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Abstract: Water vapor sorption is the most fundamental aspect of wood-moisture relations. It is directly
or indirectly related to the physical properties of wood and the onset of wood-damage mechanisms.
While sorption properties of cellulosic materials have been utilized since antiquity, the time-dependent
transition from one moisture content to another (i.e., sorption kinetics) has received much less attention.
In this critical review, we present the state-of-the-art of water vapor sorption kinetics in wood. We first
examine different experimental methods that have been used to measure sorption kinetics, from the
quartz helix vacuum balance beginning in earnest in the 1930s, to automated sorption balances used
recently. We then give an overview of experimental observations and describe the physical phenomena
that occur during the sorption process, which potentially govern the following kinetics: boundary layer
mass transfer resistance, heat of sorption, cell wall diffusion, swelling, and polymer mobility. Finally,
we evaluate theoretical models that have been proposed for describing sorption kinetics, considering
both experimental data and the physical processes described in the previous section. It is clear that
no previously developed model can phenomenologically describe the sorption process. Instead, new
models are needed. We conclude that the development of new models will require more than simple
gravimetric measurements. In addition to mass changes, complementary techniques are needed to
probe other important physical quantities on multiple length scales.

Keywords: water vapor sorption; sorption kinetics; automated sorption balance; dynamic vapor
sorption (DVS); wood-moisture relations; diffusion; polymer mobility; thermodynamics; Fick’s law

1. Introduction

As a building material, wood is unique in that its strength and stiffness, and even its dimensions,
are strongly dependent on moisture. This stems from the fact that wood is a natural material, and its cell
walls consist primarily of hygroscopic polymers. While wood has been successfully used as a building
material for millennia, understanding and tailoring its interactions with water are necessary for its
utilization in high performance buildings being constructed today. For example, small dimensional
changes caused by moisture are of little consequence in single story dwellings but have a much larger
effect on high-rise mass timber buildings which have been constructed in the past decade [1–3].

While properly designing with wood requires a full understanding of many different aspects of
the effects of moisture on wood’s properties, the most fundamental process upon which the other
properties depend is water vapor sorption. Water exists in the following different states (or phases):
solid (ice), liquid water, and water vapor. Water within a hygroscopic material such as wood can also
exist in the sorbed state, where water molecules are energetically bound to wood polymers through
hydrogen bonds or other intermolecular attractions. Throughout this paper, we use the term “moisture”
to describe water in any of these states. The “moisture content” of the wood is calculated as the ratio
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of the total mass of moisture in the wood to the mass of the dry wood; it is not a weight fraction of
moisture, and therefore moisture contents of over 100% are possible. “Sorption” refers to the change
in phase of a water molecule from the vapor phase to a condensed phase in wood (or vice versa).
The sorption process involves the creation or disruption of strong intermolecular attractions between
the water molecule and wood polymer(s) or other water molecule(s). Given this definition of sorption,
“absorption” is the process by which water molecules move from the vapor phase to water associated
with the wood polymers and “desorption” is the process by which absorbed moisture moves into
the vapor phase. It should be noted that in much of the wood science literature, the absorption of
water vapor is often referred to as “adsorption”. However, given the IUPAC (International Union
of Pure and Applied Chemistry) definitions for these terms, the sorption process in wood, whereby
water molecules are taken up in the bulk of the cell walls and in the capillary structure, most closely
resembles absorption, whereas, adsorption strictly refers to processes at an interface [4].

The “water vapor sorption isotherm” (or often simply “sorption isotherm” in this context) is the
locus of points that describe the relationship between the relative humidity (RH) of the environment
and the total amount of moisture in wood at equilibrium at constant temperature. For sorption
isotherms, “equilibrium” can be thought of in reference to kinetic theory, where rates of absorption
and desorption are identical and there is no net change in mass. This is not a true thermodynamic
equilibrium because sorption isotherms are hysteretic, that is, at a given constant RH and temperature,
the equilibrium moisture content (EMC) upon desorption from a higher moisture content is greater
than the EMC upon absorption from a lower moisture content [5,6]. While the sorption isotherm
describes the “equilibrium” relationship between wood moisture content and the environment, many
different states are possible under nonequilibrium conditions during the absorption and desorption
processes [7]. “Sorption kinetics” describes the change in moisture content over time in the approach
to equilibrium. An example of absorption kinetics is shown in Figure 1, the mass (and thus moisture
content) of a specimen is measured at a series of points in time before and after a change in RH of the
surrounding atmosphere until equilibrium is reached.
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Figure 1. Example of sorption kinetic data for loblolly pine (Pinus taeda L.) after a change in relative
humidity (RH) from 70% to 80% (data from [8]). The rectangle in the left figure is expanded in the right
figure, revealing small but nonzero changes in moisture content that occur over long periods of time
until equilibrium is achieved, which is defined as a mass change on the scale of the inherent mass
stability of the instrument (less than 2 µg over 24 h).
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A convenient way of expressing the rate of water vapor sorption is plotting the fraction of the total
change in moisture content, E(t), as a function of time or the square root of time. E(t) is calculated as:

E(t) =
M(t) −M0

M∞ −M0
(1)

where, M(t) (g g−1) is the moisture content at time t (s), M0 (g g−1) is the initial moisture content at t = 0,
and M∞ (g g−1) is the moisture content at equilibrium. The correct values of E(t), therefore, require
that equilibrium has in fact been reached. An example is shown in Figure 2.
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Figure 2. Fractional change in moisture content, E(t), calculated from the absorption data for loblolly
pine (Pinus taeda L.) from Figure 1. The rectangle in the left figure is expanded in the right figure.

This paper provides a state-of-the-art review of water vapor sorption kinetics in wood, highlights
gaps in our understanding, and proposes directions for future research. The review is especially
pertinent given the increasing number of papers on sorption kinetics that have arisen from the adoption
of automated sorption balances worldwide. Furthermore, the seminal books on wood–moisture
relations [9–11] address only Fickian diffusion models, which we later show are contradicted by
experimental data. We begin this article with an overview of the different types of experimental
methods and their advantages and limitations. Next, we review the major experimental observations
on sorption kinetics in wood. Then, we discuss the physical phenomena responsible for limiting the
rates of water vapor absorption and desorption. Finally, we evaluate existing models and highlight the
complexities that need to be addressed in future research to improve the understanding of sorption
kinetics in wood and lay the foundation for fruitful modeling.

2. Overview of Experimental Methods for Determining Sorption Kinetics

Sorption phenomena have been studied since antiquity [12]. Today, sorption measurements are
most commonly done gravimetrically, as has been done for more than 500 years [12]. Gravimetric
methods for water vapor sorption in wood have been broadly reviewed previously [4]. This article
focuses on methods most relevant to sorption kinetics. While studies focusing on the equilibrium
moisture content do not necessarily report kinetic data, the more informative kinetic measurements
have monitored the full sorption process to equilibrium.

The experimental methods described in the following sections are classified primarily by the way
the atmosphere is controlled, although the methods may also differ in other regards. For each type of
experimental apparatus, we summarize advantages and limitations, such as weighing method and
accuracy, whether weighing is manual or automated, whether it is done in situ or ex situ, the number
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of specimens that can be monitored concurrently, the method of RH control, and the stability of RH
and temperature. Methods that report measured changes in specimen temperature during absorption
or desorption are noted.

