source.
However, to ensure the accuracy of the classification results, it was necessary to select an appropriate
ratio between the number of labelled and unlabeled samples. The higher the percentage of unlabeled
samples, the lower the accuracy [16]. To balance the number of unlabeled samples required and the
classification accuracy, 200 random samples were created in the study area to ensure the ratio was
approximately 60% for each year.

Overall, the classification accuracies were relatively high for 2007 with a kappa of 0.81 and OA of
0.86, respectively (Figure 4), while they were adequate for 2010 and 2016 with kappas of 0.76 and 0.74,
respectively. The accuracies are generally the best for the rich forest over the entire time, with a user’s
accuracy of 100% in the years 2007 and 2010, and of 85.71% in 2016. This is followed by medium forest
with over 75% in both user’s and producer’s accuracies, although sometimes it was misclassified as
rich or poor forest. On the other hand, the classification accuracies were the lowest in 2010 for poor
forest and in 2016 for restoration forest. The confusion matrix in 2010 and 2016 reveals a significant
confusion between the poor and restoration forests, and they therefore cause the values of OA and
kappa to be reduced at these times (Appendix D).
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Figure 4. Forest types classification accuracies in user, producer (%), overall accuracy (OA), and kappa
in the years 2007, 2010, and 2016.

4.2. Forest Pattern Analysis at the Class Level

Based on the metrics of class area (CA) and percentage of landscape (PLAND_%), the natural
forest of the study displayed a significant fluctuation within the nine years from 2007 to 2016 (Figure 5).

Figure 5. Variation of four forest types in the total class area of natural forest (CA_ha) and percentage
of landscape (PLAND_%) for each forest type from 2007 to 2016.

In the period 2007–2010, CA decreased quickly with an average loss of 1713 ha per year. However,
in the period 2010–2016, signs of recovery in CA appeared with an average gain of 144 ha each year.
From 2007 to 2016, rich, medium, and restoration forests mainly demonstrated an increase, as shown by
the gain of PLAND 1–8%, while PLAND showed reductions for poor forest of up to –15%. Furthermore,
to assess the spatial variation of forest patterns, a set of parameters, comprising 11 metrics at the class
level and 15 metrics at the landscape level, was selected based on evaluation of the indicators for
universality, strength, and consistency. The selection method was based on factor analysis, clustering,
and evaluation for the four different forest types at three different time points. Therefore, this set of
metrics ensures the appropriateness and representativeness of forest structure analysis over time for
this test site. The changes in each forest type, based on analyzing landscape metrics from 2007 to 2016,
are shown in Table 4.
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Table 4. Pattern metrics changes in the four forest types in class level metrics.

