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Abstract: RING-H2 genes, the most abundant RING-type genes encoding putative ubiquitin ligase
E3, are involved in diverse biological processes. Whether RING-H2 genes are related to wood
formation remains to be identified in trees. In this study, we identified 288 RING-H2 genes in Populus
trichocarpa, and found that the segmental and tandem duplication events contributed to RING-H2
gene expansion. Microarray dataset (from Affymetrix poplar genome arrays) showed that 64 of
the 249 RING-H2 genes were highly or preferentially expressed in stem xylem. According to the
AspWood RNAseq dataset, the transcription levels of genes PtrRHH?21, 33, 48, 69, 88, 93, 94, 121,
141, 166, 175, 192, 208, 214, 250 and 257 were significantly increased in the xylem ranging from the
expanding xylem to the lignifying xylem, suggesting their association with wood formation. Promoter
analyses revealed that most of the preferentially xylem-expressed RING-H2 genes possessed SNBE,
TERE, M46RE, AC and SMRE cis-elements, which are involved in secondary cell wall biosynthesis
and programmed cell death. Based on the promoter GUS-based analysis result, PtrRHH94 was
indicated to be associated with wood formation in transgenic P. trichocarpa. Taken together, dozens of
Populus RING-H2 gene candidates associated with wood formation have been identified based on
multiple gene expression analyses.

Keywords: Populus trichocarpa; RING-H2 gene; wood formation; gene expression; secondary cell wall
(SCW); programmed cell death (PCD)

1. Introduction

Wood is used industrially as timber for construction, pulp for paper manufacturing and a
renewable source for bioenergy. The extensive use of wood demands greater understanding of the
molecular basis of wood formation to improve artificial tree breeding. Wood formation is a complex
developmental process undergoing cambial cell proliferation, xylem cell specification and expansion,
secondary cell wall (SCW) biosynthesis and programmed cell death (PCD) [1,2]. Great progress
has been made in the understanding of vascular cambium activity, xylem cell differentiation and
expansion [3-5]. Most biosynthetic enzymes for wood components (cellulose, xylan and lignin) have
been identified, and a number of them have been functionally characterized [5-11]. In recent decades,
some vital transcription factors (TFs) have been identified to function in SCW biosynthesis, and several
regulating networks have been constructed in these TFs [12-14]. After deposition of secondary walls,
fibers and vessels (angiosperm) undergo PCD in wood, and some genes (for instance, encoding
proteases, nucleases and autophage-related proteins) have displayed the potential roles in regulating
PCD during wood formation [15,16]. Although the delightful understandings of molecular basis
on wood formation have been acquired, the potential genes and proteins involved in this complex
developmental process remain to be identified.

The RING genes are a super gene family, whose proteins have the characteristic
of the conserved cysteines and histidines (Cys—X2-Cys-X9-39-Cys—X1-3-His—X2-3—-Cys/His—
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X2-Cys—X4-48—Cys—X2—Cys, where X can be substituted by any amino acid), binding two zinc
ions in a cross-brace structure [17,18]. Two canonical RING domain proteins, RING-HC (C3HC4)
and RING-H2 (C3H2C3), were distinguished from the existence of either a Cys or His residue at the
metal ligand position five [19-21] and the modified RING types, such as RING-v, RING-D, RING-G
or RING-5/T, also have been identified in several species. The majority of Arabidopsis canonical and
modified RING domain proteins were active in vitro ubiquitination assays, and they were proposed as
ubiquitin ligase E3, participating in the ubiquitin proteasome system [22]. During wood formation,
fibers and vessels undergo PCD and the rupture of tonoplasts leads to the release of digestive enzymes,
degrading cell components in fibers and vessels [2,16]. The suppression of proteasomes has perturbed
PCD of vessels in poplar and Arabidopsis [23,24]. Whether the RING genes are involved in wood
formation remains to be identified in trees.