2.1. Conditioning Chamber

A variety of conditioning chambers have been used for the measurement of water vapor sorption
in wood. This technique typically involves multiple specimens placed inside a chamber with a large
volume of circulated air. Humidity is typically regulated by use of aqueous solutions, by mixing dry
and vapor-saturated air, or by controlling the dew point temperature independently of the specimen
temperature. Conditioning chambers have been used for the measurement of sorption isotherms since
1920 [13,14]. A number of studies have described conditioning chambers that allowed for in situ weighing
of specimens and various additional features, but did not focus on sorption kinetics, e.g., [15–18].

Conventional conditioning chambers were used in many studies during the 1960s and 70s for
investigating absorption or desorption rates. In many cases, specimens were weighed manually ex situ
with an electronic balance [19]. In some cases, however, the chambers were configured for in situ weighing,
e.g., [20–22]. Air velocity, which affects the external mass transfer coefficient, was reported to be between
1.9 m/s [22] and 3.4 m/s [21]. A limitation of the method is appreciable humidity oscillation. In one study
where the chamber was modified for improved stability, the variation was reported as ±1% RH [19].

Several unconventional chambers designed for sorption kinetic measurements were reported
in the 1990s. Two of these were based on RH control using saturated salt solutions. They could
accommodate a large number of specimens that were manually weighed in situ with an electronic
balance to ±1 mg [23,24]. The air in the chamber was circulated with fans. Temperature and RH
stability were dependent on the chamber being located in a room maintained at constant temperature.

Two other chambers described in the 1990s featured automated in situ weighing of specimens [24,25].
The chamber described by Time [24] regulated the RH by flowing air through a saturation column at a
certain temperature. The vapor-saturated air was then heated and directed into the chamber at a velocity
of 0.1–0.3 m/s, where a single specimen was continuously weighed with a load cell. The temperature and
RH stability were reportedly poor. The two-pressure apparatus described by Håkansson [25] regulated
the RH by keeping the specimen chamber at atmospheric pressure while bleeding in vapor-saturated air
from a separate chamber held at higher pressure and temperature. The air entering the chamber passed
through a nozzle directed towards the specimen. This flow was diverted during weighing. Specimens
were suspended from a thin wire connected to an electronic balance (0.1 mg precision) located above the
chamber. The mass drift was estimated to be about 3 mg over a month, corresponding to a change of
0.04% moisture content.

Eitelberger and Svensson [26] developed a method whereby a thin transverse section of wood
was mounted to the top of a stainless-steel cup, which was then placed inside a conditioning chamber.
A data logger was placed inside the cup to measure temperature and RH to track transfer through the
specimen. Periodic weighing within the conditioning chamber was done to track moisture uptake.
The external mass transfer coefficient was measured in a separate experiment. Limitations of the
method were the long time needed to establish a new RH level (1000–1500 s) and significant RH
oscillations in the chamber (maximally ±1%).

2.2. Desiccator with Aqueous Solution

This technique uses a sealed desiccator (or jar) containing an aqueous solution that regulates the
RH, with the specimen(s) held above the solution. The solution may be sulfuric acid or a saturated salt
solution. The desiccator is placed in a temperature-controlled environment. This method was used as
early as 1930 [27,28] with aqueous saturated salt solutions. The method typically involves removing
specimens from the desiccator for periodic weighing. Several groups, however, have developed
techniques for in situ weighing, e.g., [29–31].
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A multitude of studies have used this method for measurements of equilibrium moisture content
in wood, and it has been standardized for building materials in general (ASTM C1498-04a (2016),
ISO 12571:2013). A wide range of RH levels can be attained using saturated salt solutions [32],
and multiple specimens can be run simultaneously. However, considering the difficulty involved in
separating the diffusion of water vapor through still air from the sorption process within the wood cell
walls, this method has rarely been used for measurements of sorption kinetics. Another limitation is
that the method is quite labor intensive.

2.3. Quartz Helix Vacuum Balance

Early vacuum balances were assembled with custom glassware connected to a vacuum pump [33].
Specimens were suspended from quartz helical springs inside glass tubes, and the mass was indicated
by elongation of the spring. The apparatus was evacuated, the specimen dry mass was determined,
the specimens were closed off from the vacuum pump, and water vapor was then introduced at a
given pressure.

Pidgeon and Maass [34,35] were the first to publish sorption measurements for wood using an
evacuated glass system. Three specimens could be weighed in situ concurrently. Vapor pressure was
controlled by chilling a water flask, thus regulating the saturation vapor pressure, while independently
maintaining the rest of the system at a constant temperature. A rapid change in vapor pressure was
accomplished by closing the valve to the water flask, changing the temperature of the water bath,
waiting for stability, and then opening the valve. The same principle of regulating water vapor pressure
by separately controlling the temperature of a water flask was reported by Stamm and Woodruff [36],
who increased the number of specimen tubes to six.

Subsequently, aqueous solutions were used to regulate water vapor pressure based on solute
concentration. This allowed the aqueous solution to be maintained at the same temperature as the
rest of the apparatus. A number of papers have reported on the use of sulfuric acid solutions [37–41],
while several others used saturated salt solutions [42–44]. Measured changes in specimen temperature
during the sorption process were reported by Christensen and Kelsey [38] and Kelly and Hart [43],
Sections 3.4 and 4.2.

Advantages of the vacuum sorption apparatus include the following: mass measurements are
made in situ, so the specimen is not disturbed, and multiple specimens can be monitored in parallel;
vapor pressure can be changed rapidly and then maintained at a stable value; vapor pressure stability
is dependent on temperature stability, which has been reported to range from ±0.01 ◦C [34,35] to
±0.1 ◦C [43]; and the sorption process is not limited by external diffusion of water vapor through air
because the system is evacuated. The main limitation is that the method is rather labor intensive.
An additional limitation is mass resolution. A number of papers report measurement uncertainty of
±0.1% of dry mass [34,37,42,44]. Christensen [39], however, gives an equilibrium criterion of not more
than ±0.02% moisture content change over 24 h. The mass resolution depends on the spring constant
of the quartz helix and the accuracy with which elongation can be measured. Quartz helices are also
sensitive to temperature fluctuations.

2.4. Automated Vacuum Balance

Automated vacuum balances were developed in the 1960s and 70s [45,46], and several papers in the
1980s describe computer-automated systems [47–50]. These systems used an electronic microbalance
instead of a quartz helical spring, which allowed for automated data acquisition and greater accuracy.
This technique thus overcomes the limitations discussed in Section 2.3. To date, however, only two
studies have used an automated vacuum balance for moisture sorption in wood, and both reported
apparent equilibrium moisture content but no kinetic data [51,52].
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2.5. Automated Continuous-Flow Sorption Balance

Automated sorption balances were developed in the 1990s for measurements at atmospheric
pressure using a continuous flow of vapor in an inert carrier gas [53–55]. This technique is commonly
known as dynamic vapor sorption (DVS). Instruments of this type have been used extensively in
wood research laboratories in the last decade, both for measuring sorption isotherms and for studying
sorption kinetics.