Types Metrics
% Change

2007–2010 2010–2016 2007–2016

Rich forest

SHAPE_MN −20 18 −5
CIRCLE_MN −28 27 −9
CIRCLE_AM −14 19 2
CIRCLE_CV 43 −17 18

CONTIG_MN −51 58 −22
CONTIG_AM −21 29 2

CLUMPY −12 11 −3
PLADJ −15 16 1

COHESION −12 12 1
AI −15 16 1

nLSI 67 −38 4

Medium forest

SHAPE_MN −16 5 −12
CIRCLE_MN −3 −3 −6
CIRCLE_AM 6 −9 −4
CIRCLE_CV −6 6 −1

CONTIG_MN −11 −1 −11
CONTIG_AM 9 −5 4

CLUMPY 7 1 9
PLADJ 7 −4 3

COHESION 5 −8 −3
AI 6 −2 4

nLSI −29 16 −17

Poor forest

SHAPE_MN −9 6 −4
CIRCLE_MN −19 18 −4
CIRCLE_AM −6 −6 −11
CIRCLE_CV 29 −24 −1

CONTIG_MN −32 29 −12
CONTIG_AM −8 −2 −10

CLUMPY −7 6 −1
PLADJ −6 −2 −8

COHESION −2 −6 −8
AI −7 −1 −7

nLSI 53 4 60

Restoration forest

SHAPE_MN −8 3 −6
CIRCLE_MN −14 9 −6
CIRCLE_AM 9 −7 2
CIRCLE_CV 25 −15 6

CONTIG_MN −24 24 −6
CONTIG_AM 8 −7 0

CLUMPY −3 −2 −4
PLADJ 6 −5 1

COHESION 5 −6 −1
AI 5 −4 1

nLSI −25 33 0

In general, from 2007 to 2016, the forest types exhibited a relatively stable pattern with no
significant changes in the group metrics of aggregation (AI, CLUMPY, PLADJ) but their pattern did
show significant changes in patch shape structure (SHAPE, CIRCLE, CONTIG). In particular, rich,
medium, and restoration forests had a low level of aggregation with the change percentage of AI
and PLADJ ranging from just +1 to +4%. Conversely, the poor forest demonstrated an increased
dispersion (AI −7%). However, this period was expressed by the moderate changes in shape with
more compactness (SHAPE −4% to −12%) and contiguity (CONTIG_AM up to 4% excluding the poor
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forest). The poor forest demonstrated the largest variation and had a trend of disaggregation (nLSI
60%) due to decreasing total area and percentage of the landscape. In summary, when evaluating
the subperiods between 2007–2010 and 2010–2016, the forest types reflect an extreme fluctuation and
totally different behavior.

4.2.1. Period 2007–2010

This period expressed a growth in the percentage of landscape occupied by medium and restoration
forests, as well as a decline in rich and poor forests. Therefore, they exhibit completely different
processes in spatial fluctuations (Table 4).

Rich forest displayed a moderate decrease (PLAND −4%) and strong disaggregation in this period.
The disaggregation is reflected in a decrease in AI −15%, CLUMPY −12%, and PLADJ −15%, and an
increase in nLSI (+67%). The patterns show more compactness and less physical connectivity, as a result
of reducing complexity in geometric shape (SHAPE_MN −20% and CIRCLE_AM −14%), decreasing
contiguity, and continuity (CONTIG_MN –51% and COHESION −12%). The related circumscribing
circle coefficient of variation (CIRCLE_CV) with a high value indicates the various changes in patch
shapes for rich forest.

Similar to rich forest, poor forest exhibited slightly increased dispersion corresponding to a
decrease in clumpiness and aggregation (–7% for both the change of CLUMPY and AI). This is due to
shrinkage in the percentage of landscape (PLAND −19%) and the disappearance of like adjacencies
in the same patch type (PLADJ −6%). It also coincides with the tendency to increase compactness
(SHAPE_MN −9%).

The medium and restoration forests had growth in terms of area (PLAND 3% and 20%, respectively)
and demonstrated a different process than rich and poor forest. The patterns display a moderate
aggregation, higher connectivity, and compactness. In addition, the growth in area, together with the
drop in contiguity index (CONTIG_MN -3% and −24% for the medium and restoration, respectively),
reflect the process of creating larger patches from the clumpiness of small adjacencies and the
distribution scattered in the landscape.

4.2.2. Period 2010–2016

In this period, rich forest performed more aggregation than other forest types. The appearance of
new patches (PLADJ +16%) resulted in an increase in spatial connectedness (CONTIG_MN +58%)
and improved the continuity of this class in the landscape (COHESION +12%). This also meant a
gain in the aggregation process (AI +16%, CLUMPY +11%, and nLSI –38%). The growth in PLAND
coincided with a higher area-weighted mean contiguity of each patch (CONTIG_AM +29%), indicating
the appearance of larger patch sizes.

Medium and poor forest demonstrated less area variation than in the previous period with a
slight increase. However, there was a negligible decrease in tendency of aggregation (AI –1 to –2%),
continuity (COHESION –6 to –8%), and connectedness (CONTIG_AM –2% to –5%) for both types.
In poor forest, there was a different tendency of the mean index and area-weighted mean index in
CIRCLE and CONTIG due to measuring the patch-centric and landscape-centric perspectives. The
increase in the related circumscribing circle shows a trend of elongation based on evaluating entire
patches (CIRCLE _MN +18%), but displays the opposite trend based on evaluating an arbitrary patch
selected randomly from the landscape (CIRCLE_AM –6%).

