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Abstract: Tree-ring stable isotopes are insightful proxies providing information on pre-instrumental
climate fluctuations, yet the variability of these data within a tree trunk has not been fully explored.
Here, we analyze longitudinal and circumferential changes in tree-ring δ13C values from 1991–2010,
considering seven height levels from 1 to 13 m above ground and six sampling directions (radii)
separated by 60◦ around the stem. The disk samples were taken from a 360-year old European
larch (Larix decidua Mill.) that grew at 1675 m above sea level in the Simplon Valley, Switzerland.
Results show that the circumferential δ13C variability, defined as the difference between the minimum
and maximum isotope values within a single ring at a certain height, ranges from 0.5 to 2.8%�.
These differences appear substantial as they match the range of year-to-year variations retained
in long tree-ring δ13C time series used for climate reconstruction. The assessment of longitudinal
variability demonstrated a systematic change of ~0.1%� m−1 towards isotopically heavier (less negative)
δ13C values with increasing tree height, likely reflecting a vertical gradient towards isotopically
heavier needle tissue due to changing microclimatic conditions and CO2 stratification within the
canopy. Calibration against regional climate data indicates no substantial signal changes in δ13C
values within the trunk. We conclude that the longitudinal isotope gradient adds uncertainty to long
δ13C chronologies derived from subfossil material of unknown (and changing) sampling heights.
The large circumferential variability recorded in the sub-alpine larch suggests that more than two
cores are needed to analyze absolute δ13C values representative for each tree.

Keywords: stable isotopes; sampling height; tree-rings; larch tree; dendrochronology; Simplon
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1. Introduction

Tree-ring δ13C is an important proxy in paleoclimate research that has been used to
reconstruct temperature [1,2], precipitation [3,4], drought [5,6], and cloud cover variability [7,8] over
pre-instrumental periods. Some of these reconstructions are based on δ13C values from only living
trees that typically cover the past one to several centuries [9–11]. Records reaching further back in
time, even covering the entire past millennium, are much rarer and often combine data from living
and subfossil trees [12,13]. The latter can be dead wood on the ground [8], material from logs covered
in sediment [14], stems that fell into shallow lakes [7,15], and beams from historical buildings [16–20],
such as the old huts and barns made of resistant Larix decidua boles in high elevation environments of
the Swiss Alps [21].
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Whereas the sampling height for dendroclimatological analyses from living trees, i.e., the height
where disc or core samples are obtained, is restricted to 1–1.5 m above ground [22], this convention
cannot be guaranteed for subfossil material [23]. For beams from historical buildings or wood remnants
from lakes and sediments, it usually remains unknown whether a core or disc sample originates
from a stem height of 1, 5, or even 10 m above ground, so that potential longitudinal δ13C variability,
along the tree trunk, can affect climate reconstruction uncertainty [24,25]. Similarly, δ13C variability
among different radii of the same level, e.g., in 1 m above ground, can affect a reconstruction if such
circumferential variability is large and not mitigated by sampling several radii from different trees for
stable isotope measurement (overview in [26]).

Circumferential δ13C variability has been reported for various tree species and habitats (Table 1).
Early work from 1980 revealed differences of up to 1.0%� based on three decadal samples along five
radii of a Pinus ponderosa from the United States [27], and up to 4.5%� based on 19 annual samples
along two radii of a Quercus rubra from the Netherlands [28]. Subsequent work demonstrated this
4.5%� to be the upper limit of circumferential variability across species, whereas the grand mean of
all studies from nine countries listed in Table 1 is 1.1%�. The range of circumferential variability also
includes smaller values, down to 0.1%�, as recorded between two annually resolved δ13C sequences
over 73 years in a Pinus sylvestris from Germany [29]. The circumferential variability found in trees
from various habitats prompted dendrochronologists to conclude that four cores per tree are needed to
represent the absolute δ13C values in tree-rings [26,30].

Table 1. Circumferential δ13C variability in tree-ring studies. The first column lists the ranges of
smallest to largest δ13C differences among years (pentads or decades) for which radial isotope values
were measured in the respective studies.

