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Abstract: Cistanche deserticola Ma, a perennial parasitic herb of family Orobanchaceae, is mainly
parasitic on the roots of the Haloxylon ammodendron Bunge. In view of this special parasitic relationship,
we applied random forest (RF) model to forecast potential geographic distribution, and developed
a comprehensive habitat suitability model by integrating bioclimatic and soil factors to assess the
suitable distribution of C. deserticola and H. ammodendron across China in 2050s and 2070s under
RCP2.6, RCP4.5, and RCP8.5, respectively. We modeled the core potential geographic distribution of
C. deserticola by overlaying the distribution of these two species, and analyzed the spatial distribution
pattern and migration trend of C. deserticola by using the standard deviational ellipse. In addition,
we evaluated the accuracy of RF model through three evaluation indexes, and analyzed the dominant
climate factors. The results showed that the core potential distribution areas of C. deserticola are
distributed in the Xinjiang Uygur Autonomous Region, the junction of Shaanxi–Gansu–Ningxia
provinces, and the Inner Mongolia Autonomous Region. The spatial dispersion would intensify with
the increasing of emission scenarios, and the geographical habitat is moving towards higher latitude.
Among the three evaluation indexes, the area under the ROC curve (AUC) and True Skill Statistic
(TSS) have better assessment results. The main bioclimatic factors affecting the distribution are min
temperature of coldest month (Bio6), annual precipitation (Bio12), precipitation of wettest month
(Bio13), precipitation of wettest quarter (Bio16), and precipitation of warmest quarter (Bio18), among
which the importance of precipitation factors is greater than temperature factors. More importantly,
the results of this study could provide some guidance for the improvement of desert forest system,
the protection of endangered species and the further improvement of the ecological environment.

Keywords: Cistanche deserticola Ma; Haloxylon ammodendron Bunge; random forest; comprehensive
habitat suitability; geographical distribution pattern; climate change

1. Introduction

With the global warming, more and more attention has been paid to the impact and assessment of
climate change by governments and scientists. The Intergovernmental Panel on Climate Change (IPCC)
Fifth Assessment report (AR5) shows that the global average surface temperature are expected to rise
about 0.3 ◦C–4.8 ◦C by 2100 due to the further increases of greenhouse gases in the atmosphere [1].
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The future climate change of China is consistent with the global projections, which means that the
warming trend in the north is more obvious than that in the south [2]. The relationship between
species and environment is the core of studying biology and climate. Climate change will inevitably
lead to changes in the species’ habitats distribution, and species are also shifting their ranges at an
unprecedented rate through environmental change [3–5]. Studies have found that some species may
migrate to high latitude and altitude areas [6–8]. Climate change directly or indirectly affects the spatial
and temporal distribution pattern of species, especially for the growth and distribution of endangered
species [9–13]. It may break the ecological balance of life on the earth and increase the risk of extinction
of endangered species to a certain extent.

Maintaining long-term management strategies for endangered or rare species requires information
on the potential distribution and relative abundance under current and future climate scenarios [14].
Species distribution models (SDMs) can provide information in this area, so it has been widely applied
to the study of conservation area planning, and the impact of climate change on species distribution.
At present, the study of SDMs has carried out climate change on animals [15–18], plants [19,20],
landscape ecology [21], swamp vegetation [22], Chinese medicinal materials [23], and so on. Many
algorithms have been applied to the construction of SDMs. Researchers need to choose different
model algorithms for different modeling purposes, species niche characteristics and the basis of
modeling data. Generally speaking, SDMs can be divided into four categories: threshold-based model
(surface range envelope, SRE), regression-based model (generalized linear model (GLM), generalized
boosting model (GBM), multiple adaptive regression splines (MARS)), classification-based model
(generalized add model (GAM), classification tree analysis (CTA), flexible discriminant analysis (FDA)),
and machine learning-based model (random forest (RF), artificial neural network (ANN), Maximum
entropy (MaxEnt)) [24]. Among them, MaxEnt model has been widely used to predict the potential
distribution pattern of species [25–27]. In recent years, RF model has been developed in the field of
bioinformatics [28], remote sensing of earth science [29], land use [30], and has been paid more and
more attention and applied in the study of species distribution prediction [31–33]. By comparing
the multiple logistic regression technique in generalized linear modeling (GLM) with RF models,
the prediction performance of the RF model is higher [31]. Similarly, using the SDMs of CTA, RF,
MARS, FDA, GLM, GBM, GAM, and ANN to predict the global suitability distribution of Corbicula
fluminea (Müller, 1744), the best modeling effect of RF is obtained [34]. Besides, the present and future
potential distribution of 13 species of Heliotropium were simulated by eight models within a holistic
prediction framework, it was also found that the RF model had the best performance [35]. In the case
of insufficient sample size, RF model can use the measured values to generate the predicted data by
classification and regression, and handle the data abnormity freely to some extent. The advantage of
RF algorithm is that the model performs best in predicting species distribution and is becoming more
mature for forecasting factors.

Cistanche deserticola Ma, a perennial parasitic herb of family Orobanchaceae, is commonly known
as ‘Desert Ginseng’ and also is an endemic species of Cistanche Hoffmg. Et Link grown in arid areas of
the northwest China. The suitable growth environment of C. deserticola is dry with low rainfall, large
evaporation, long sunshine hours, and large temperature difference between day and night [36]. It is
a precious traditional Chinese medicine and has the functions of enhancing immunity, anti-fatigue,
anti-aging, tonifying yang, nourishing essence, and blood [37,38]. Generally, the seeds of C. deserticola
move downward along the interstice of sand grains after landing, and germinate under the inducement
of their secretions after encountering the root of the host plant. The germinated seeds fuse directly with
the host roots to form a small tumor. When enough nutrients are absorbed, the plants of C. deserticola
grow from these tumors. It is conceivable that the success rate of this parasitic method is very
low, but the natural population of C. deserticola can be maintained without disturbing the external
environment. Now, C. deserticola has been included in the Pharmacopoeia of the People’s Republic
of China (2015), and belongs to a national second class protected plants which has been listed in the
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Convention on International Trade in Endangered Species of Wild Fauna (CITES) in Appendix II
(https://cites.org/eng/app/appendices.php).