Similarly, CONTIG_MN demonstrated a significant increase (+24%) and performed a higher level
of spatial connectedness in poor forest. However, the drop in CONTIG_AM (–2%) together with the
expansion of area partly revealed the presence of new small patches.

An extreme decline in the restoration area was recorded during this period, resulting in increasing
dispersion (nLSI +33%), a higher level of complexity in shape structure (SHAPE_MN +3% and
CIRCLE_MN +9%), and less contiguity (CONTIG_AM –7%).
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4.3. Forest Pattern Analysis in Landscape Level

This period was marked by a rapid decrease in the total landscape area of natural forest, from
202,300 ha in 2007 to 197,200 ha in 2010, followed by a slight increase to 198,100 ha in 2016. This
caused a reduction in the percentage of the landscape and a sharp decline in patch size distribution
(AREA_AM –60%) (Table 5). In addition, there was a decrease in symmetry in the patch distribution in
the landscape (IJI –8%). The moderate decline in SHAPE (–20%) and GYRATE (–26%) demonstrated
more compactness and less complexity in spatial patterns. The continuity and connectedness of the
forest pattern also tended to decrease (CONTIG_MN –21%)). In general, the natural forest experiences
increased fragmentation over the entire landscape, which involved an increase in landscape area with
shrinkage of patch size and disproportionate distribution of patches.

Table 5. Pattern metrics changes in landscape level metrics.

Metrics
% Change

2007–2010 2010–2016 2007–2016

AREA_AM −49 −22 −60
GYRATE_AM −7 −20 −26
SHAPE_AM 7 −25 −20

CONTIG_MN −30 14 −21
IJI −5 −2 −8

5. Discussion

To assess the trend of natural forest changes in the study area, we compared the results with
those in global and tropical regions, as well as in Vietnam overall, in the same period. Keenan et al. [3]
reviewed the dynamics of global forest area between 1990 and 2015 based on statistics from the FAO
global forest resources assessment 2015. Worldwide, the natural forest area declined by 2% between
2005 and 2015, with the vast majority of the losses occurring in the tropics where the rate of loss fell
by 7.2 million ha.y−1. Compared to the trend of forest transition worldwide and in Vietnam overall,
the status of forest loss in the study area is similar in the period from 2007–2010. This status is confirmed
by the findings of Quy Van Khuc et al. [54] that degradation mainly occurred in natural forest at the
rate of 3–4%. Cochard’s [55] review of studies also demonstrated a slow increase in natural forest in
the period 2000–2013 in Thua Thien Hue province. From 2010–2016, the natural forest in the study
area demonstrated the opposite trend. While there was a significant decrease in the natural forest
worldwide and in the tropics generally, growth occurred in Vietnam and in the study area. Due to the
shortage of previous studies, it was only possible to compare the general trend of natural forests. It is
difficult to compare fluctuations in forest types of rich, medium, poor, and restoration types because
there are few documented records for the study area in particular, and Vietnam in general, particularly
in the period 2010–2016. Therefore, the findings of this study contribute to the understanding of the
transition of natural forest types in recent years, particularly in the ecological processes in terms of
spatial patterns that have still not received adequate attention.

Analysis of the reflectance behavior on some bands on Landsat and backscatter on SAR images
(Figure A1) demonstrates on histograms the overlap of all four forest types. In image data from 2007
and 2010, rich forest exhibited better distinctions than other forest types. Histogram analysis of forest
types in 2016 shows little separation, so its accuracy was lower than that of 2007 and 2010. This low
separation is due to the characteristic of natural forest, with its combination of various canopy stories
and species diversity. Sparser wood trees have more vines, which cover the whole canopy. Therefore,
it is difficult to detect the difference between forest types based on optical images. Despite having a
long wavelength that can supposedly penetrate the canopy and reach the trunk, L-band signals still
demonstrate a low difference between polarization signals. In this study, to enhance the differences
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between classes, a multivariate model was essential to observe objects under multidimensional space
and provide more information and attributes for objects.