A specimen with mass typically in the milligram range is suspended from a microbalance along
with a reference (or counterweight). The specimen is located in a chamber maintained at constant
temperature, and the RH is controlled by mixing dry and vapor-saturated streams of carrier gas (such
as nitrogen) in the desired ratio using mass flow controllers. Advantages of this method are automated
operation, in situ weighing with high sensitivity, stable temperature and humidity conditions, and the
capability to rapidly change RH. One limitation is that many instruments of this type allow for
monitoring of one specimen at a time, although some are capable of monitoring multiple specimens
sequentially in the same instrument [56]. Another consideration is that the kinetics may be affected by
the external mass transfer resistance in the gas phase around the specimen. Thorell and Wadsö [57]
reported a gas velocity of about 2 mm/s in an instrument of this type and experimentally determined
the external mass transfer resistance. They also measured an appreciable reduction in specimen
temperature from evaporative cooling.

An important aspect of using automated sorption balances are the instrument settings used to define
when the humidity should be changed. In many studies, the aim is to determine sorption isotherms
which require that the moisture content of the specimen is in equilibrium with the various levels of
RH. Automated operation, thus, depends on a definition of equilibrium by preset parameters in the
electronic control system. Most often a mass stability criterion is used, meaning that the moisture content
is assumed to be close enough to equilibrium when the mass change over a certain period of time
falls below a specified threshold. Such a definition of equilibrium is commonly used in standardized
methods for building materials. However, the mass stability threshold commonly defined in automated
sorption balances of 20 µg g−1 min−1 over a period of 10 min has been shown [8] to result in moisture
contents being farther away from the equilibrium value than often assumed. Thus, Glass et al. [8] found
deviations greater than 1% moisture content and instead suggested a stricter mass stability criterion of
3 µg g−1 min−1 over a period of 2 h. Equilibrium was defined by Glass et al. as a mass change rate
corresponding to the inherent mass stability of the instrument (2 µg over a period of 24 h).

3. Summary of Main Experimental Observations on Sorption Kinetics

Experimental results have often been reported in terms of the fractional change in moisture content,
E(t) (see Equation (1) and Figure 2). In this section we summarize sorption kinetic measurements for
different types of specimens (Section 3.1), different RH conditions (Section 3.2), and absorption versus
desorption (Section 3.3). Temperature changes associated with the sorption process are discussed in
Section 3.4. Section 3 focuses on the reported experimental observations, while the physical phenomena
responsible for limiting the rate of sorption are discussed at length in Section 4.

3.1. Wood Species, Anatomy, and Specimen Geometry

Several studies using vacuum sorption balances have investigated the effects of sapwood versus
heartwood, specimen thickness, and specimen orientation for various wood species. Pidgeon and
Maass [34,35] used softwood specimens with a thickness of 1.5 mm in the longitudinal (L) direction,
such that all axial tracheids were cut through at least once, and thus all cell wall surfaces were directly
accessible to water vapor. At this thickness they found that the rate of sorption was the same (within
sample variability) for spruce sapwood and heartwood specimens. Pidgeon and Maass [34,35] also
mentioned that finely ground wood meal gave the same rate of sorption as 1.5 mm (L) thick specimens,
though no supporting data was provided. Pidgeon and Maass [35] compared the rate of absorption
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from an initially dry condition to equilibrium at about 5% moisture content for sapwood and heartwood
of spruce (Picea glauca (Moench) Voss) and pine (Pinus banksiana Lamb.) of different thickness in the
longitudinal direction and found that the rate decreased as thickness increased (1.5 mm, 5 mm, 9 mm,
and 14 mm). Specimens with a radial (R) dimension of 6.5 mm had considerably slower sorption than
any of the longitudinal specimens, and sorption was slower in heartwood than in sapwood in the
radial direction for spruce and pine.

Christensen [39] and Christensen and Kelsey [38] did not find appreciable differences in the
rate of absorption for klinki pine (Araucaria klinkii Lauterb.) specimens with thicknesses of 1 mm
in the tangential direction or 1 mm in the longitudinal direction using a vacuum sorption balance.
Furthermore, the rate of sorption for 20 µm thick microtomed sections was only marginally faster than
for the 1 mm thick specimens. Sorption rates were additionally found to be the same for microtomed
sections of two different species with greatly different density and cell wall thickness, balsa (Ochroma
sp.) (typically 1 µm cell wall) and satinbox (Nematolepis squamea Labill. Paul G. Wilson) (typically
4 µm cell wall) [58]. In contrast, Christensen [40] did observe differences in the rate of absorption
for heartwood of mountain ash (Eucalyptus regnans F. Muell.) with varying tangential dimensions of
20 µm, 180 µm, 1 mm, and 3 mm (in all cases 10 mm in the R and L directions). Differences in the rate
of absorption were considerable at low RH (about 100 times faster in 20 µm specimens than in 3 mm
specimens) but differences in rate were not appreciable at high RH, indicating that diffusion through
the wood structure limited the rate of sorption in thicker specimens at low RH but not at high RH.

Kelly and Hart [43] investigated the effect of specimen surface area for 1 mm (L) thick specimens
of yellow poplar (Liriodendron tulipifera L.) sapwood and white oak (Quercus alba L.) heartwood with a
vacuum sorption balance. Specimens were composed of multiple slices to give the desired total mass,
and were either combined into one bundle, with adjacent slices in intimate contact (but not close enough
to hinder movement of water molecules in the vapor phase), or into two bundles, which gave a higher
surface area. They found that the two-bundle specimens had a faster initial rate of sorption in 13 out of
14 cases. They also measured temperature changes during absorption and desorption and found that for
the same RH step the absolute value of the maximum temperature change was less for the two-bundle
specimens than the one-bundle specimens. Temperature changes are discussed further in Section 3.4.

A number of studies have used conditioning chambers to investigate rates of sorption in wood
specimens having dimensions large enough to prohibit direct access of water vapor to all cell wall
surfaces. The effective diffusion coefficients determined from time-dependent sorption measurements
have been found to be considerably smaller than those determined under steady-state conditions,
e.g., [19,20,59]. These measurements, thus, support findings discussed above indicating that processes
other than diffusion limit the rate of sorption under certain conditions.

In the following sections we focus on experimental findings for sorption rates within the cell wall.
We thus include only those studies that used specimens cut to allow all cell wall surfaces direct access
to water vapor.

3.2. RH Level, RH Step Size, and Conditioning Time

Sorption kinetics depends on the RH and time for conditioning prior to changing the RH as well
as the RH increment. Christensen [38–40] found that the rate of absorption in klinki pine (Araucaria
klinkii Lauterb.) was progressively slower for RH steps starting from increasing RH values, as shown in
Figure 3. In other words, the rate of absorption for successive moisture increments over different ranges
decreased as the value of the initial moisture content increased. In addition, starting from the dry
condition, the rate of absorption was similar for small RH steps and large RH steps when comparing
time to reach a certain E(t) value. However, for other starting RH values, the rate of absorption for a
smaller RH increment was slower than for a larger RH increment.



Forests 2019, 10, 704 8 of 26Forests 2018, 9, x FOR PEER REVIEW  8 of 27 

 

 
Figure 3. Absorption curves measured with a vacuum sorption balance for 20 µm tangential 
microtomed specimens of mountain ash (Eucalyptus regnans F. Muell.) at different steps in relative 
humidity (RH) [40]. 

The time of conditioning at 53% RH prior to changing the RH was found by Christensen and 
Hergt [60] to affect the rate of absorption. A longer conditioning time resulted in slower sorption 
kinetics when the RH was changed to either 69% RH or 80% RH. 