Haloxylon ammodendron Bunge, a perennial shrub of family Chenopodiaceae, is the main host
of C. deserticola. It plays an important role in the maintenance of the structure and function of the
whole ecosystem, improving vegetation, curbing desertification, reducing wind speed, and meliorating
the forest microclimate [39,40]. C. deserticola is mainly parasitic on the roots of H. ammodendron
to absorb carbohydrate, minerals, and even water, because it cannot perform photosynthesis
itself [41,42]. Recent studies paid more attention to the interaction between C. deserticola and its
host H. ammodendron [43,44]. Under the intervention of external factors, the roots of H. ammodendron
were often exposed, which resulted in excessive water loss and death, further affecting the growth
of C. deserticola. The desertification process of C. deserticola and H. ammodendron will be intensified,
leading to severe damage to resources [45]. Therefore, effective protection is required to protect the
habitats of C. deserticola.

Based on sample data, this paper analyzed the comprehensive habitat distribution in the future
climate scenarios of C. deserticola (Figure 1). The objectives of this study consists of five main
aspects: (1) evaluate the accuracy of RF model by three evaluation indexes; (2) built a comprehensive
habitat suitability model to predict the potential future geographic distribution of C. deserticola and
H. ammodendron by considering the limitation of soil conditions; (3) analysis of the dominant climate
factors affecting the distribution of C. deserticola; (4) model the core potential geographic distribution of
C. deserticola by superimposing the distribution of these two species; (5) analyze the spatial distribution
pattern and migration trends of C. deserticola in the future climate change, based on the directional
distribution module in ArcGIS. The results of this study will provide some guidance for the division
of Chinese herbal medicines and provide the corresponding countermeasures for improving the
ecological environment.

https://cites.org/eng/app/appendices.php
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2. Methods

Figure 1 illustrates the habitat suitability assessment workflow. The specific steps are as followed.

2.1. Sampling and Area

Sample data of C. deserticola and H. ammodendron were collected from the Global Biodiversity
Information Facility (https://www.gbif.org); Herbarium, Institute of Botany, Chinese Academy of
Sciences (http://pe.ibcas.ac.cn); Chinese Nature Herbarium (http://www.nature-museum.net); Chinese
Virtual Herbarium (http://www.cvh.ac.cn); Chinese Natural Reserve Specimen Resource Sharing
Platform (http://www.papc.cn); and related documents. Eliminating a small number of data with
duplicate and inaccurate location records, we got 68 C. deserticola distribution points, and 187
H. ammodendron distribution points (Figure 2).
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Figure 2. Geographic locations of C. deserticola and H. ammodendron, the black dots are the sampling
points of C. deserticola, and the triangles are H. ammodendron. (I) study area; (II) study area in China.
The red letters represent the counties and topographical units involved in study area. (a) Tacheng
City; (b) Junggar Basin; (c) Hoboksar; Tacheng City; (d) Alashankou city; (e) Wusu city; (f) Shawan
county; (g) Wenquan County; (h) Huocheng County; (i) Tianshan Mountains; (j) Badain Jaran Desert;
(k) Alxa League; (l) Tengger Desert; (m) Hetao Plain; (n) Ningxia Plain; (o) Bayan Nur; (p) Baotou city;
(q) Ordos city; (r) Mu Us Desert; (s) Hexi Corridor.

The research area was determined according to the distribution range of the species points,
including the Xinjiang Uygur Autonomous Region, parts of the Inner Mongolia Autonomous Region,
Gansu, Qinghai, the Ningxia Hui Autonomous Region, and Shaanxi province. The counties and
topographical units involved in the study area (Figure 2).

2.2. Environmental Variables

To describe the environmental conditions, we selected 19 bioclimatic variables (Bio1–Bio19) and 8
soil variables (Table 1). The bioclimatic variables were downloaded BCC_CSM1.1 (Beijing Climate
Centre Climate System Modelling version 1.1) data at a resolution of 30′′ (approximately 1 km2)

https://www.gbif.org
http://pe.ibcas.ac.cn
http://www.nature-museum.net
http://www.cvh.ac.cn
http://www.papc.cn
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from the Worldclim datasets (http://www.worldclim.org). The future data includes two time periods,
the 2050s (average for 2041–2060) and the 2070s (average for 2061–2080). The new greenhouse gas
emission scenario “representative concentration pathways, RCPs” released by IPCC AR5 puts forward
that anthropogenic greenhouse gas emissions are mainly driven by population density, economic
development, way of life and production, energy development, land use, and climate policies, etc.
According to the atmospheric conditions, air pollutant concentration and land use types caused by
greenhouse gas emissions in the 21st century, RCPs are classified into one strict mitigation scenario
(RCP2.6), two moderate emission scenarios (RCP4.5 and RCP6.0), and one high greenhouse gas
emission scenario (RCP8.5). In this study, RCP2.6, RCP4.5, and RCP8.5 were selected for modeling [1].
Autocorrelation among predictors may hamper the analysis of species-environment relationships in
multiple regression settings. Then, we calculated the Pearson correlation coefficients (r) among the
19 bioclimatic variables in ArcGIS 10.2 (http://www.esrichina.com.cn/). If a pair of variables were
strongly correlated (|r|>0.8), one of the variables was removed to avoid the prediction error induced
by multicollinearity among environmental variables. We finally elected 10 bioclimatic variables to
conduct model (Table 1).