The change of certain forest types between any two periods comprises the net effect [3] of
conversion from any one forest type to another or non-forested area and natural regeneration or
restoration. A conversion matrix was used to clearly illustrate transition areas between forest types in
this study area in the period 2007–2016 (Table 6). In this table, the cross cells demonstrated no change
values in terms of percentage of forest types’ area. The rows demonstrate an increase in the proportion
converted from other types. The columns demonstrate a decrease in the proportion converted into
other types. The net area change is the total effect of increase and decrease in the area of specific
forest types.

Table 6. Conversion matrix of forest types between 2007 and 2016 in percentage (%) and area (ha).

2007
2016

Rich Medium Poor Restoration Others Area Increase (ha)

Rich 19 16 13 1 1 24,569
Medium 36 29 30 13 4 52,749

Poor 21 23 26 29 3 34,970
Restoration 14 18 15 26 2 33,585

Others 11 14 15 31 90
Area decrease (ha) −24,046 −37,955 −66,409 −21,732

Net area change (ha) 522 14794 −29,437 11,853

From the conversion matrix of forest types between 2007 and 2016 in this study area, we considered
three main findings. First, the net trend of natural forest comprised a small loss of area, but this was due
to two opposite trends of an area increase in one place and a decrease elsewhere. Second, the levels of
forest restoration and deforestation were nearly equal (total of 145,873 ha and 150,143 ha, respectively)
and occurred simultaneously in the study area during this period. Third, there was a strong internal
transition between forest types and an external transition between them and other land use/land
cover types. Medium forest had the highest gain area, followed by restoration forest, at 14,795 ha and
11,852 ha, respectively. Poor forest showed a sharp loss, while rich forest had an adequate increase.
When considering the percentage of conversion area, the most dramatic transformation was in rich
forest, which changed to medium forest at a rate of 36%, but was compensated by medium (16%) and
poor forests (13%). However, when considering the changing area, medium and poor forest had areas
of both high increase and decrease. Changes from natural forest to other types were the strongest in
restoration forest at 31% of its area. Restoration forest is the most vulnerable forest type because it is
often distributed in areas that are easily accessible and affected by human and agricultural activities.

The spatial changes in natural forest types presented in Figure 6 showed two change directions:
increase and decrease. The area loss of forest types occurred throughout the study area, but it was
mainly distributed near water bodies such as rivers and streams. The local population distribution
is often concentrated in the downstream of rivers where conditions for agriculture are developing.
Therefore, natural forests near rivers are easily deforested and degraded due to human activity. In the
other direction, the expansion of rich forest created larger fragments and scattered distribution in the
study area, resulting in increasing compactness, less connectivity, and higher isolation. The expansion
in other types occurred more evenly and therefore with greater connectivity.
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Figure 6. Changes in (a) rich forest, (b) medium forest, (c) poor forest, and (d) restoration forest between
2007 and 2016.

During this period, there were many factors affecting forest dynamics. The policies of prohibiting
logging in natural forests and enhancing forest protection and restoration are considered to be the
correct policies in terms of reducing natural forest degradation, which was implemented by the
Vietnamese government since the early 1990s [56]. However, illegal logging still occurred [57] due
to the increasing demand for wood from population pressure, which is the main reason for the
continued decline of natural forests in the period 2005–2010. There were also many other causes,
such as poverty, forest resources, population density, agricultural production, and province-level
governance [54]. In parallel with the logging ban policy in natural forest, Vietnam has successfully
socialized forestry organization, calling for public participation in afforestation and forest protection,
and resulting in reduced deforestation and degradation and improved long-term income for people in
rural mountainous areas. The speed of loss of natural forests has also decreased slightly and there
have been signs of increase from 2010 to the present day. In 2016, Vietnam began to introduce bans on
natural forest wood exploitation into the law on forest protection and development, which is the most
powerful law in forestry. Simultaneously, it maximized the closure of natural forests, did not convert
natural forests to other purposes, and did not convert poor natural forests to industrial crops. This is
the driving force behind reductions in degradation and prevention of illegal logging, and allows us to
predict recovery and increase in the quality of natural forests in the future.