Not only sorption kinetics but also the final equilibrium was found to depend on the RH 
increment, with a larger RH increment leading to a slightly higher equilibrium moisture content at 
the same final RH [39,40,43]. 

3.3. Absorption Versus Desorption 

Surprisingly few studies report the rate of desorption of thin specimens of wood. While 
Christensen [39] mentioned that desorption experiments had been initiated, the results of these 
experiments appear not to have been published. Kelly and Hart [43] compared the rate of absorption 
and desorption and found that the latter process reached E = 0.5 faster for a given RH increment in 
25 out of 30 cases; the other five differed only slightly. The difference between the rates of absorption 
and desorption was especially pronounced in RH steps above 54% RH and was generally quite small 
at a lower RH. 

3.4. Temperature Changes During Sorption 

Heat transfer in vacuum sorption balances is limited compared with gravimetric measurements 
in moving air at atmospheric pressure. Two studies in vacuum [38,43] observed changes in 
temperature up to 13–15 °C for sorption in the lower RH range. As the initial moisture content was 
increased, the magnitude of the temperature change decreased. Temperature histories in absorption 
from Christensen and Kelsey [38] are shown in Figure 4, where it is clear that the temperature peaks 
for all sorption steps within the first minute. Within the first 10 min of every sorption step, the 
temperature decreases below 50% of the maximum temperature change, and within 1 h thermal 
equilibration is complete. Sorption equilibrium is, however, far from established in this time, in 
particular, sorption steps above 54% RH only reach values of E around 0.2–0.6 within 1 h. 

Figure 3. Absorption curves measured with a vacuum sorption balance for 20µm tangential microtomed
specimens of mountain ash (Eucalyptus regnans F. Muell.) at different steps in relative humidity (RH) [40].

The time of conditioning at 53% RH prior to changing the RH was found by Christensen and
Hergt [60] to affect the rate of absorption. A longer conditioning time resulted in slower sorption
kinetics when the RH was changed to either 69% RH or 80% RH.

Not only sorption kinetics but also the final equilibrium was found to depend on the RH increment,
with a larger RH increment leading to a slightly higher equilibrium moisture content at the same final
RH [39,40,43].

3.3. Absorption Versus Desorption

Surprisingly few studies report the rate of desorption of thin specimens of wood. While
Christensen [39] mentioned that desorption experiments had been initiated, the results of these experiments
appear not to have been published. Kelly and Hart [43] compared the rate of absorption and desorption
and found that the latter process reached E = 0.5 faster for a given RH increment in 25 out of 30 cases;
the other five differed only slightly. The difference between the rates of absorption and desorption was
especially pronounced in RH steps above 54% RH and was generally quite small at a lower RH.

3.4. Temperature Changes During Sorption

Heat transfer in vacuum sorption balances is limited compared with gravimetric measurements in
moving air at atmospheric pressure. Two studies in vacuum [38,43] observed changes in temperature
up to 13–15 ◦C for sorption in the lower RH range. As the initial moisture content was increased,
the magnitude of the temperature change decreased. Temperature histories in absorption from
Christensen and Kelsey [38] are shown in Figure 4, where it is clear that the temperature peaks for all
sorption steps within the first minute. Within the first 10 min of every sorption step, the temperature
decreases below 50% of the maximum temperature change, and within 1 h thermal equilibration is
complete. Sorption equilibrium is, however, far from established in this time, in particular, sorption
steps above 54% RH only reach values of E around 0.2–0.6 within 1 h.
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Kelly and Hart [43] investigated both absorption and desorption processes and noted that the
absolute changes in temperature were slightly smaller in absorption than in desorption. They investigated
the timing of thermal equilibrium and moisture equilibrium and concluded that temperature was not the
sole limiting factor in the sorption process.

4. Physical Phenomena Involved in the Sorption Process

Sorption of water vapor in wood causes a multitude of physical changes to the material besides a
change in mass. This section reviews the primary physical phenomena that are coupled with vapor sorption
and may thus affect the rate of sorption. Figure 5 provides an overview of physical changes occurring as a
wood specimen is subjected to a change in RH, exemplified by an increased RH causing absorption.
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Figure 5. Overview of the physical phenomena occurring during moisture sorption in wood.

As described in Section 3.1, using large wood specimens prohibits direct access of water vapor
to all cell wall surfaces. In such specimens, the rate of water sorption is influenced by moisture
transport occurring as combined water vapor diffusion within the wood void structure and bound
water diffusion within the cell walls. However, this paper is only concerned with the sorption of water
in cell walls themselves, and the following sections are, therefore, limited to the phenomena illustrated
to the far right of Figure 5.
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4.1. External Resistance to Vapor Transfer

For typical sorption measurements performed at atmospheric pressure, air is circulated by fans
within a chamber or a continuous stream of carrier gas with a defined amount of water vapor is flowed
across the specimen. Just above the specimen surface, a boundary layer of slower moving gas forms
that impedes the transfer of water molecules from the gas stream to the specimen [57]. The thickness
of this boundary layer will vary between the experimental setups for the sorption measurement,
e.g., the type of sorption balance used as well as on the specimen geometry. For thin specimens, the
resistance to moisture transfer of the boundary layer can have a significant effect on the kinetics of
the sorption process [57], and therefore neglecting this resistance can lead to underestimations of the
actual sorption kinetics of the specimen.

To estimate the effect of the external resistance of the boundary layer, it is necessary to investigate
the gas flow patterns for the specific experimental setup or sorption balance instrument as described
by Thorell and Wadsö [57]. On the basis of the obtained data, the effect of the boundary layer on the
sorption kinetics can be estimated based on the Biot number (Bi) calculated as:

Bi =
kcL
Dc

(2)

where, L (m) is the characteristic length of the specimen, kc (m s−1) is the specific mass transfer
coefficient in the boundary layer, and Dc (m2 s−1) is the diffusivity of the specimen material. Index
“c” denotes that the coefficients relate to moisture transfer with moisture concentration as the driving
potential. The characteristic length of a film or a cuboid is half the thickness.

Since the boundary layer arises due to slow moving gas close to the surface, a vacuum sorption
balance will have insignificant external resistance due to the low gas pressure.

4.2. Temperature Change

The phase change from the vapor phase to bound water in the cell wall (and vice versa) is
associated with a significant amount of heat. Absorption of water molecules in wood is exothermic,
causing the temperature of the wood to increase. Conversely, desorption of water from wood will
result in the temperature decreasing. These temperature changes will diminish over time due to heat
exchange between the wood and its surroundings. In vacuum sorption balances, the lower gas pressure
is expected to limit the heat exchange with the surroundings as compared with sorption balances
operating at atmospheric pressure.

The amount of energy released is given by the sum of the enthalpy of vaporization (∆vapH) and
the differential enthalpy of sorption (∆sorpH). The former describes the phase change between liquid
water and water vapor, while the latter describes the binding energy of water within cell walls relative
to liquid water. This quantity is not constant; its magnitude decreases with increasing moisture content
of the wood [61]. For further details about the state-of-the-art within this topic, please see the article
“Measuring the heat of interaction between lignocellulosic materials and water” by Nopens et al. in
this special issue.