The RING-H2 gene family, the most abundant RING-type, possesses 241 members in Arabidopsis,
281 in rice and 367 in apple [25-27], suggesting they are involved in a variety of biological processes.
A set of RING-H2 proteins have been reported to play a role in stress-related responses such as
water, salt and pathogen stresses [28-35]. For instance, overexpression of OsSDIR1, a RING-H2 gene,
significantly improved drought tolerance in transgenic rice [30]. Several RING-H2 genes participated in
hormone biosynthesis and signal transduction, as well as photomorphogenesis with light signaling and
responses [36-42]. In addition, the RING proteins also participated in metabolism, nodule formation
and gravitropism [43]. For instance, the wavy growth 3, a RING-H2 protein, controlled the gravitropic
response in Arabidopsis roots [44]. Arabidopsis DELLA proteins, negatively regulating ethylene signal
transduction, were ubiquitinated for degradation by the RING protein complex [45]. Recently, PtaRHEL,
a RING-H2 protein in Populus tremula X Populus alba, was reported to be involved in secondary phloem
fiber formation [46—48]. To date, except for PtaRHE1, little is known about the function of RING-H2
genes in wood formation in trees.

The objective of this study was to identify RING-H2 gene candidates related to wood formation
in poplar. We identified 288 RING-H2 genes in Populus trichocarpa (Torr. & Gray), and found 64 of
the RING-H2 genes were highly or preferentially expressed in stem xylem. Most of the preferentially
xylem-expressed RING-H2 genes possessed SNBE, TERE, M46RE, AC and SMRE cis-elements involved
in SCW and PCD. The PtrRHH94 promoter GUS-based analysis determined its association with wood
formation in transgenic P. trichocarpa.

2. Materials and Methods

2.1. Plant Materials and Growth Conditions

Wild-type P. trichocarpa (Nisqually-1) and transgenic plants were planted in the greenhouse of
Northeast Forestry University under the conditions with a long day (16 h light/8 h dark) at 23-25 °C.
The three-month-old young trees were used for analyzing the gene expression levels in different tissues
and organs. Samples, including phloem, xylem, root, apical bud, young leaf, mature leaf and petiole,
were collected as described in a previous study [49].

2.2. Identification of the RING-H2 Genes in P. trichocarpa

We exploited two search methods to identify the RING gene family in the genome of P. trichocarpa
as follows: (1) Pfam RING domain (PF00097) was utilized as queries to search against the whole genome
with the BLAST tools [50]; (2) amino acid sequences of 469 retrieved RING proteins in Arabidopsis were
employed as queries to search one after another against the whole Populus genome using the Phytozome
database. The protein sequences, genomic sequences and coding sequences (CDS) of P. trichocarpa RING
genes were downloaded from the Phytozome v12.1 (https://phytozome.jgi.doe.gov/pz/portal.html).
All objective proteins were analyzed manually using the SMART database to identify the presence of
the RING domain [51].
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2.3. Phylogenetic and Chromosomal Duplication Analyses

Multiple sequence alignments of the full-length RING proteins and RING domains were performed
using the ClustalX (Version 2.1) program with default parameters [52]. The unrooted phylogenetic trees
were constructed with MEGA (Version 6.0) using the neighbor-joining (NJ) method with 1000 bootstrap
replicates [53].

Chromosomal location data of 282 RING-H2 genes were obtained from the Phytozome v12.1.
Except for six RING-H2 genes in unattributed scaffolds, the rest were marked on the chromosomes using
MapChart software [54]. The Populus genome has undergone at least three large-scaled genome-wide
duplications [55]. The tandem gene pairs and segmental duplication genes were labeled according to
the previously reported standard with a distance less than 9 kb on duplication blocks and high protein
sequence similarities (>80%) [56], and connected by colored solid line. Gene structures including the
exon and intron organization were generated with Gene Structure Display Server [57]. Conserved
motifs of the RING-H2 proteins were analyzed using the SMART tools [51].

2.4. Microarray and AspWood RNAseq Analyses

Genome-wide Affymetrix expression data were normalized by General Comprehensive Operating
System (GCOS) method, with a target (TGT) value of 500, which were received at the NetAffx Analysis
Center (http://www.affymetrix.com/) under the accession number GSE13990 (expression data for
various Populus balsamifera tissues). The probe sets of RING-H2 genes were obtained by an online Probe
Matchtool at the NetAffx Analysis Center (https://www.affymetrix.com/site/login). The expression
values of 249 RING-H2 genes with more than one probe sets were averaged and several genes that had
the same probe set were considered to have the same transcriptional levels. Heatmaps of RING-H2 genes
in microarray data were analyzed using Heat Map Illustrator (HemlI) with the default settings [58].
In addition, 64 RING-H2 genes highly or preferentially expressed in xylem were analyzed on
transcriptional levels using AspWood RNAseq dataset (http://aspwood.popgenie.org/aspwood-v3.0).