Circum.
Variability Radii Resolution/Period Species Country Source

0.5–1.0%� 5 decadal over 30 years Pinus ponderosa USA [27]
0.1–4.5%� 2 annual over 19 years Quercus rubra Netherlands [28]
0.5–1.0%� 4 pentadal over 130 years Phyllocladus asplen. Tasmania [31]
0.5–2.0%� 4 annual over 100 years Picea sitchensis USA [32]
0.5–2.5%� 4 annual over 100 years Nothofagus pumillio Chile [32]
0.5–1.2%� 8 pentadal over 80 years Pinus edulis USA [30]
0.5–1.3%� 3 annual over 30 years Abies pindrow India [33]
0.1–2.3%� 2 annual over 73 years Pinus sylvestris Germany [29]
0.5–1.0%� 3 annual over 7 years Quercus petraea N. Ireland [34]

0.5%� 8 1 ring (1991) in 4 trees Pinus pinaster France [35]
0.9–2.1%� 8 annual over 42 years Cryptomeria fortune China [36]
0.4–1.6%� 8 annual over 24 years Cryptomeria fortune China [36]
0.7–2.0%� 8 annual over 20 years Abies fabri China [36]

Compared to the assessments of circumferential variability, studies of longitudinal δ13C variability
are fewer and the results less conclusive (Table 2). There are only six studies in which longitudinal
variability has been analyzed over vertical distances >1 m, and only three of these studies considered
trunk distances >6 m. The results range from 0.1%� longitudinal variability, as recorded in a 25-year
group over 6 m in a Pinus sylvestris from Sweden [37], to a maximum of 1.5%� over a trunk distance
of 2 m in a Juniperus monosperma from the United States based on the single tree-ring of 1981 [38].
Interestingly, there is only one early study [39] that found a small, but systematic trend (0.01%� m−1)
towards isotopically heavier δ13C values with increasing tree height. All other analyses revealed
no systematic δ13C gradient with tree height, but random variability ranging from 0.5 to 1.5%� over
vertical distances from 2 to 28 m.
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Table 2. Longitudinal δ13C variability in tree-ring studies. The values in the first column represent
the ranges of smallest to largest average isotope composition among the different height levels
being analyzed.

Longitud.
Variability Levels Resolution Species Country Source

0.01%�/m 7 levels over 14 m 7-year group Quercus robur Germany [39]
0.05–0.1%� 3 levels over 6 m 25-year group Pinus sylvestris Sweden [37]
1.0–1.5%� * 5 levels over 2 m 1 year (1981) Juniperus monosp. USA [38]
0.5–1.0%� * 5 levels over 2.8 m 7 years (1975–1981) Pinyon pine USA [38]

0.9%� * 8 levels over 28 m 1 year (1983) Fagus sylvatica Germany [40]
1%� * 12 levels over 13 m ** 1 year (1991) Pinus pinaster France [35]

* No systematic trend along the trunk. ** Use of four 26-year old trees, including 11–14 levels over 11–14 m.

The absence of a systematic δ13C gradient along the trunk is somewhat surprising, as the
assessment of leaf tissue demonstrated a steep vertical gradient of 3%� towards higher δ13C values
over 23 m in a Fagus sylvatica from Germany [40], likely triggered by changing microclimatic conditions
and CO2 stratification with tree height [41–43]. This finding was later supported in a study of 200
conifer trees from the northern Rocky Mountains, USA, revealing a vertical decrease in foliage δ13C
values, from the top to the bottom of the canopy, ascribed to decreasing photosynthetic capacity due to
shading with increasing distances from the crown level [44]. Such a trend within the canopy has been
speculated to affect the isotopic composition of tree-rings along the trunk [40], yet the relatively sparse
empirical evidence available so far does not support this hypothesis.

In this paper, we present the results of ~400 stable carbon isotope measurements from a single
Larix decidua tree from the Simplon Valley in Switzerland. Trees of this species have been used as
construction timber in historical buildings, and tree-ring width (TRW) [45], maximum latewood
density [46], and δ13C [17] measurements of this archive have been analyzed to reconstruct climate
variability over the past millennium. We assess the circumferential and longitudinal variability in
tree-ring δ13C values at seven trunk heights from 1 to 13 m above ground and six radii per height level.
The annually resolved δ13C values from 1991–2010 were calibrated against regional temperature and
precipitation data to evaluate potential changes in signal strength, and the results are discussed with a
focus on the paleoclimatic significance of stable carbon isotopes from tree-rings.

2. Materials and Methods

2.1. Site Description and Sample Preparation

A 20 m tall and 360-year old European larch (Larix decidua Mill.) at 46◦10′41” N and 08◦05′11” E in
the Simplon Valley, Canton Valais, in the Swiss Alps was cut down. The tree grew in a larch-dominated
forest at 1675 m a.s.l. on a 65% steep, NW-facing slope. Larch trees from this sub-alpine belt have
historically been used as construction timber [21], providing the source material for millennium-length
climate reconstructions based on tree-ring growth and stable isotope parameters [17,19,45,46]. European
larch is a cold-tolerant tree, widely abundant and commonly cultivated in the Alps. Due to its ability
to maintain stomatal conductance under non-severe dry conditions, it covers a range of sites including
cold–wet to cold–dry habitats [47].