The temperature change observed during sorption depends both on the change in enthalpy and the
heat capacity of the material. Adding water molecules to the wood will increase the total heat capacity
of the specimen as well as the specific heat capacity of the wood [62,63]. This will result in a lower
temperature change at higher moisture contents for the same amount of energy released. At the same
time the total enthalpy associated with a change in moisture content is decreasing in magnitude with
increasing moisture content. It is, therefore, not surprising that the observed temperature changes during
absorption or desorption are larger in the lower moisture content range [38,43], as depicted in Figure 4.

The change in temperature at the wood/air interface, where water molecules exchange between
the vapor and bound phase, affects the local microenvironment. Absorption of water vapor increases
the local temperature and this, in effect, increases the saturation vapor pressure and lowers the local
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water activity (or RH). As a result, the difference in chemical potential over the interface after the rise
in temperature is less than the difference in chemical potential between water in wood and bulk air
prior to the rise in temperature. Therefore, the driving potential for bulk transport of water molecules
from the air to the wood is decreased locally. The effect of temperature changes during sorption has
been suggested from several studies of sorption in various materials [64,65], where the approach
to equilibrium was slower than predicted by a Fickian diffusion model, see Section 5.1. Moreover,
the shape of the sorption curves did not correspond to the Fickian diffusion model. The experimental
data could be explained by taking into account the increase in temperature during sorption and
subsequent thermal equilibration [64–66]. Importantly, the sorption process was retarded by the
temperature changes occurring but followed the thermal equilibration, meaning that equilibrium for
both solvent uptake and temperature with the surrounding atmosphere was completed within the
same timeframe. As seen in Figure 4, this is not the case for water vapor sorption in wood.

4.3. Diffusion of Bound Water within Cell Walls

Transport of moisture in wood occurs if a wood specimen in equilibrium with given climate
conditions is subjected to another climate, see Figure 5. In addition, the sorption process, i.e., the
local equilibration between vapor phase and bound water phase involves moisture transport. This
occurs as diffusion of water molecules within the wood between the lumen/wall interface and the
interior of the cell wall. Diffusion is perhaps the most widely invoked explanation of the rate of
sorption in thin, solid substances as it involves only one mechanism that is known to take place, i.e.,
the diffusion of absorbed solvent through the solid material. For further details about state-of-the-art
within moisture diffusion, please see “Effects of moisture on diffusion through unmodified wood cell
walls: A phenomenological polymer science approach” by Jakes et al. in this special issue.

A series of experiments by Christensen [39,40] reported that diffusion might influence sorption
kinetics in wood under certain conditions. In these experiments, the sorption kinetics of thin wood
specimens of different thicknesses in the tangential direction was recorded in a vacuum sorption balance,
thereby removing the external resistance to moisture transfer as discussed in Section 4.1. The experimental
results show that when RH was around 60% or above, the sorption rate of the specimens did not depend
on their thickness which varied between 20 µm and 3 mm [40]. This indicates that a mechanism other
than diffusion controls sorption kinetics. However, at RH below 60%, the rate of sorption depends on
specimen thickness, even for specimen thicknesses below 0.2 mm. This suggests that diffusion influences
sorption kinetics in the low moisture range. However, it should be noted that the experiments were
conducted in vacuum, and therefore temperature changes occurred during sorption (e.g., Figure 4).

4.4. Dimensional Changes and Associated Stresses

Wood cell walls are virtually nonporous when they are dry [67]. Therefore, absorption of water
molecules within cell walls results in a significant increase in dimensions (swelling). Conversely,
desorption causes the wood to contract (shrinkage). The dimensional changes can be observed both for
the cell wall material [68], the cell geometry [69], the tissue [70], and the bulk material [71,72]. These
changes have been found to be linearly correlated with moisture content on all scales [69–73].

The cell wall consists of a composite material with stiff, aggregated cellulose microfibrils embedded
in a matrix of hemicelluloses and lignin [74]. Among these three main cell wall compounds, the cellulose
molecule has the highest concentration of hydroxyls, which is thought to be the primary sorption site for
water in wood [7]. However, water molecules are unable to penetrate the cellulose microfibrils [75,76],
and therefore 64%–78% of cellulose hydroxyls are unable to interact with water [77]. Instead, of the three
main constituents, the hemicelluloses attract the most water at given climatic conditions [78]. When
water molecules are absorbed within the hemicelluloses or lignin, or on the surface of the cellulose
microfibrils, the material expansion it causes will increase the distance between microfibrils [79].

Dimensional changes during sorption are accompanied by stresses arising within the material.
During absorption of water, the swelling of wood can generate significant forces if the expansion is
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restricted in one or more directions [80,81]. Since wood is a porous material, some of the cell wall
expansion occurring in such swelling-restricted wood will cause the cell lumina to shrink. This reduces
the forces generated by the bulk wood and makes it difficult to assess the magnitude of internal
swelling stresses. However, Tarkow and Turner [82] densified yellow birch wood to arrive at a total
porosity around 4%. The swelling stresses generated when this material was restricted from swelling
in the transverse directions amounted to 76 MPa, whereas the theoretical limit for the swelling pressure
generated by the cell wall substance was estimated to be 172 MPa [82]. Even in freely-swelling wood,
absorption of water will cause swelling stresses within cell walls arising from the mechanical constraint
of the stiff cellulose microfibrils. Thus, if this constraint is decreased the wood cell walls will absorb
slightly more moisture under the same environmental conditions [40,83].

The swelling stresses arising due to absorption will gradually decrease as a result of the viscoelastic
mechanical properties of the material. Such viscoelastic behavior is thought to arise from cell wall
polymers being able to move by breaking and reforming intermolecular hydrogen bonds [84,85].
On the macroscale, viscoelastic behavior is observed as an increase in deformation (creep) or decrease
in stress (relaxation), when wood is subjected to an external load or deformation, respectively.

It has been realized that internal mechanical stresses affect the sorption of swelling solvents for
various types of polymeric films [86–88]. Thus, a higher moisture uptake along with a faster rate of
sorption has been found in polymeric films under tension [89–91] and a slower rate of sorption in films
under compression [92]. Additionally, restricting the in-plane swelling has been seen to result in a
longer time to equilibrium than in free-swelling films [86]. Another observation that illustrates how
stress relaxation affects the sorption of swelling solvents is the change in concentration of absorbed
solvent at the air/polymer interface. For sorption controlled by diffusion, equilibrium between solvent
vapor pressure and absorbed solvent concentration at the surface is attained relatively fast. However,
the surface concentration of swelling solvents in polymers has been observed to change only gradually
with time, indicating that the equilibration depends on relaxation of swelling stresses [93–95].

The influence of stress relaxation during sorption has long been a suggested mechanism in
polymer films exhibiting a marked two-stage sorption process [88,96–99], where the initial stage is
thought to be related to diffusion into the film followed by a second, relaxation-controlled stage.

For water vapor sorption in wood, the process does not exhibit a marked two-stage behavior,
although a number of studies have fitted the sorption curve with a model consisting of two exponentials
(see Section 5.4). However, several studies described in Section 3.2 indicate that swelling stresses affect
the water sorption process in wood. For instance, the rate of absorption has been shown to depend
positively on the RH step size [39], which has been interpreted as larger swelling stresses facilitating a
faster sorption. On the other hand, a prolonged conditioning time, and thus stress relaxation time,
before a change in RH results in a slower sorption rate [60].