Table 1. Environmental variables used for predicting potential distribution of C. deserticola and
H. ammodendron.

Environmental Variables Variable Label

Bioclimatic Variables

Annual Mean Temperature Bio1
Mean Diurnal Range (Mean of monthly (max temp −min temp)) Bio2

Min Temperature of Coldest Month Bio6
Temperature Annual Range (Bio5-Bio6) Bio7

Mean Temperature of Driest Quarter Bio9
Mean Temperature of Warmest Quarter Bio10

Annual Precipitation Bio12
Precipitation of Wettest Month Bio13

Precipitation of Wettest Quarter Bio16
Precipitation of Warmest Quarter Bio18

Soil Variables

Topsoil USDA texture classification T_USDA
Topsoil pH (H2O) T_PH

Topsoil Organic Carbon (% weight) T_OC
Topsoil Calcium Carbonate (% weight) T_CACO3

Topsoil Gypsum (% weight) T_CASO4
Subsoil pH (H2O) S_PH

Subsoil Organic Carbon (% weight) S-OC
Soil Type Variables ST

Soil provides necessary space and nutrients for the survival of plants. Among the soil variables,
the soil type (ST) variables was the 1:1 million soil database of China from the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences (RESDC, http://www.resdc.cn). The other
soil data were derived from the Harmonized World Soil Database (HWSD, http://www.fao.org/soils-
portal/). In this study, the soil variables were assumed to remain unchanged over the two future
periods. All environmental variables are inserted into a resolution of 1 km2 and converted to American
Standard Code for Information Interchange (ASCII) format by ArcGIS 10.2.

2.3. RF Model Setting

In this study, we selected the random forests algorithm based on the ‘biomod2’ package provided by
the R software to predict the potential geographic distribution area of C. deserticola and H. ammodendron
in the future. The biomod2 modeling package is developed by R for constructing species distribution
models [46,47]. It can simulate the species distribution area by developing a single model or
combining multiple models, explore the dynamic relationship between species spatial distribution

http://www.worldclim.org
http://www.esrichina.com.cn/
http://www.resdc.cn
http://www.fao.org/soils-portal/
http://www.fao.org/soils-portal/
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and environmental factors, and calibrate and evaluate the model. Random forests (RF) model is a
new approach to classification through machine learning and integration. It is a classifier with many
decision trees. The RF model in biomod2 invokes random forest codes for classification and regression
integration, and sets bagging and boosting algorithms to optimize the model, hence, it has strong
practicability and low error [48–50]. There are two main steps in developing the RF model. Firstly,
based on bootstrap method, k samples are randomly and playback extracted from the training set data
as the training set of the classification tree. Secondly, m feature subsets are randomly selected from M
features of each sample to prepare for classification. Bagging is used to input the sample data into
each tree for classification, voting for several weak classification results, and finally forming a strong
classification result [49].

The input data of RF includes species presence points, pseudo-presence points, and 10 bioclimatic
variables related to species distribution. We used the created random points module created in the
management tools to generate 1500 pseudo-presence points based on ArcGIS 10.2. The data of presence
points and pseudo-presence points are randomly extracted and reproduced to obtain three sets of
unified data. 75% of the point data in each group are trained, and 25% are tested to evaluate the
accuracy of the predictions. In addition, every single model is constructed and operated four times to
build six scenarios based on the three RCPs in the two future time periods. In this study, we used three
evaluation indicators to assess model performance, namely area under the ROC curve (AUC) [51],
Cohen’s KAPPA (KAPPA) [52], and True Skill Statistic (TSS) [53]. These evaluation indicators are
dimensionless quantities. The evaluation result of the threshold is from 0 to 1, where a higher number
indicates higher accuracy of the model (Table 2). According to the statistical value of the evaluation
index, the optimal model is selected and the prediction results are converted into binary layers with a
range of 0–1.

Table 2. Evaluation indexes and evaluation grades of the model.

Evaluation Evaluation Grade

Indexes Best Better Moderate General Failed

AUC 1.0–0.91 0.90–0.81 0.80–0.71 0.70–0.61 <0.60
KAPPA 1.0–0.81 0.80–0.61 0.60–0.41 0.40–0.21 <0.20

TSS 1.0–0.86 0.85–0.71 0.70–0.56 0.55–0.41 <0.40

2.4. Comprehensive Habitat Suitability (CHS) Model

Soil variables provide important information on restricting the distributions of species. Based on
the MaxEnt 3.3.3 (http://homepages.inf.ed.ac.uk/lzhang10/maxent.html), the restriction model of soil
variables was constructed by using the eight soil variable data and the distribution data of C. deserticola
and H. ammodendron. The model runs randomly by selecting 75% of the points to train the model, and
25% to test and validate the model. Ten replications and 10,000 mix number of background points were
set to reduce uncertainty. Finnally, we selected the model with the highest performance through AUC,
and divided the suitability index by the threshold value of 0.5 into two categories: suitable (≥ 0.5) and
unsuitable (< 0.5).

Therefore, based on the prediction model of bioclimatic variables as well as the restriction model
of soil variables, we built the comprehensive habitat suitability model to assess the distribution of
C. deserticola and H. ammodendron (Equation (1))

CHSi = BTi×Si (1)

where CHSi is the comprehensive habitat suitability index in each evaluation grid, BTi is the results
value of the prediction model in each grid, Si is the results value of the restriction model for soil.
The range of CHSi is (0, 1).

http://homepages.inf.ed.ac.uk/lzhang10/maxent.html
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CHSi is mostly used to assess the comprehensive habitat distribution of species constrained by
multiple factors, such as soil and vegetation, in addition to the influence of climate factors [10,54].
For further analysis, we divide CHSi into three grades: unsuitable (CHSi < 0.3), moderately suitable
(0.3 ≤ CHSi < 0.5), and highly suitable (CHSi ≥ 0.5). C. deserticola, as a parasitic plant, does not naturally
exist if the host disappears. H. ammodendron is the main host plant of C. deserticola. Hence, we used the
raster calculator of ArcGIS to overlay the comprehensive habitat suitability results of these two species
to identify the core potential geographical distribution area of C. deserticola, and also divided the area
into three grades (unsuitable, moderately suitable, and highly suitable habitats).