2.5. gqRT-PCR Analysis

Total RNAs were extracted from all samples using pBIOZOL (Bio-Flux, Beijing, China) in
accordance with the manufacturer’s protocols. The prepared RNAs were reversely transcribed to
c¢DNAs using the PrimeScript RT Reagent Kit with gDNA Eraser (TaKaRa, Dalian, China). The qRT-PCR
experiments were performed with SYBR Green (TaKaRa, Dalian, China) in an ABI 7500 system.
The reaction mixture (20 uL) consisted of 10 pL of 2 X TB Green Premix Ex Taq II, 0.4 puL of ROX
Reference Dye II, 7 uL of distilled H,O, 1 puL of cDNA template and 0.8 pL of each gene-specific primer.
The PCR parameters were as follows: 95 °C for 30 s; 40 cycles of 95 °C for 5s, 58 °C for 15 s, 72 °C for
30s. PtrActin2 was used as the internal control and the comparative cycle threshold (Ct, 272¢t) method
was used to calculate gene expression levels. Three technical replicates were done for each sample.

2.6. Identification of Xylem Development-Related Cis-Elements in the Promoters

The 3 kb promoter sequences (upstream DNA sequence of the 5'-UTR) of the RING-H2 genes were
searched for xylem development-related cis-elements by manual analysis. A total of 11 cis-elements
were identified including SNBE (WNNYBTNNNNNNNAMGNHW), TERE (CTTNAAAGCNA),
M46RE (RKTWGGTR), ACI (ACCTACC), ACII (ACCAACC), ACIII (ACCTAAC), SMRE1 (ACCAAAT),
SMRE2 (ACCAACT), SMRE3 (ACCAAAC), SMRE5 (ACCTAAT) and SMRE6 (ACCTACT). The detailed
positions and patterns of these cis-elements in the promoter regions were shown with the help of the
DOG 1.0 software [59].

2.7. Plasmid Construction and Agrobacterium-Mediated Transformation

The P. trichocarpa genomic DNA was extracted from the leaves using a plant genomic DNA
extraction kit (Bioteke, Beijing, China). With this genomic DNA as template, approximately 3 kb
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promoter regions of PtrRHH94 were amplified by PCR, and inserted into the vector pPENTR/D-TOPO
(Invitrogen, Carlsbad, CA, USA). After DNA sequencing, the PtrRHH94 promoter fragments from the
entry clone were constructed into the binary vector pPGWB3 by the Gateway LR Clonase II enzyme
(Invitrogen, Carlsbad, CA, USA). The construct was transformed into Agrobacterium tumefaciens strain
GV3101 and subsequently transformed into P. trichocarpa as described in our previous study [60].

2.8. Histochemical GUS Assay

The three-month-old young trees in the greenhouse and three-week-old tissue-cultured plantlets
of PtrRHH94pro::GUS transgenic lines were used for GUS staining analysis, respectively. Various
tissues were incubated overnight in a GUS staining solution (0.1 M NazPO; buffer, pH 7.0, 10 mM
EDTA, 2 mM K3[Fe(CN)g], 2 mM Ky4[Fe(CN)g], 1 mM X-Gluc, and 0.1% (v/v) Triton X-100) at 37 °C [61].
After the GUS signal was developed, the chlorophylls of each sample were eliminated by 70% (v/v)
ethanol. Sections of samples including internodes (INs), petioles, main veins and roots were examined
and photographed under a BX43 stereomicroscope (Olympus, Tokyo, Japan).

3. Results

3.1. Identification of the RING-H2 Genes in P. trichocarpa

In order to identify the RING-H2 gene family of P. trichocarpa, we search the P. trichocarpa genome
with two methods: (1) the Pfam RING domain (PF00097) was used as a query to search against the
whole genome with the BLAST tool; (2) the amino acid sequences of 469 retrieved Arabidopsis RING
proteins were employed as queries to search one after another against the whole genome. All candidate
proteins were analyzed manually using the SMART database to identify the presence of RING domains.
As a result, a total of 540 RING genes were identified in the P. trichocarpa genome.