4.5. Polymer Mobility

The physical behavior of amorphous polymers, such as hemicelluloses and lignin, is strongly
dependent on the polymer mobility, i.e., the probability for translational motion of polymers or
polymer segments. At low temperature, this probability is low resulting in the polymer behaving like
a solid. This is called the “glassy state”. On the other hand, at a high temperature the probability for
translational motion is much higher, resulting in a viscous polymer behavior referred to as the “rubbery
state”. The intersection between these two states of amorphous polymers is called the “glass transition”
or “softening point”. It is typically characterized by a dramatic change in elastic modulus of the
polymer as it changes state between the glassy and rubbery states. Temperature heavily influences the
state of amorphous polymers as it is a measure of the thermal energy available for translational motion.
However, moisture within hydrophilic amorphous polymers decreases the thermal energy required
for translational motion by breaking interpolymeric hydrogen bonds. Hereby, polymer mobility is
increased, and the temperature associated with glass transition is lowered.
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The glass transition temperature of the amorphous wood polymers depends heavily on the
wood moisture content as seen in Figure 6. This illustrates how the transition temperature is above
at least 80 ◦C at low moisture contents but decreases as the moisture content is increased. For the
hemicelluloses, the transition temperature falls below 20 ◦C typically between about 55% RH and 90%
RH, corresponding to around 10%–20% wood moisture content.
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Sorption experiments are most often performed at a constant temperature, aside from the
temperature changes resulting from the phase change of water during the sorption process (see
Sections 3.4 and 4.2). Glass transition of the amorphous wood polymers, therefore, arises from changes
in polymer mobility, reflected in a change in transition temperature, as the moisture content changes
during the sorption process.

Polymer mobility affects other physical phenomena discussed in this paper in relation to sorption
kinetics. Diffusion is often enhanced significantly by increased polymer mobility, especially at the
glass transition [106], see also “Effects of moisture on diffusion through unmodified wood cell walls: A
phenomenological polymer science approach” by Jakes et al. in this special issue. Moreover, the rate of
stress relaxation is increased by high polymer mobility [107]. Therefore, if diffusion or stress relaxation
is controlling the rate of sorption, these will be affected by the polymer mobility of the hemicelluloses
and lignin. However, while polymer mobility increases with increasing moisture content causing
a faster diffusion and stress relaxation, the rate of sorption is observed to decrease with increasing
moisture content, see Section 3.2.

5. Theoretical Models Describing Sorption Kinetics

Several theoretical, mathematical models have been developed in order to explain sorption kinetics
in cellulosic and other polymeric materials. In this section, a handful of models are reviewed and
discussed including both recent and popular models as well as theoretical models that are related to
the physical phenomena discussed previously.

5.1. Fickian Diffusion Model

A classical way of explaining sorption kinetics in thin films is by describing it as governed by the
transport of water molecules between the interior of the film and the interface with the surroundings.
In the simple case, it can be assumed that the diffusion coefficient, i.e., the material parameter
describing how fast molecules are diffusing at a given moisture gradient, is constant with respect to
moisture content.
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From this, the fractional change in moisture content (E) in the thin film as a function of time can
be described by [108]:

E =
M(t) −M0

M∞ −M0
= 1−

∞∑
n=0

8

(2n + 1)2π2
exp

−(2n + 1)2π2

4L2 Dct

 (3)

where, M(t) (g g−1) is the moisture content at time t (s), M0 (g g−1) is the initial moisture content at
t = 0, M∞ (g g−1) is the moisture content at equilibrium, Dc (m2/s) is the diffusion coefficient with
moisture concentration as driving potential, and L (m) is the distance from the center of the cell wall
to the lumen surface. Most often, the diffusion coefficient increases with an increasing concentration
of absorbant, e.g., moisture. In that case, Dc in Equation (3) represents a weighted average over the
moisture content range of the specific sorption step [109].

From the assumption that sorption kinetics is governed by diffusion of absorbant into or out of
the material, the diffusion coefficient can be derived by Equation (4) based on the time to complete half
of the sorption process, i.e., E = 0.5 [110].

Dc =
πL2

16t
(4)

where, t 1
2

(s) is the time it takes to reach E = 0.5. On the basis of Equation (4), the diffusion coefficient of
thin films can be derived from sorption kinetic data, however, it can also be independently determined
from steady-state transport experiments. In these experiments, a constant gradient in vapour pressure
is maintained over the thickness of the film, and the diffusion coefficient is determined based on the
observed moisture flux through the film.

Steady-state transport experiments are difficult to perform on wood cell walls due to their
geometry. However, it is possible to get an idea of the diffusion coefficient of wood cell walls from
steady-state measurements on close similar materials. Thus, the diffusion coefficient, with moisture
concentration as the driving potential, has been found in the range 10−13–10−11 m2/s for thin films of
wood derived polymers such as uncoated cellophane [111], xylan with nanofibrillated cellulose [112],
and spruce galactoglucomannan plasticized by 5% glyoxal [113]. The diffusion coefficient increases
with increasing moisture content [111,113].

An alternative method for obtaining the diffusion coefficient of wood cell walls was used by
Stamm [114] who filled the wood void structure with a molten metal alloy. The idea was that
the transport of water into the metal-filled wood would occur nearly exclusively within cell walls.
The diffusion coefficient was thus derived from Equation (4) after determining the mass gain over time
after dipping the wood specimens in liquid water [114]. The diffusion coefficient was found in the range
3.2–9.2 × 10−11 m2/s, which is in the upper range of the diffusion coefficients found for thin films of
wood-derived polymers. This could be explained by the high moisture content resulting from the use of
liquid water. However, the experimental results must be regarded as uncertain due to incomplete filling
of the void structure with metal (estimated to 65%–89% of the void volume) and the inevitable crack
formation at wood/metal interfaces due to dimensional changes of the cell walls and lumens caused
by swelling [69,115]. Both of these effects will provide easy transport pathways for liquid water into
the specimens.

Examination of the sorption kinetics of water in wood cell walls makes it clear that the Fickian
diffusion model cannot explain the observed behavior. As described in Section 3.1, the rate of
sorption in thin wood specimens does not depend on thickness above 60% RH. This behaviour is
also seen for thin cellulose films [58]. Moreover, the diffusion coefficient derived from thin wood
specimens is significantly lower than those found for films of wood-derived polymers. Thus, Kelly
and Hart [43] derived diffusion coefficients for bound water transport in the cell walls of oak (Quercus
alba L.) and yellow poplar (Liriodendron tulipifera L.) based on sorption kinetics measured in a vacuum
sorption balance. These diffusion coefficients decreased from around 4 × 10−14 m2/s at low moisture
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content to around 4 × 10−15 m2/s at high moisture content. Similarly, decreasing diffusion coefficients
can be derived from the sorption kinetics data on mountain ash (Eucalyptus regnans F. Muell.) by
Christensen [40]. The thinnest specimen in those experiments was 20 µm thick in the tangential
direction, while the actual cell wall thickness was estimated to be around 3 µm [40]. If this thickness is
used in Equation (4), the derived diffusion coefficient is 1.0 × 10−13 m2/s in the first sorption step from
the dry condition to 9.6% RH, and it decreases in subsequent sorption steps. Using the bulk specimen
thickness of 20 µm yields a diffusion coefficient in the first step of 4 × 10−12 m2/s. However, these
experiments were conducted in vacuum, and therefore temperature changes could have affected the
rate of sorption, see Section 4.2.