2.5. Calculation of Spatial Pattern

In this paper, we use the directional distribution module, also known as the standard deviational
ellipse (SDE) in ArcGIS to study the spatial distribution pattern of the core potential distribution
area of C. deserticola (Figure 3). No data can be evenly distributed across the map, but the standard
deviation ellipse can be used to measure the concentration of geographic data. Thus, using “spot
map” to clarify the overall trend of the region requires a study of the central trends and dispersion of
data [55]. The actual shape of the curve has remained unclear since the issue was mentioned initially
by Lefever (1926). Therefore, Lefever had put forward a closed curve called the “standard deviation
curve”. The shape is determined explicitly by the ratio of its minor axis to its major axis, and the major
axis represents the major orientation of geographical units. The size and radius can be used to indicate
the distribution density of geographical units [56]. In recent years, the standard deviational ellipse
has gradually been studied in geography, which has become an important module in measuring the
spatial distribution of geographical elements [57], and is often used to study the spatial variation of
regional economy [58].
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direction, a and b is the major axis semidiameter and the minor axis semidiameter, θ is the rotation
angle, and α is used to judge the distribution pattern.

In order to further study the spatial pattern and migration trend of the distribution area of
C. deserticola in three RCPs from 2050s to 2070s, we convert the grid map of the core potential
geographic distribution area into a vector point set, and use the measuring geographic distribution
module of ArcGIS to obtain the SDE, and related parameters to summarize the spatial characteristics
of geographic features: central tendency, dispersion, and directional trends [59,60].

(1) Mean center (X, Y): the mean center is the average coordinates x and y of all the elements in
the study area (Equation. (2)), it is very useful for studying distribution changes and central trends.

X =

∑n
i=1 xi

n
, Y =

∑n
i=1 yi

n
(2)

where xi and yi are the spatial position coordinates of the ith element, n is the total number of elements.
(2) Standard distance (SDEx, SDEy): a common method to measure the trend of a set of points is

to calculate the standard distance in the direction of x and y, respectively. Based on the mean center
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as the starting point, the standard deviation of the x and y coordinates are calculated, the major axis
semidiameter and the minor axis semidiameter of the ellipse are determined (Equation (3)).

SDEx =

√∑n
i=1

(
xi −X

)2

n
, SDEy =

√∑n
i=1

(
yi −Y

)2

n
(3)

(3) Rotation angle (θ): it refers to the angle of the north and the major axis of the ellipse (Figure 3),
which is used to indicate the distribution direction of elements in the main trend (Equations (4)–(8)).
In this paper, we judge the spatial pattern according to the angle α (Figure 3). According to the
16-azimuth diagram [61,62], if α less than 11.25◦, we define the spatial pattern as the east–west pattern,
if greater than 11.25◦, it is the northeast-southwest pattern.
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where x̃ and ỹ are the deviation between the coordinates of the ith element and the mean center,
x̃ =

(
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(
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)
.

(4) Ellipticity (e): the ellipticity is defined as the ratio of the focal length to the major axis on the
ellipse (Equation (9)), which ranges from 0 to 1.

e =

√

a2 − b2

a
(9)

where a and b represent the major axis semidiameter, and the minor axis semidiameter of the ellipse,
respectively (Figure 3).

The mean center of the SDE represents the relative position of the spatial distribution of the
elements. The rotation angle of reflects the main direction of the distribution. The standard distance
SDEx and SDEy are the length of the major axis and minor axis. It shows the dispersion degree of
elements in the main trend direction and the dispersion degree of in the second direction, respectively.
The increase of SDEx indicates dispersion phenomenon in the main trend direction, while the increase
of SDEx is a concentration phenomenon. The increase of SDEy indicates the dispersion in the second
direction. The larger the ellipticity, the flatter the ellipse, and the more dispersed the distribution.
Conversely, the smaller the ellipticity, the more concentrated the distribution.

3. Results

3.1. Model Evaluation Analysis

In this paper, 75% of the data is trained as model calibration, and 25% is set as model validation.
Three indicators are used to evaluate the prediction accuracy in RF model. The results showed that
the maximum and minimum evaluation values of the model were 0.975 (AUC) and 0.674 (KAAPA),
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respectively (Figure 4). In general, the evaluation indexes were ranked as AUC, TSS, and KAPPA, and
the model prediction is successful according to the prediction accuracy.
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Results showed that AUC and TSS were relatively stable among the three evaluation indexes, and
there was no significant difference in the evaluation indexes under three RCPs. Under the three RCPs
in 2050s, the average values of the AUC, TSS, and KAPPA were 0.967, 0.870, and 0.744 respectively.
The evaluation grades of the AUC and TSS are better than KAPPA (Figure 4a). In the 2070s, the average
statistical value of the three evaluation indexes is lower than those in 2050s, namely, AUC was 0.942,
TSS was 0.843, and KAPPA was 0.682. However, the evaluation grade of the model was the same as
that of 2050s (Figure 4b).