Generally, this study provides information on the dynamics and spatial processes of natural forest
change in a given study site between 2007 and 2016. The result obtained demonstrates the general
trend of forest types conversion and provides useful information for sustainable forest planning.

6. Conclusions

There is an essential requirement for forest management and protection to classify natural forests
and assess their fluctuations over time. However, classifying the natural forest types in tropical areas
using remote sensing images is challenging because of the very similar information captured by
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remotely sensed data as well as the constraint of samples data. Furthermore, there is a lack of research
assessing forest transition in the natural forest from the perspective of landscape ecology, which can be
used for forest structure management, and to quantitatively characterize the spatial patterns of forest
landscapes. In this study, we addressed these issues by applying semi-supervised classification for
data integration of optical and SAR data.

The combination of Landsat and PolSAR data resulted in improved discrimination of forest types.
The using of multi-source remotely sensed data can provide more information about the object, as well
mitigate the disadvantages of Landsat images (cloud, lower spatial resolution), and limited information
regarding objects in PALSAR/PALSAR-2 image (only two polarization HH and HV).

In this study, we assessed the potential of a proposed semi-supervised model developed and
validated for mapping forest types and assessed the process of forest transition in a tropical natural
forest in Vietnam. The model produced high accuracies in the classified images in 2007, 2010, and 2016
with over 0.74 for kappa, and over 0.8 for OA. Additionally, landscape metrics were used to evaluate
the forest changes based on the spatial processes, such as aggregation, fragmentation, and compaction.
At the class level, the poor forest demonstrated the largest variation with more dispersed growth
patterns, while other types had a low level of aggregation. At the landscape level, the natural forest
experiences increased fragmentation, which involved an increase in landscape area with shrinkage of
patch size and disproportionate distribution of patches.

We recommend that future research include comparison of different models to estimate the
improvement resulting from the proposed model. Another important study that should be conducted
is testing of the proposed methods on larger areas.
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Appendix A.

Table A1. List of 56 metrics in class level (C) and 63 metrics in landscape level (L).

Number Variable Description

1 CA C Total class area
2 CLUMPY C Clumpiness index
3 CPLAND C Core area percentage of landscape
4 NLSI C Normalized landscape shape index
5 AI C, L Aggregation index
6 AREA_AM C, L Area-weighted mean patch size
7 AREA_CV C, L Patch size coefficient of variation
8 AREA_MN C, L Mean patch size
9 CAI_AM C, L Area-weighted mean core area index

10 CAI_CV C, L Core area coefficient of variation
11 CAI_MN C, L Mean core area index
12 CIRCLE_AM C, L Area-weighted mean circumscribing circle
13 CIRCLE_CV C, L Circumscribing circle coefficient of variation
14 CIRCLE_MN C, L Mean coefficient of variation
15 COHESION C, L Patch cohesion
16 CONNECT C, L Connectance index
17 CONTIG_AM C, L Area-weighted contiguity index
18 CONTIG_CV C, L Contiguity index coefficient of variation
19 CONTIG_MN C, L Mean coefficient of variation
20 CORE_AM C, L Area-weighted mean core area
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Table A1. Cont.

Number Variable Description

21 CORE_CV C, L Core area coefficient of variation
22 CORE_MN C, L Mean core area
23 DCAD C, L Disjunct core area density
24 DCORE_AM C, L Area-weighted mean disjunct core area
25 DCORE_CV C, L Disjunct core area coefficient of variation
26 DCORE_MN C, L Mean disjunct core area
27 DIVISION C, L Division index
28 ED C, L Edge density
29 ENN_AM C, L Area-weighted mean nearest neighbor distance