By comparing the observed sorption kinetics in wood in Figure 3 with the predictions of the
Fickian diffusion model in Figure 7, the discrepancy between experimental data and the model becomes
apparent. Figure 3 shows the sorption kinetics in a vacuum sorption balance of 20 µm thin wood
specimens for a sequence of sorption steps starting at 0% RH and ending at 90% RH. It is clear that the
time to complete half the moisture change, i.e., time to reach E = 0.5, increases as the moisture content
increases. This explains why the derived diffusion coefficient from Equation (4) decreases with increasing
moisture content. On the other hand, the Fickian diffusion model, informed by steady-state diffusion
measurements, would predict a faster approach to equilibrium at higher moisture content, see Figure 7.
Only by assuming a very low diffusion coefficient, around 10−14–10−13 m2/s, is the Fickian diffusion
model able to capture the observed sorption kinetics in the first couple of sorption steps in Figure 3.
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Another experimental observation which is inconsistent with predictions from the Fickian diffusion
model is the difference in the rate of sorption in absorption and desorption, described in Section 3.3.
Kelly and Hart [43] found that for similar changes between two levels of RH, E = 0.5 was reached faster
during desorption than absorption, especially for RH above 54%. On the basis of experimental data for
wood-derived polymers [111,113], the diffusion coefficient of wood cell walls is expected to increase
with increasing RH. Therefore, the diffusion coefficient is expected to increase during absorption and
decrease during desorption. Simulations by Wadsö [116] show, however, that such changes in the
diffusion coefficient result in a slower rate of desorption than absorption.

Moreover, in yet another test of the ability of the Fickian diffusion model to capture sorption
kinetics in wood, Christensen [39] exposed thin specimens of klinki pine (Araucaria klinkii Lauterb.) to
sorption steps starting from dryness, but with different step sizes. The step sizes ranged from 1.5%
to 9% moisture content corresponding to different vapour pressure target values in the 3%–51% RH
range. The observed time to reach half the moisture change, i.e., E = 0.5, was more or less constant for
the different step sizes. This indicates that if Fickian diffusion is the controlling factor, the diffusion
coefficient is relatively constant in the 0%–9% moisture content range.

As discussed in Section 4.3, moisture diffusion does not control the rate of sorption above 50% RH.
Nonetheless, it is relevant to estimate the time scale for reaching moisture equilibrium after a change
in RH. For instance, if the diffusion coefficient was 10−12 m2/s, then moisture equilibrium would be
re-established within 2 min for cell walls as thick as 10 µm. In contrast, for a diffusion coefficient of
10−13 m2/s, moisture equilibrium would be reached within the first 40 min for the same cell walls.
Of course, if these walls are thinner, the sorption process would be complete even faster. This clearly
illustrates the failure of the Fickian diffusion model to explain sorption kinetics of water in wood cell
walls in the range above 50% RH.

5.2. Swelling Stress Models

Several mathematical models have been suggested for explaining the sorption kinetics of polymer
films that could not be modeled by Fickian diffusion models. Crank [88] derived a model with a diffusion
coefficient dependent on the internal stresses arising from differences in swelling between neighboring
regions with different concentrations of absorbant. Moreover, Newns [96] and Sanopoulou et al. [117]
used two-stage models where the initial increase in vapor uptake generated internal stresses that governed
the rate of sorption and hence the rate of swelling in the second stage. In order to use the models, the
concentration defining the intersection between the first and second stage of the sorption process needs to
be determined. This can be difficult if the sorption curve does not exhibit a marked two-stage behavior.

Alternatively, several models have been suggested that include contributions to the sorption
kinetics from both diffusion and stress relaxation. Several models [118–120] have tried to include
these phenomena by incorporating relaxation kinetics with Fickian diffusion in different ways, e.g.,
by implementing an internal state variable related to the degree of swelling [118]. However, in these
models, stress relaxation is often described by simple empirical relations without meaningful physical
parameters that can be independently determined. Interestingly, the model by Joshi and Astarita [118]
considers three overlapping regimes for the coupling between stress relation and Fickian diffusion.
At low concentrations of absorbed solvent, sorption kinetics is controlled by Fickian diffusion and
gradients in concentrations are observed. At high concentrations, stress relaxation dominates due to
considerably faster diffusion rates than stress relaxation rates, and therefore gradients are virtually
absent. Between these extremes, sorption kinetics is not dominated by one of the processes.

For sorption of water in wood, several authors have described their measurements as indicating a
sorption process consisting of two underlying processes [39,40,43,58,60]. However, analysis of more
recent experimental data indicates that often more than two component processes are needed to
mathematically describe the actual shape of the sorption curve, see Section 5.4. Even though the
mathematical analysis may be complex, sorption in wood appears to cover the entire range from
diffusion-controlled sorption at low moisture contents to relaxation-controlled sorption at high moisture
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content (see Sections 4.3 and 4.4). A much-needed tool for understanding water vapor sorption kinetics
in wood would, therefore, be a micromechanical model that is based on fundamental visco-elastic
mechanical properties of the wood constituents as a function of moisture content and the structure, e.g.,
orientation of cellulose microfibrils in different cell wall layers. Sorption of moisture induces important
effects on the physical properties of cell walls that need to be incorporated in a micromechanical model,
including elastic properties (stiffness) [121], visco-elastic properties (creep/relaxation rate) [121,122],
volume [68], as well as coupled effects of mechanics and sorption, i.e., mechano-sorption [123].

5.3. Thermally Limited Moisture Transport Model

A recent model for explaining sorption kinetics in wood is the thermally limited moisture transfer
(TLMT) model developed by Willems [124]. This model includes effects on the sorption kinetics from
both external mass transfer and temperature increase/decrease from sorption at the wood surface,
similar to other previously developed theoretical models [64–66]. In the TLMT model, the sorption
process is described by two components, see Equation (5), which both relate to coupled moisture and
heat transfer between a wood specimen and its surroundings.

E =
M(t) −M0

M∞ −M0
= −

1 + b2

b1 − b2

(
1− exp

(
−t
τ1

))
+

1 + b1

b1 − b2

(
1− exp

(
−t
τ2

))
(5)

where, b1 and b2 are model parameters, and τ1 and τ2 (s) are the characteristic time constants of the
two coupled moisture and thermal processes. By rearrangement of Equation (5), the similarity in
mathematical form with the Fickian diffusion model is clear, see Equation (6). Although the TLMT
model only has two components, these are less constrained than the infinite series in the Fickian
diffusion model. The form is also similar to other sorption models that include both heat and mass
transfer [66].

E =
M(t) −M0

M∞ −M0
= 1−

[
−1− b2

b1 − b2
exp

(
−t
τ1

)
+

1 + b1

b1 − b2
exp

(
−t
τ2

)]
(6)

The fundamental idea of the TLMT model is that sorption changes the surface temperature,
which causes the local RH near the surface to deviate from that of the bulk surroundings. During
absorption, the surface temperature increases caused by the latent heat from water molecules going
from the vapor phase to the bound phase. The higher surface temperature causes a local decrease in
RH due to a higher water vapor saturation pressure with increased temperature. Since absorption
follows from an increase in RH of the surrounding air, the decrease in local RH will reduce the driving
potential for the transfer at the surface from vapor to bound water. Conversely, desorption follows
from a decrease in surrounding RH, and it causes a lower surface temperature which increases the
local RH, and thereby reduces the driving potential.