3.2. Potential Geographical Distribution of Suitable Habitats

The potential geographical distribution of C. deserticola was predicted by comprehensive habitat
suitability model. The results showed that there were some differences in potential distribution habitats
under different scenarios, showing a continuous and scattered distribution (Figure 5). Under RCP2.6,
RCP4.5, and RCP8.5 in 2050s, moderately suitable distribution habitats of C. deserticola were mainly
concentrated in the north of Tianshan Mountains, near the Junggar Basin, west of Hetao plain, northeast
of Inner Mongolia Alxa League, northwest of Bayan Nur, north of Baotou city and central area of Ordos
city, north of Hexi Corridor in Gansu province, and the Ningxia Hui Autonomous Region in northern
China. Highly suitable mainly distributed near the Junggar Basin, west of the Hetao plain, and north
of Ningxia plain (Figure 5a).

At the same RCPs in 2070s, suitable habitats of C. deserticola were distributed in the parts of the
Xinjiang Uygur Autonomous Region, and the Inner Mongolia Autonomous Region on the whole
(Figure 5b). However, the habitat distribution of moderately suitable increased obviously, and the
highly suitable range continued to decrease from 2050s to 2070s. The moderately suitable areas were
increased by 0.54%, 1.26%, and 0.83% under RCP2.6, RCP4.5, and RCP8.5, respectively. The increasing
suitable habitats were mainly concentrated on increasing the regional distribution in the Badain
Jaran Desert northwest region, the northwest of Hexi Corridor, Tengger Desert, and Mu Us Desert.
On the contrary, the highly suitable area changes showed a reduction of 0.02%, 0.04%, and 0.09% under
RCP2.6, RCP4.5, and RCP8.5, respectively. The reduced habitats were mainly concentrated in the west
Junggar Basin, and in the southeastern region of Tengger Desert.
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3.3. Analysis of Factor Affecting the Distribution of C. deserticola

SDMs can calculate the relative contribution rate of environmental variables and draw the factor
response curve to analyze habitat threshold. After several model training, Bio6 (min temperature of
coldest month), Bio12 (annual precipitation), Bio13 (precipitation of wettest month), Bio16 (precipitation
of wettest quarter), and Bio18 (precipitation of warmest quarter) were selected according to the higher
contribution rate of the prediction model, which played a major role in the distribution of C. deserticola.
Among these five variables, precipitation was the key factor determining the distribution of C. deserticola.
In addition, we defined the optimal values for these five major bioclimatic factors according to the
response curves. The optimal value of Bio6 is approximately −13.5 ◦C with the highest probability
of existence. The average threshold of Bio12, Bio13, Bio16, and Bio18 are 140, 150, 88, and 112 mm,
respectively. By modeling the threshold analysis of precipitation and temperature impact factors, the
average annual temperature of the suitable habitat of C. deserticola is about 2 ◦C–11 ◦C, and the annual
precipitation is about 0–200 mm. Therefore, the suitable area was characterized by desert climate and
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low rainfall. The growth environment of C. deserticola is consistent with its host plants H. ammodendron,
which is in line with the species characteristics of hot arid habits in the existing research [63].

Regarding the soil suitability requirements of C. deserticola, the MaxEnt results showed that
S_PH (subsoil pH), ST (soil type variables), T_OC (topsoil organic carbon), and T_PH (Topsoil pH
(H2O)) were the key soil factors affecting the distribution of C. deserticola. We defined the optimal
and threshold values for the soil variables according to the response curves. The threshold value of
S_PH is approximately 7.3–9.0. Soil class is 14 types of desert soil, soil subtypes are 11 types of grey
brown desert soil and 12 types of brown desert soil. The optimal value of T_OC is 0.3%, the threshold
value of T_PH is about 7.5–8.9. We concluded that the main type of soil suitable for C. deserticola is
desert soil, with strong alkalinity, which is in line with the soil condition of C. deserticola in the existing
research [63].

3.4. Identification of the Core Potential Distribution Area

The modeling result of the comprehensive habitat suitability of H. ammodendron were shown
in Figure 6. Firstly, the predicted highly suitable area were roughly distributed in the desert and
basin in the north of the Xinjiang Uygur Autonomous Region, Qinghai province, the Inner Mongolia
Autonomous Region, the Ningxia Hui Autonomous Region, Gansu province, and Shaanxi province
(Figure 6). Secondly, the moderately suitable area of H. ammodendron was basically distributed in
the periphery of the highly suitable area. The climate in these regions is dry and sandy, which is
suitable for the growth of H. ammodendron. Lastly, by overlaying the comprehensive habitat suitability
area of C. deserticola and H. ammodendron, we obtained the core potential distribution of C. deserticola
(Figure 7). The predicted core distribution regions were distributed in the Xinjiang Uygur Autonomous
Region, the junction of Shaanxi–Gansu–Ningxia provinces, and the Inner Mongolia Autonomous
Region. These potential distribution areas of the study area are also consistent with the existing
literature [64,65].
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In the northwest of the Xinjiang Uygur Autonomous Region, the core potential distribution of
C. deserticola was mainly distributed in Tacheng city, Hoboksar, Wenquan county, Alashankou city,
Shawan county, Wusu city, and Huocheng county. For the convenience of research, we named this
distribution area as part I (Figure 7, directional distribution I), where the climate is temperate arid,
semi-arid, and the complex terrain provide a convenient condition for species survival. The directional
distribution of C. deserticola in part I included the RCP2.6 of 2050s (I11) and 2070s (I12), the RCP4.5 of
2050s (I21) and 2070s (I22), and the RCP8.5 of 2050s (I31) and 2070s (I32). In the border zone between
Shaanxi, Gansu, the Ningxia Hui Autonomous Region, and the Inner Mongolia Autonomous Region,
the core potential distribution of C. deserticola was concentrated in the west of the Hetao plain and
Ningxia plain, north of Hexi Corridor, Mu Us Desert, Badain Jaran Desert, and Tengger Desert.
We named this distribution area as part II in the same way (Figure 8, directional distribution II),
belonging to the northwest temperate and warm temperate desert areas. The directional distribution
of C. deserticola in part II included the RCP2.6 of 2050s (II11) and 2070s (II12), the RCP4.5 of 2050s (II21)
and 2070s (II22), and the RCP8.5 of 2050s (II31) and 2070s (II32).
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3.5. Directional Distribution Pattern and Migration Trend