Based on the characteristic of the RING-type ubiquitin ligases [27], the 540 P. trichocarpa RING
proteins were grouped into three types: RING-H2 (288), RING-HC (183) and RING-v (69), which were
suggested by evolutionary relationships of the RING domains from the 540 RING proteins (Figure 1,
Table S1). Of the three types, RING-H2 was the biggest family, in which the number of members was
close to that of Arabidopsis and rice (241 and 281) [26,27]. All identified 288 RING-H2 genes were
named as PtrRHH1 to PtrRHH288 according to the successive order of genes on the chromosomes
(Figure S1). The length of proteins encoded by these RING-H2 genes varied from 81 to 1363 amino
acids, the average of which was 339 amino acids (Table S2).

3.2. Gene Duplications, Gene Structures and Conserved Motifs in Populus RING-H2 Genes

Of the 288 RING-H2 genes, 282 were mapped by MapChart software onto the 19 chromosomes
(Chrs), and the other six were localized in the scaffolds with the unattributed genomic sequence
(Figure 2, Table S2). The distribution of the RING-H2 genes on the Chrs was considerable and
uneven. Chr I harbored 39 RING-H2 genes, while Chr IV contained the minimum number (five genes).
Gene expansion in a family depends on genome-wide duplications accompanied by segmental and
tandem duplication events. The RING-H2 gene family contained 103 duplicate gene pairs, in which
some reciprocal duplicate gene groups were found, such as group PtrRHH54/55/56/58, PtrRHH65/66/67/68
and PtrRHH221/223/224/227 (Figure 2), suggesting that these genes might derive from a common
ancestor. In addition, five groups of RING-H2 genes (PtrRHH88/89, PtrRHH134/135/136, PtrRHH177/178,
PtrRHH187/188/189/190 and PtrRHH263/264) were identified as tandem duplicates in P. trichocarpa.
Approximately 18% (61/288) of the RING-H2 genes were located outside of the duplicated blocks.
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Figure 1. Phylogenetic relationship of the RING domains from 540 RING proteins in Populus trichocarpa.
A phylogenic tree was constructed by MEGA 6.06 using the neighbor-joining method with 1000 bootstrap
replicates. The red, blue and green represented RING-H2, RING-HC and RINGyv, respectively.
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Figure 2. Gene duplications of 282 RING-H2 genes on 19 chromosomes of P. trichocarpa. The tandem
gene pairs were labeled by small grey boxes. The segmental duplication genes were connected by color
solid lines. The scale displayed a 5.0 Mb chromosome distance.
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We compared the exon/intron organization of each RING-H2 gene, accompanied by their
phylogenetic tree (Figure S2). Most RING-H2 genes in the same group possessed similar gene
structure either in intron number or in exon length, whereas the members in different groups displayed
diverse structural features. The conserved motif analysis showed that all the 288 RING-H2 members
possessed one RING finger motif, and approximately half of the members contained one to six
transmembrane domains (Figure S2). Except these, few specific motifs could be found in the RING-H2
gene family and only WD40, RWD, VWA, CUE, CLH and ZnF UBP domains existed in 18 RING-H2
members (Figure S2), suggesting functional divergence of the RING-H2 genes in P. trichocarpa.

3.3. Identification of the RING-H2 Genes Highly or Preferentially Expressed in Populus Xylem

To seek for the Populus RING-H2 genes associated with wood formation, we analyzed expression
patterns of the RING-H2 genes in various tissues and organs (including mature leaf, female catkin,
young leaf, male catkin, xylem and root) using Affymetrix poplar genome arrays [62]. Except for 39
RING-H2 genes without the relevant probe sets in the microarray dataset, we obtained the expression
profiles of 249 RING-H2 genes and some RING-H2 genes displayed tissue-specific expression patterns
(Figure 3a, Table S3). Of the 249 RING-H2 genes, 64 were highly or preferentially expressed in xylem
and a majority of the RING-H2 genes showed low expression levels in mature leaf.