The sampling area in the Simplon Valley is characterized by well-drained podzols on silicate
bedrock covered by a thin layer of organic litter and sparse ground vegetation. The felled larch was
located ~400 m below the elevational treeline, at a location where the growing season, during which
daily temperatures exceed 5 ◦C, is already relatively short, extending from May to September [48].
Data from the nearby weather station in Simplon Dorf at 1495 m a.s.l. indicate July to be the warmest
month, reaching 14.5 ◦C and an annual mean of 5.3 ◦C. Precipitation sums in this elevation exceed
1300 mm and are characterized by two seasonal maxima in April–May and October.

The larch trunk was cut at 1, 3, 5, 7, 9, 11, and 13 m above ground to obtain ~5 cm thick
discs representing seven height levels (Figure 1). At each level, six ~0.5 cm wide sticks were cut at
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even 60◦ spacing around each disc representing radii A to F. We measured and crossdated the TRW
at each of these 42 radii (7 discs x 6 radii) using the TSAP (Rinntech, Heidelberg, Germany) and
Cofecha programs [49,50], and processed rings for the period 1991–2010 from the 360-year old larch for
isotopic analysis.
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Figure 1. Schematic drawing illustrating the sampling design of a 360-year old Larix decidua in the
Simplon Valley including seven discs in heights ranging from 1 to 13 m, six radii every 60◦ on each disc,
and 20 tree-rings from 1991–2010 on each radius.

2.2. Stable Isotope Measurement and Analysis

For each radius, the outermost 5–7 cm were cut off, and the wood pieces leached for eight
hours in distilled water and for 24 h in ethanol, all at 60 ◦C, to remove waxes and resins (procedure
outlined in [13]). A full extraction of alpha-cellulose was not applied as the effects of this cost-intensive
procedure were shown to be small [51,52]. The dried wood pieces were then fixed on a microtome,
several transverse 200–300 µm thin-sections cut, and the annual rings from 1991–2010 separated using
a scalpel under a reflected light binocular. The rings of five to ten of these thin-sections were typically
homogenized to gain a mass of 0.5–2.5 mg sample material for each year.

The annual samples were admitted into an elemental analyzer interfaced with an IsoPrime isotope
ratio mass spectrometer (GV Instruments Ltd., Manchester, UK), maintained at the Department of
Inorganic and Analytical Chemistry of the Johannes Gutenberg University in Mainz, to quantify the
xylem 13C/12C ratios. Results are expressed in the delta notation in parts per thousand (%�), relative to
the VPDB standard for carbon isotopes. Replicated runs using IAEA-CH6 saccharose and IAEA-CH7
polyethylene standards [53] indicated the uncertainty of δ13C values to be ±0.1%�.

The δ13C data were corrected to account for trends from anthropogenic emissions of fossil CO2

into the atmosphere leading to a depletion of 13C in plant tissue [54]. Since additional corrections,
to compensate for changes in water use efficiency [55], are currently discussed within the isotope
community [10,56], we have chosen a moderate correction of 0.0073%� per ppm CO2 increase,
as proposed in a study of juniper, pine, and oak trees from Egypt and the USA [57]. However, since
all 42 radii analyzed here are equally affected by this correction, the particular procedure does not
affect the comparison among radii and height levels and is of only marginal significance to the climate
signal assessments.

The δ13C series from 1991–2010 were compared among the six radii, A–F, by producing box plots
showing the minimum and maximum differences, as well as the first, second (median), and third
quartiles considering the δ13C values of each single ring. We also used box plots to illustrate the
range of correlations among the radii and calculated disc mean curves (DMCs) to produce time series
representing the tree heights at 1, 3, 5, 7, 9, 11 and 13 m. DMCs were calculated for the original δ13C
and TRW measurements as well as the first-differenced versions of these data. The first-differenced
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DMCs were used to estimate the climate signals at different tree heights by correlating the 1991–2010
proxy records against temperature and precipitation data from the nearby meteorological stations in
Grächen and Simplon-Dorf.

3. Results and Discussion

3.1. Circumferential Variability

The assessment of radial δ13C series from 1991–2010 reveals differences around the larch trunk,
which vary with year. Intra-ring variability at 1 m height exceeds 2.2%� in the early years from
1991–1993, declines in the mid-2000s, reaching a minimum of 0.68%� in 2008, and then increases again
to 2.5%� in 2010 (Figure 2). These temporal changes in circumferential variability are characteristic for
all tree heights (not shown) and include changes in radii order, i.e., radii showing lowest and highest
δ13C values in the 1990s (dark grey and dark green in Figure 2) are replaced by other radii in 2005 and
2009, respectively. Circumferential variability, here defined as the difference between the minimum
and maximum isotope values within a single ring, is overall largest at 1 m above ground at a median
of 1.8%� (Figure 3). In addition, the range of intra-ring variability (the whiskers in Figure 3) is largest
at 1 m (0.5 to 2.8%�), but both observations, median and range, do not change systematically with tree
height. The smallest median circumferential variability is recorded at 7 m (0.9%�), and the smallest
range between minimum and maximum differences is recorded at 9 m (1.2 to 2.1%�).
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of intra-ring δ13C variability among radii A–F.