Based on the comparison of the SDE parameters of the part I and part II under three RCPs,
we studied the spatial distribution pattern of the C. deserticola in 2050s and 2070s. In 2050s, the SDEx,
SDEy, and rotation angle increased gradually with the increase of RCP in part I (Table 3). This increasing
trend indicated that the distribution of C. deserticola in the main direction and second direction will
disperse gradually, the main direction of the distribution presents east–west pattern. The greater the
ellipticity, the more dispersed the distribution. The ellipticity of part I was I21 (0.942) > I31 (0.941) >

I21 (0.937) (Table 3), the distribution of C. deserticola was the most dispersed under RCP4.5 (Figure 8,
I21). In part II, the ellipticity was II21 (0.968) > II11 (0.899) > II31 (0.757), the distribution of C. deserticola
was more dispersed with increasing concentration path, and the main distribution direction presents
northwest–southeast pattern (Figure 7a, II).

Table 3. The standard deviational ellipse’s parameters of the core potential distribution area of C. deserticola.

Time
RCPs

Research Mean Center (◦) SDE
x(km)

SDE
y(km)

Rotation θ
(◦)

Ellipticity
Period Area X Y

2050s

RCP2.6
I11 84.193 42.927 528.040 185.032 78.821 0.937
II11 105.908 39.740 483.449 212.168 91.725 0.899

RCP4.5
I21 85.771 43.874 662.348 222.273 80.391 0.942
II21 105.802 40.538 1707.532 430.200 96.585 0.968

RCP8.5
I31 86.332 43.613 730.405 246.197 81.775 0.941
II31 105.076 39.425 371.492 242.913 99.197 0.757

2070s

RCP2.6
I12 87.005 43.929 726.342 207.777 85.109 0.958
II12 105.032 40.311 565.755 144.648 95.894 0.967

RCP4.5
I22 85.474 43.911 613.714 262.113 79.400 0.904
II22 106.471 40.401 432.174 180.055 90.526 0.909

RCP8.5
I32 86.503 43.916 634.586 242.002 82.252 0.924
II32 106.845 39.712 522.806 225.796 92.148 0.902

In 2070s, the main distribution direction of the two regions were same as those in 2050s,
the ellipticity of part I and part II were as follow, I12 (0.958) > I32 (0.924) > I22 (0.904), and II12 (0.967)
> II22 (0.909) > II32 (0.902) (Figure 7b). The distribution of C. deserticola was more centralized with
increasing concentration path in part I. SDEx, SDEy, and rotation angle decreased gradually with the
increase of RCPs in part II (Table 3). In general, the degree of concentration will intensify under the
same RCP as time goes, which means that the future climate and environmental changes would easily
lead to the habitat migration of C. deserticola.

The centroid was calculated by using the module of mean center in ArcGIS toolbox to get the
longitude and latitude of under three RCPs, and the centroid migration route from the 2050s to
2070s was mapped (Figure 8). The results showed that geographical habitat of species is moving
towards higher latitude during the process of climate warming, as global climate change has caused
the temperature to rise, the temperature zone to move north, and precipitation to increase. Specifically,
in part I, the overall centroid distribution of C. deserticola showed a trend of migration northward over
time. The migration pathway angle under RCP2.6 and RCP8.5 was greater than 11.25◦, showing a
trend of northeast migration. The angle of migration pathway was greater than 90◦ under RCP4.5,
with a tendency to the northwest (Figure 8a). As for part II, the angle of centroid migration pathway
was less than 11.25◦ under RCP2.6, with a trend of eastward migration. With the increase of RCPs,
the distribution of centroid gradually would move northwest (Figure 8b). Hence, our results were
consistent with the previous studies [66,67].
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4. Discussion

4.1. RF Model

At present, in the developed SDMs, simple algorithmic models such as GLM, CTA, and SRE have
poor performance, and the simulation results will overestimate the potential area of species distribution.
Complex machine learning models, such as RF, ANN, and MaxEnt, have better spatial distribution
performance to some extent [68]. For example, MaxEnt is the most popular species distribution
model in recent years because of its friendly data interface and simple data requirements. However,
researchers did not change the default parameters in the process of MaxEnt modeling, so the model
cannot satisfactorily meet the existing conditions of the model construction, which makes MaxEnt more
sensitive to sampling deviation, and also has the problem of over-fitting [69]. While, among the SDMs,
only the MaxEnt model can use categorical data as environmental variable inputs [10,54]. Therefore,
soil variables and species point data were applied to MaxEnt to construct the restriction model in
this paper. Regression ensemble of RF can describe the relationship between multiple independent
variables (environmental factor) and a single dependent variable (species presence probability) [70].
Overall, RF combines regression and classification algorithms and takes multiple factors into account
in the modeling. This unique working principle makes the error relatively low. Moreover, the model is
based on multiple decision trees to fit a classification tree together, so it has become a machine learning
method with good predictability and high frequency of use in most SDMs. Therefore, we choose the
RF to construct prediction model based on machine learning.