To further identify whether these 64 RING-H2 genes are related to wood formation,
their transcription levels were analyzed using AspWood RNAseq dataset, which showed 28,294 gene
expression profiles across the developing phloem, vascular cambium and wood forming tissues
(expanding xylem cells, SCW forming xylem and maturing xylem) [63]. As illustrated in Figure 3b,
the transcription levels of PtrRHH?21, 33, 48, 69, 88, 93, 94, 121, 141, 166, 175, 192, 208, 214, 250 and
257 were significantly increased in the xylem ranging from the expanding xylem (T1-08 to 10) to the
lignifying xylem (T1-12 to ~), suggesting their association with wood formation. The transcription
levels of PtrRHH67, 148, 150, 158, 219 and 259 were gradually increased in the PCD undergoing xylem
(T1-15 to 24), suggesting possible involvement of these RING-H2 genes in PCD of wood formation.

Based on high and preferential expression abundances from the above microarray data and AspWood
RNAseq dataset, the 30 RING-H2 genes associated with wood formation were examined by gRT-PCR on
transcription levels in phloem, xylem, root, apical bud, young leaf, mature leaf and petiole (Figure 4).
The results showed that most RING-H2 genes tested, such as PtrRHH33, 94 and 175, were more
preferentially expressed in xylem, which was consistent with the microarray data (Table S4). Whereas,
the expression levels of several RING-H2 genes (for instance, PtrRHH11 PtrRHH93 and PtrRHH144) were
not higher in xylem than in other tissues, possibly owing to deviation from the microarray data.

3.4. Analysis of Xylem Development-Related Cis-Elements in the Promoter Regions of Highly or Preferentially
Xylem-Expressed RING-H2 Genes

In previous studies, SNBE, TERE, M46RE, AC and SMRE, etc. had been identified as crucial
cis-elements that are involved in Arabidopsis SCW biosynthesis and modification, as well as PCD [64—68].
To further evaluate their associations with wood formation, these cis-elements in the promoter regions
of the highly or preferentially xylem-expressed RING-H2 genes were analyzed (Figure 5, Table S5).
The results showed that the SNBE cis-element was found in the promoter regions of 23 RING-H2 genes.
In addition, 12 RING-H2 genes possessed the SMRE3 cis-element in their promoter regions, and the TERE
cis-element existed in six genes. The other xylem development-related cis-elements, such as M46RE, ACI,
ACII, ACIII, SMRE1, SMRE2, SMRE5 and SMRE6, were also found in some RING-H2 genes. Considering
that a transcriptional network for Arabidopsis xylem might incompletely be the same as poplar, we further
analyzed the number of xylem development-related cis-elements in the promoters of 20 RING-H2 genes
that were not expressed in xylem from the above microarray data. As a result, the 20 RING-H2 genes
contained no or few xylem development-related cis-elements (Table S6). Taken together, our findings
indicated that these highly or preferentially xylem-expressed RING-H2 genes possess multiple cis-elements
related to xylem development, suggesting their participation in wood formation.
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Figure 3. The expression profiles of poplar RING-H2 genes in different tissues and during wood
formation. (a) Expressions of RING-H2 genes were extracted from Affymetrix expression data
(GSE13990) at the NetAffx Analysis Center (http://www.affymetrix.com). ML, mature leaf; FC,
female catkin; YL, young leaf; MC, male catkin; X, xylem; R, root. (b) Sixty-four RING-H2 genes
highly or preferentially expressed in xylem were analyzed using AspWood RNAseq dataset (http:
//[aspwood.popgenie.org/aspwood-v3.0) during wood formation. Different color lines represent

different genes.
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Figure 4. Transcription levels of 30 RING-H2 genes in various tissues of three-month-old young trees

using qRT-PCR analysis. The PtrActin 2 gene was used as control. Ph, phloem; X, xylem; R, root; AB,

apical bud; YL, young leaf; ML, mature leaf; Pe, petiole.

3.5. Promoter: GUS-Based Analysis of PtrRHH94 Related to Wood Formation in Transgenic Populus

The activity of the PtrRHH94 promoter in various tissues was determined to reveal whether it
associates with wood formation. The PtrRHH94 promoter region was isolated, and a PtrRHH94pro::GUS
binary expression vector was constructed. After transformation into wild-type P. trichocarpa,
we generated PtrRHH94pro::GUS transgenic young trees that expressed a GUS gene driven by
PtrRHH94 promoter. A GUS staining signal was not observed in the two-week-old transgenic plantlets

on woody plant media (WPM), whereas stem IN5 segments with secondary xylem presented GUS
activity in one-month-old transgenic plantlets (Figure 6a—d). For three-month-old transgenic young
trees grown in the greenhouse, a GUS staining signal was not detected in the apical bud, mature leaf

and petiole, but in the main leaf vein (Figure 6e-h). However, strong a GUS staining signal was visible

in the xylem of stem and root (Figure 6i-1), which are mainly secondary vascular tissues (woods) of

the trees.
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Figure 5. Xylem development-related cis-elements in the promoter regions of the RING-H2 genes
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highly or preferentially expressed in xylem. Different cis-elements were exhibited by different shapes
with different colors.