30 ENN_CV C, L Nearest neighbor distance coefficient of
variation

31 ENN_MN C, L Mean nearest neighbor distance
32 FRAC_AM C, L Area-weighted mean fractal dimension
33 FRAC_CV C, L Fractal dimension coefficient of variation
34 FRAC_MN C, L Mean fractal dimension
35 GYRATE_AM C, L Mean radius of gyration
36 GYRATE_CV C, L Radius of gyration coefficient of variation
37 GYRATE_MN C, L Mean radius of gyration
38 IJI C, L Interspersion/juxtaposition index
39 LPI C, L Largest patch index
40 LSI C, L Landscape shape index
41 MESH C, L Mesh index
42 NDCA C, L Number of disjunct core areas
43 NP C, L Number of patches
44 PAFRAC C, L Perimeter–area fractal dimension
45 PARA_AM C, L Area-weighted mean perimeter–area ratio
46 PARA_CV C, L Perimeter–area ratio coefficient of variation
47 PARA_MN C, L Mean perimeter-area ratio
48 PD C, L Patch density
49 PLADJ C, L Proportion of like adjacencies
50 PLAND C, L Proportion of landscape
51 SHAPE_AM C, L Area-weighted mean shape index
52 SHAPE_CV C, L Shape index coefficient of variation
53 SHAPE_MN C, L Mean shape index
54 SPLIT C, L Splitting index
55 TCA C, L Total core area
56 TE C, L Total edge
57 CONTAG L Contagion
58 MSIDI L Modified Simpson’s diversity index
59 MSIEI L Modified Simpson’s evenness index
60 PR L Patch richness
61 PRD L Patch richness density
62 RPR L Relative patch richness
63 SHDI L Shannon’s diversity index
64 SHEI L Shannon’s evenness index
65 SIDI L Simpson’s patch density
66 SIEI L Simpson’s patch evenness
67 TA L Total landscape area
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Appendix B.

Table A2. Universality, strength, and consistency at class level.

Cluster Members % Total Eigenvalue % Variation
Explained

Average in Group
Correlation

1 9 96 4.01 7.29 0.81
2 4 83 2.13 3.87 0.97
3 6 93 2.35 4.27 0.71
4 8 100 4.05 7.36 0.92
5 4 75 1.88 3.43 0.85
6 3 92 1.00 1.83 0.61
7 2 83 0.71 1.29 0.65
8 7 89 2.62 4.77 0.68
9 3 100 1.22 2.22 0.74

10 4 83 1.69 3.07 0.76
11 5 85 2.15 3.91 0.78

Table A3. Universality, strength, and consistency at the landscape level.

Cluster Members % Total Eigenvalue % Variation
Explained

Average in Group
Correlation

1 10 100 5.27 8.50 0.85
2 7 100 4.17 6.72 0.96
3 10 100 4.85 7.83 0.78
4 8 100 3.55 5.73 0.72
5 8 100 4.03 6.49 0.81
6 5 100 2.13 3.43 0.69
7 2 100 1.22 1.98 0.99
8 2 100 1.24 2.00 1.00
9 8 100 3.64 5.87 0.73

10 2 100 1.18 1.91 0.95
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Appendix C.

Figure A1. Distribution and density of some parameters (HH and HV signals in decibels for SAR data,
and red, near-infrared, and shortwave infrared 1 in reflectance for Landsat data) in four forest types in
three years 2007 (a,b), 2010 (c,d), and 2016 (e,f).
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Appendix D.

Table A4. Confusion matrix of classification in 2007.

Prediction Medium Rich Poor Restoration User’s

Medium 15 1 4 0 75.00
Rich 0 5 0 0 100.00
Poor 0 0 14 0 100.00

Restoration 0 1 1 9 81.82
Producer’s 100.00 71.43 73.68 100.00

Overall accuracy 0.86
Kappa 0.81

Table A5. Confusion matrix of classification in 2010.

Prediction Medium Rich Poor Restoration User’s

Medium 7 0 0 0 100.00
Rich 0 4 0 0 100.00
Poor 2 0 4 1 57.14

Restoration 0 0 1 4 80.00
Producer’s 77.78 100.00 80.00 80.00

Overall accuracy 0.82
Kappa 0.76

Table A6. Confusion matrix of classification in 2016.

Prediction Medium Rich Poor Restoration User’s

Medium 7 0 2 1 70.00
Rich 0 12 2 0 85.71
Poor 0 0 12 1 92.31

Restoration 1 2 0 5 62.50
Producer’s 87.50 85.71 75.00 71.43

Overall accuracy 0.81
Kappa 0.74
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