Of course, it is essential for the modeler to avoid the selection of single model, or eliminate or
reduce the bias caused by model selection, so that all models can participate in order to improve
the advantage of ensembles of small models (ESMs) [71]. Nowadays, the ESMs have become a new
trend and method to study species distribution [72,73]. After weighing several single models with
high performance, the combination model is constructed. The suitable habitat distribution area of
species obtained is very close to the actual results, which reduces the model uncertainty to a certain
extent and has certain universality. Compared with single SDMs, the ESMs have some limitations [71].
The first drawback of the ESMs is its higher computational complexity and time consuming. The lack
of implementation capabilities of current statistical software (such as R) also limits its use. In addition,
ESMs are thought to be particularly useful when applied to rare species, the question is how rare a
species must be to make ESMs outperform standard SDMs [74]. Although ESMs can be widely used in
general species at present, for some species, many background points could be located far away from
presence points, leading to high AUC values by easily distinguishing the background from presence
points [75]. Therefore, after comparison and screening, we choose RF with the best prediction accuracy
in a single model to run to reduce uncertainty. Meanwhile, we also have tried to explore the use of
ESMs to study the evaluation and comparison of species distribution models [24].

4.2. Evaluation Indexes

According to the research results, three evaluation indexes—AUC, TSS, and KAPPA—were
used to evaluate the RF model. The accuracy of the first two indicators was relatively high and
close, while the accuracy of KAPPA was small, but on the whole, these three indicators all proved
that the prediction accuracy of the RF model was very high (Figure 4). According to the difference
of SDMs, the evaluation indexes of the model could be divided into threshold-dependent and
threshold-independent. Specifically, AUC is a threshold independent evaluation metric and is
considered to be a valid measure of the performance of an ordered scoring model [76]. However, the
application of SDMs in conservation planning, such as identification of biodiversity hotspots and
selection of representative conservation sites, often requires the presence–absence maps of species
distribution [53]. In this case, the prediction accuracy should be evaluated based on the selected
threshold-related indicators. KAPPA is one of the widely used model performance measurements for
predicting accuracy the presence–absence maps, but it has serious limitations. Therefore, TSS is further
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proposed to compensate for the disadvantages while maintaining all the advantages of KAPPA, which
is not affected by prevalence and verification set size. It provides a threshold-dependent evaluation
measurement, which can be easily applied to presence–absence prediction, and its value is highly
correlated with threshold-independent AUC statistics. The statistical values of TSS and AUC in this
study are relatively close. This is consistent with other research results [53]. TSS can be used as an
appropriate alternative to AUC when model predictions are expressed as presence–absence maps.

Besides, the results showed that the AUC and TSS statistical values of the evaluation indicators
are relatively higher, which directly indicates that the model has excellent prediction performance, and
may also indicate that the data or space have strong autocorrelation. There are many factors affecting
the accuracy of prediction results in the modeling process, including the geographical scope of the
study area, the natural distribution of species, and how the potential distribution of suitable habitats
evolves as environmental conditions change. We have noticed that most scholars did not consider
geographic location and spatial transmission in model accuracy assessment [77]. Therefore, if dispersal
and biogeographic history are included, the results may differ. Consequently, the threshold range of
the evaluation indexes in each model will vary, but this does not mean that any of the statistics are
misleading [78]. In a word, the difference in model prediction performance is measured by different
statistical data [79]. It should be determined according to the correlation between the appropriate
statistical data and the application of the model, which cannot be generalized. Perhaps, some models
have a higher AUC, TSS, but the performance difference between ‘known’ and ‘independent area’
climates is greater, while others have a lower AUC, TSS but performance is more stable in different
climates [80].

4.3. Environment Variable and Scenarios

The factors affecting species distribution are multiple, such as climate, topography, soil, human
activities, species interactions, and physiological characteristics of species, etc. [81–83]. Most of these
data can be obtained and used. The factors involved in the model vary depending on the research species.
In this study, bioclimatic factors were selected to model and predict the potential habitats distribution,
and soil variables were used as limiting factors to further evaluate the comprehensive suitability
distribution (Table 1). On the one hand, the research species are C. deserticola and H. ammodendron
located in the arid area of Northwest China, and most of the land suitable for their growth was
sandy land. The change rate of soil properties and topographic factors such as elevation of habitats
is very delicate over a long-time scale from past to future, so it is feasible to predict future habitat
distribution [84,85]. Global Human Influence Index (HII) can reflect the distribution form and state of
the scope and intensity of human activities in geographic space. According to research results, the
core potential distribution areas of C. deserticola were distributed in the Xinjiang Uygur Autonomous
Region, the junction of Shaanxi–Gansu–Ningxia provinces, and the Inner Mongolia Autonomous
Region (Figure 7), where the population distribution is sparse and the urban development is slow.
These factors are not enough to affect the habitat of wild C. deserticola. On the other hand, from the
time perspective, the time horizon and scale of existing land types and human activities data do not
match the climate data. If we want to further analyze the impact of these factors, we must strive to
solve the coincidence degree between the spatial and temporal resolution. Therefore, this paper only
explored the impact of climate change and soil condition on the distribution of C. deserticola assuming
that the topography and soil will not change in a short period of time.

In fact, the future climate scenarios were forecasted and evaluated by taking into account land
use, population density, economic development, living and production mode, and other factors.
The 19 bioclimatic factors selected in this paper are divided into two basic elements: temperature
and precipitation, which play a leading role in the growth of C. deserticola. RCPs are common
emission scenarios for predicting the suitable habitat distribution of species under future climate
change [86,87]. It is predicted that by the end of the 21st century (2081–2100), from RCP2.6 to
RCP4.5, and then to RCP 8.5, the global average surface temperature may increase by 0.3 ◦C–1.7 ◦C,
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1.1 ◦C–2.6 ◦C, and 2.6 ◦C–4.8 ◦C, respectively [1], compared with the average temperature during
1986–2005. Therefore, the intensity of the emission scenario will prove to be a key factor determining
the uncertainty level in future prediction [76]. The analysis of the threshold range of the main factors
affecting the distribution of C. deserticola could determine the future trend of climate change and
indirectly reflect the degree of adaptation of C. deserticola to climate change. We predicted that the
spatial migration trend of C. deserticola would increase with the intensity of emission scenarios, so
the prediction uncertainty would increase with time (Table 3). Therefore, neglecting the migration
parameters may lead to errors when simulating higher emission scenarios or longer periods of time.