We further examined GUS staining signals in IN1, IN3, IN5, IN7 and IN9 segments of the
developing stem from three-month-old PtrRHH94pro::GUS transgenic trees. There was no GUS
staining signals in the stem IN1 and IN3 segments, which are predominantly developing primary
vascular tissues (Figure 7a,e). A developing early stem provides a developmental gradient of the
lignification from apex to below. Apparently, gradual increase of GLIS staining signals emerged in the
stem IN5, IN7 and IN9 segments tested (Figure 7b—d), suggesting that PtrRHH94 is associated with
stem lignification. Specific to cell types of the lignified stem, strong GUS staining was shown in the
secondary xylem fibers and phloem fibers (Figure 7f-h), implying that PtrRHH94 may be involved in
stem fiber maturity during wood formation.
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Figure 6. Histochemical GUS assays in various tissues of PtrRHH94pro::GUS transgenic P. trichocarpa.
(a,b) two-week-old transgenic plantlets on woody plant media (WPM) and its young leaf. (c,d) stem
internodes (INs) two and five of one-month-old transgenic plantlets on WPM media. (e,f,j,1) apical bud,
mature leaf, stem IN6 and root of three-month-old transgenic young trees in the greenhouse. (g-i k)
cross-sections of main vein and petiole of the eighth leaf, stem IN6 and root from three-month-old
transgenic young trees. CO, collenchymas; VPh, vein of phloem; Ph, phloem; CZ, cambial zone; SX,
secondary xylem.

IN3 IN5 IN7 IN9
(a)

Figure 7. Histochemical GUS assay in the developing stems of PtrRHH94pro::GUS transgenic young
trees. (a—d) Cross-sections of the internodes (INs) 3, 5, 7 and 9; (e-h) the magnified cross-sections of the
INs 3, 5,7 and 9. PX, primary xylem; PPF, primary phloem fiber; CZ, cambial zone; SX, secondary xylem.

4. Discussion

The RING-H2 genes, which generally encode E3 ligases, have been reported to participate in
various biological processes, such as stress responses, hormone biosynthesis, signal transduction and
photomorphogenesis in herbaceous plants [33,69,70]. However, the study to investigate whether the
RING genes are associated with wood formation is lacking. In the present study, we have performed
an overall identification of the RING-H2 genes in P. trichocarpa, which includes identification of gene
family, analysis of gene expansion, determination of the xylem-preferentially expressed RING-H2
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genes, analyses of the xylem development-related cis-elements and assay of PtrRHH94 promoter
activity in the developing woods. Consequently, more than a dozen of PtrRHHs (PtrRHH33, 48, 94,
175 and 208, etc.) were proposed to be involved in wood formation in P. trichocarpa.

A previous study reported 91 RING-HC genes in P. trichocarpa [71]. In this study, we have
identified 540 RING genes in P. trichocarpa, which were classified into three types, namely RING-H2
(288), RING-HC (183) and RING-v (69). As the largest type of the RING gene superfamily, the number
of P. trichocarpa RING-H2 genes is close to that of Arabidopsis (241) and rice (281) and less than that of
apple (367) [25-27]. The P. trichocarpa genome has undergone at least three large-scaled genome-wide
duplications [55], which greatly contributes to gene expansion in the family. The RING-H2 gene
family in the P. trichocarpa genome contained 103 duplicate gene pairs (Figure 2), supporting this idea.
Nevertheless, P. trichocarpa RING-H2 gene family members do not meet our expectations, because the
RING-H2 domain was lost in these duplicated genes with partial and incomplete coding sequences.
The phylogenetic tree displayed no obvious large clade of P. trichocarpa RING-H2 genes (Figure 1),
possibly because of profound changes in these RING protein sequences during evolution, except for
the RING-H2 domain.