The decrease in driving potential is more pronounced for a given temperature change at high
RH [124]. This arises since the difference in RH due to a temperature change scales with RH itself.
Moreover, the sorption isotherms of wood are steeper at high RH, and a decrease in local RH at the
surface, therefore, lowers the moisture content in equilibrium with the local RH and temperature
conditions. As a result, the TLMT model predicts a more pronounced effect on the sorption kinetics at
high RH than at low RH, even though the temperature change observed during absorption is highest at
low moisture content [38]. The latter is caused by the latent heat per amount of bound water decreasing
with increasing moisture content [61].

The TLMT model has been applied to sorption kinetic data from automated sorption balance
measurements and has been used for explaining time constants derived by the parallel exponential
kinetics (PEK) model. This model has recently been shown to be inadequate in explaining sorption
kinetics (see Section 5.4). However, there are also inherent problems with the TLMT model itself. Most
importantly, the time constant of the two moisture sorption components both scale with the ratio of
dry mass to surface area. This means that larger surface area per specimen mass results in shorter
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time components and thus faster sorption. As described in Section 3.2, experimental results with a
vacuum sorption balance by Christensen [40] show that at 60% RH and above, the rate of sorption is
independent of specimen thickness below 3 mm. Thin specimens have a larger surface area per dry
mass and are, therefore, expected by the TLMT model to exhibit a faster rate of sorption, contrary
to experimental evidence. Below 60% RH, the thin microtomed specimens in the experiments by
Christensen did exhibit a faster rate of sorption than thicker specimens as predicted by the TLMT
model. However, in the lower RH range, the TLMT model does not predict significant effects from the
change in surface temperature as described above. Thus, the time constants of the model in this range
depend predominantly on an overall moisture transfer coefficient independent of RH and an overall
heat transfer coefficient independent of temperature. The TLMT model, therefore, fails to account for
the experimental data in the RH range where the physical phenomenon suggested controlling sorption
kinetics is most pronounced.

5.4. Parallel Exponential Kinetics (PEK) Model

The widespread adoption of automated sorption balances in wood laboratories during the last
decade has seen an increase in the studies of sorption kinetics of wood. Much of this work on sorption
kinetics has used the parallel exponential kinetics (PEK) model to analyze data. This model was
first suggested by Kohler et al. [125] and later attributed to Hill et al. [126]. The model is a linear
combination of simple exponential kinetic processes and can be described by Equation (7) with n = 2:

M(t) = Mo +
n∑

i=1

∆Mi

(
1− exp

(
−t
τi

))
(7)

where, ∆Mi (g g−1) is the moisture content change related to the ith process, and τi (s) is the characteristic
time constant of that process. By rearrangement of Equation (7), the similarity in mathematical form
with the Fickian diffusion and the TLMT models is clear, see Equation (8). Although the PEK model
only has two components, these are less constrained than the infinite series in the Fickian diffusion
model. Therefore, it fits with the indications from experimental measurements that sorption kinetics is
a result of two underlying processes [39,40,43,58,60].

E =
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−
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exp

(
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)
= 1−
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∆Mi

M∞ −M0
exp

(
−t
τi

)
(8)

In practice, fitting Equation (7) to data collected with automated sorption balances yields two
time constants which are referred to as “fast” and “slow” sorption processes, see Figure 8. Several
potential physical explanations for these sorption processes have been proposed, the most common
being that these two processes represented different sorption sites [125–138].

Despite the widespread adoption of the PEK model over the past decade, Thybring et al. [139]
have recently shown that the PEK model parameters cannot be physically meaningful. While the
model appears to fit data collected from automated sorption balances well, Thybring et al. [139] have
shown that this apparent agreement is an artifact of interrupting the measurements prior to equilibrium.
Glass et al. [140] demonstrated that the common automated sorption balance equilibrium criterion of
dM/dt = 20 µg g−1 min−1 (or 0.002% min−1) over a 10 min window can result in large errors in the
apparent EMC. When the data collection period is extended, the model parameters change considerably,
the residuals exhibit non-random patterns, and the fitting statistics get worse [139]. This is illustrated
in Figure 8 for data collection until the change in mass is equal to the inherent mass stability of the
instrument (i.e., equilibrium).
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Figure 8. Parallel exponential kinetics (PEK) model fitted to sorption curve of Figure 1. The model
partitions the moisture change into “fast” and “slow” moisture components, each with a characteristic
time constant. Sorption data and model fits are shown for interrupted sorption (left) based on the common
mass stability criterion of 20 µg g−1 min−1 and for sorption until equilibrium (right). For clarity, the left
plot shows only every 5 th data point and the right plot only every 150th data point. Data from [139].

Thybring et al. [139] introduced a new data-driven approach for the analysis of sorption kinetic
data, known as multi-exponential decay analysis (MEDEA). This approach yields spectra indicating
the number of characteristic time constants for kinetic data collected to equilibrium after a given RH
step, as shown in Figure 9. In every case, except for one, three, or more, time constants were observed.
This analysis explains why the PEK model parameters change depending on data collection time.
The variation in the number of time constants (Figure 9) also suggests that simply increasing the number
of exponential components (n in Equation (7)) would not give a model that is generally suitable.
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on absorption and desorption data until equilibrium for loblolly pine (Pinus taeda L.) using an automated
sorption balance [139]. The numbers above each spectrum indicates the RH step, e.g., “20–30” denotes
the step from 20% RH to 30% RH.
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6. Conclusions and Perspective on Research Needs

This paper summarizes the current state of knowledge of water vapor sorption kinetics. Despite
previous research efforts in this area, it is clear that fundamental information about the governing physical
phenomena behind the observed sorption kinetics is still lacking. While several theoretical models exist
for describing sorption kinetics, they cannot fully describe the sorption process phenomenologically.
Some of the models are contradicted by published experimental data, and other models lack experimental
evidence supporting their physical parameters.

Simple sorption kinetic measurements, where only the mass is monitored as a function of time,
are insufficient for building and testing sorption kinetic models because the sorption process is so
complex. Models may need to account for temperature changes, dimensional changes, or changes
in polymer mobility. Therefore, it is necessary to design experiments that measure as many of these
changes as possible during the sorption process itself. This would require introducing new experimental
techniques to the wood science field either by adapting existing techniques from other research fields or
through development of novel techniques.

There are several possibilities for obtaining data to improve our understanding of sorption
kinetics. In general, these can be explored by varying one of the parameters in Section 4 along with a
measurement of the sorption kinetics. For example, the effect of dimensional changes, surface diffusion,
and internal stresses could be examined by probing much smaller in specimen size, potentially by
using a quartz crystal microbalance. Another possibility for testing the effect of structure would be
to examine wood species or cell types with especially thick or thin cell walls. Finally, a localized
measurement of surface temperature or surface concentration would be an ideal tool to build and
verify sorption kinetic models.

In short, new, complex experimental techniques will need to be introduced to this research topic
to fully understand the kinetics of sorption. However, just as automated sorption balances have gone
from becoming an exotic to common scientific instrument, the future decade(s) may see the advent of
a host of new, low-cost surface measurement techniques that make these seemingly large obstacles
obtainable. Therefore, it is hoped that this review has summarized the types of measurements that will
advance our understanding of sorption kinetics even further.
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