4.4. Parasitic and Host Plants

According to our prediction, the potential suitable habitats of parasitic plant C. deserticola
and host plant H. ammodendron were roughly distributed in the desert and basin of the Xinjiang
Uygur Autonomous Region, Qinghai province, the Inner Mongolia Autonomous Region, the Ningxia
Hui Autonomous Region, Gansu province, and Shaanxi province (Figure S1). The habitat area of
H. ammodendron was obviously larger than that of C. deserticola. By superimposing the suitable habitats
of these two species, we could further concluded that the core potential suitable area for the growth of
C. deserticola is located in the northwest of the Xinjiang Uygur Autonomous Region, the junction of
Shaanxi–Gansu–Ningxia provinces, and the central of Inner Mongolia Autonomous Region (Figure 7).
These areas were located in the northwest inland area of China. Affected by the cold winter air of
Mongolia and Siberia and blocked by the surrounding mountains, the wet summer monsoon from the
ocean is difficult to reach, which makes the habitats rare in precipitation and drought all year round.
The growth environment of C. deserticola is very poor. It is predicted that with the passage of time
and the enhancement of emission scenarios, the core potential distribution area of C. deserticola will
decrease gradually. We should also highlight that suitability projections are only potential distributions
based on climatic factors rather than future distribution predictions.

There are many factors affecting the reduction of suitable habitats of C. deserticola in the future,
among which climate change is the main reason, and the external factors such as artificial digging
could be ruled out. However, compared with these factors, the habitat decline of H. ammodendron will
cause great damage to C. deserticola, which is the main threat to the habitat of C. deserticola. As the
skin disappears, what will the hair stick to? As a parasitic plant, if the host disappears, C. deserticola
naturally would not exist. H. ammodendron is a very important windbreak and sand fixation plant.
The direct consequence of habitat degradation of H. ammodendron is desert expansion. In the case
of preventing desert expansion, the protection of H. ammodendron in China is still effective, mainly
reflected in a large number of artificial planting of H. ammodendron to prevent wind and fix sand, so the
habitat of C. deserticola may also be correspondingly protected. Of course, this paper only studies the
geographical distribution of C. deserticola and its host H. ammodendron, and further attempts should
be made to analyze the interaction between the parasitic relationship, and habitat distribution of
H. ammodendron and C. deserticola from the perspective of biomass and biological characteristics [88,89].

4.5. Protection of Desert Forest Ecosystem

Nowadays, global land desertification is becoming more and more serious. A large number of
forests have been felled and cultivated, which has led to the gradual expansion of desertification areas
in various countries, and the growing problems of environmental pollution especially in desert areas.
In order to mitigate and solve the desertification, countries are vigorously preventing people from
cutting down at will, supporting the conversion of farmland to forests and development of desert
forest systems. Most land types of C. deserticola and H. ammodendron are sandy or semi-fixed dunes
that are easily disturbed by natural and human factors. If the surface vegetation of these two species
distribution areas was destroyed, the habitats will evolve into deserts. H. ammodendron is a native
sand-fixing plant in desert area, it has strong characteristics of drought resistance, heat resistance, and
cold resistance [39,40,90]. H. ammodendron, as an excellent tree species for sand fixation and afforestation
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in arid areas of Northwest China and desert areas of Inner Mongolia, plays a vital role in reducing soil
erosion and protecting desert forest ecosystem. Consequently, the protection of H. ammodendron forest
not only has the advantage of windbreak and sand fixation, but also actively promotes the growth of
C. deserticola and protects the ecological benefits of endangered species.

5. Conclusions

This study analyzed the comprehensive habitat distribution of parasitic plant C. deserticola and its
host plant H. ammodendron under future climate scenarios. The feasibility of using an RF model to
predict potential geographical distribution is tested in this research. The results indicated that AUC
and TSS were more stable for model evaluation and more accurate in forecasting.

The bioclimatic factors with greater impact on the distribution of C. deserticola are Bio6 (min
temperature of coldest month/◦C, Bio12 (annual precipitation/mm), Bio13 (precipitation of wettest
month/mm), Bio16 (precipitation of wettest quarter/mm), and Bio18 (precipitation of warmest
quarter/mm), respectively. The studies have shown that the sensitivity of C. deserticola on precipitation
index is higher than the temperature index.

Potential highly suitable area of C. deserticola were distributed in 43◦ N–48◦ N, 80◦ E–89◦ E (part I)
of arid and semi-arid area, and 39◦ N–42◦ N, 101◦ E–119◦ E (part II) of northwest temperate and warm
temperate desert area. Moderately suitable areas were basically distributed in the peripheral extension
areas of highly suitable, where the habitat range showed a decreasing trend. The scenarios with higher
RCPs would have a larger impact on the spatial distribution pattern of species in the future. Since
the impact of climate change on species produced is not reversible, it is necessary to strengthen the
protection of C. deserticola.

According to the migration trend and the core potential suitable habitat distribution of C. deserticola,
we should protect the ecosystems environment of distribution zones to expand habitats effectively.
While protecting the habitat of C. deserticola from destruction, it is of great significance to improve the
yield and quality of C. deserticola as the traditional Chinese medicine for sustainable development.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/9/823/s1.
Figure S1: Potential comprehensive habitat suitability of C. deserticola (a) and H. ammodendron (b) in current.
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