In P. trichocarpa, the RING-H2 genes have diversified expression patterns, which were suggested
by microarray data (Figure 3a). The objective of this study was to identify the RING-H2 genes
that are related to wood formation. A total of 64 RING-H2 genes have shown high or preferential
expression levels in xylem of P. trichocarpa, and most of them have been determined using qRT-PCR
analysis (Figures 3a and 4). Among them, more than 10 RING-H2 genes have displayed positive
correlation of their transcript levels with the development of wood forming tissues, including the
expanding, lignifying and PCD undergoing xylem based on AspWood RNAseq dataset (Figure 3b).
Taken together, these expression data indicate that the RING-H2 genes should function in or associate
with wood formation.

For this objective, we have filtered the SCW-related cis-elements in the promoter regions of
the highly or preferentially xylem-expressed RING-H2 genes, and 23 of the 30 tested have the
SNBE cis-elements (Figure 5). During SCW biosynthesis, NAC secondary wall master switches bind
several cis-elements [64,65], such as SNBE and TERE, to activate their downstream gene transcription.
Arabidopsis At5¢55970 (encoding a RING-H2 protein) was regulated by Zinnia ZCP4, a cysteine
protease functioning in PCD during tracheary element (TE) differentiation and proposed as a TE
differentiation-related gene with the TERE-like cis-elements [65]. PtrRHH33 (Potr1.001G371200), as the
homolog of At5¢55970 in P. trichocarpa, contained three TERE-like cis-elements, implying its role
in PCD of wood formation. MYB secondary wall mast switches recognize M46RE, SMRE and AC
cis-elements, and activate the downstream genes that are associated with SCW biosynthesis and
PCD [2,65,67,68]. Of the 30 poplar RING-H2 genes tested, 13 possessed the M46RE cis-element in their
promoter regions, and PtrRHH250 (Potri.017G012600) had the largest number of the cis-element (five;
Figure 5). The RING-H2 gene (At2¢20650), the homolog of PtrRHH250, is a direct target of MYB46
in Arabidopsis [67]. The coordinated activation of SCW and PCD genes during wood formation is
mediated by a transcription network encompassing secondary wall NAC and MYB master switches
and their downstream TFs [14,72].

In this study, we have evaluated the association of PtrRHH94 with wood formation based
on its promoter activity in PtrRHH94pro::GUS transgenic plants. The PtrRHH94 promoter activity
predominantly appears in the lignified stem and root, and its intensity holds pace with the increase of
stem lignification (Figures 6 and 7). The PtrRHH94 intensely expresses in fibers, mainly wood fibers,
which has been suggested by GUS staining signals. Thus, it is assumed that PtrRHH94 may function in
the fibers during wood formation. Interestingly, the PtrRHH94 promoter contains two M46REs and no
other SCW-related cis-elements (Figure 5), implying that transcription of PtrRHH94 should be directly
regulated by MYB46, not by secondary wall NACs (the first-level master switches). In transcriptional
regulatory network controlling SCW biosynthesis, MYB46, a direct target of secondary wall NACs,
acts as a second-level master switch capable of directly activating a suite of downstream TFs and SCW
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biosynthetic genes [67,68]. Considering that PtrRHH94 encodes a putative ubiquitin ligase E3, it is
reasonable that PtrRHH94 might play crucial role in PCD of wood formation, but we do not rule out
the possibility of its participation in SCW formation.

5. Conclusions

We have identified 288 RING-H2 genes in P. trichocarpa. Based on multiple gene expression
analyses including a microarray dataset, AspWood RNAseq dataset and qRT-PCR data, a dozen of
RING-H2 gene candidates are proposed to play a role in wood formation. The SCW- and/or PCD-related
cis-elements, mainly SNBE, TERE, M46RE, AC and SMRE, exist in the promoter regions of these
RING-H2 genes. Promoter GUS activities in transgenic Populus have demonstrated the association of
PtrRHH94 with wood formation. In addition, PtrRHH 33, 48, 94, 121, 175, 192, 208 and 250 are the most
attentive RING-H2 genes related to wood formation. Next, each of these expected RING-H2 genes will
be knocked out via CRISPR/Cas9-mediated gene editing technique, which will reveal its molecular
mechanism in wood formation.
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