The circumferential variability recorded in Larix decidua from the Swiss Alps is in the upper range
of intra-ring δ13C variability reported from other species (Table 1), except for the values observed in a
Quercus rubra from the Netherlands that reached the highest differences at 4.5%� [28]. The differences
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among these case studies are likely controlled by variable tree species and site conditions, including
elevation, slope, expositions, ground vegetation, soil, and forest composition and density. It therefore
appears important to continue documenting circumferential variability in other habitats, particularly
if intra-ring δ13C variability is of the same magnitude as inter-ring δ13C variability, as is the case
here. Additionally, circumferential variability is important if samples from different radii (and trees)
are pooled [38], which is often done to save costs when producing long isotope time series for the
reconstruction of environmental and climatic changes over pre-instrumental periods [4,8,54]. Potential
biases might arise when pooled mean chronologies integrate several radii covering different periods,
and if TRW differs substantially among these radii.

The shading of needles and consequent effects on CO2 assimilation rates have been identified
as key drivers of circumferential δ13C variability in stem tree rings [38,58]. These effects are likely
also prevailing in our larch tree that grew in a closed-canopy forest, where competition for light is a
growth-controlling and grown-shaping factor. As canopy shading effects have also been suggested to
increase with grown enlargement [31,59], we might very well have emphasized these influences
by considering only the outermost 20 rings of a mature, 360-year old tree. Also, the canopy
architecture of our sample tree likely influenced δ13C based on shading and sunlight, as the stream of
photosynthates produced from leaves at the end of the tree’s branches contributed to its individual
circumferential variability.

Our results could additionally be influenced by considering whole-ring samples instead of
only the latewood of each ring. Whereas the latter can easily be biased by the steep intra-ring
δ13C gradients [60], when cutting off sample material in the earlywood/latewood transition zone,
the potentially varying timing of CO2 assimilation in certain parts of the crown and effects on
circumferential δ13C variability [33] are likely larger in whole-ring samples integrating fractionation
processes over two growing seasons [61]. Ramesh et al. [33] suggested that tracheids produced in
various radii along the circumference may integrate assimilates that were produced during slightly
different times of the growing season and that these time-shifts could additionally trigger circumferential
δ13C variability.

In addition to the absolute δ13C differences, substantial variability in inter-radii correlations are
recorded in the Swiss larch trunk (Figure 4). As with the absolute difference, the correlations among
radii A–F do not change systematically with tree height but are smallest at 3 m (median r = 0.31) and
largest at 7 m (r = 0.71). In addition, the range of correlations is quite large and includes very high
values, e.g., r = 0.97 between two radii at 5 m, as well as significantly negative values, e.g., r = −0.44
between two radii at 13 m. These changes are, however, not influenced by the angular distance between
radii, as we find similar results between adjacent radii as well as opposing radii (not shown).
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Whereas the average of all inter-radii median correlations shown in Figure 4 (r = 0.57) demonstrates
that the single radii at a certain tree height share common high-frequency variance, the large range of
correlations, including negative values at four heights (3, 5, 7, 13 m), underpins the unsystematic nature
of circumferential δ13C variability. In the larch trunk from the Swiss Alps studied here, circumferential
variability (i) is larger among certain radii but smaller among others, (ii) is larger in certain rings but
smaller in others, and (iii) is larger at a certain tree height but smaller at another. These differences can
partly be compensated by sampling four radii at a certain height [30], yet the pooling of radial samples
not only prevents the analysis of circumferential variability but also precludes the mitigation of biases
that could otherwise be achieved by detrending single stable isotope measurement series [1].

3.2. Longitudinal Variability

The comparison of DMCs reveals a systematic trend of ~0.1%� m−1 (r2 = 0.86) towards isotopically
heavier δ13C values with increasing tree height (Figure 5). Except for the data recorded at 7 m
(−23.97%�), the average carbon isotope values steadily increase from −24.13%� at 1 m to −22.93%� at
13 m. This trend in average values is also reflected in the DMCs over the 1991–2010 period, yet there is
no single year during which the δ13C are ideally ordered by tree height. This is particularly the case as
the 7 m DMC (the grey curve in Figure 5) repeatedly shows lower values compared to the adjoining 5
and 3 m DMCs, and even displays the overall lowest values in 2000−2002, 2007 and 2008. Whereas the
reasons for the stronger discrimination against 13C in these years and the overall more depleted values
at 7 m tree height remain unknown, these anomalous results effectively illustrate that conclusions can
easily be biased if only two tree heights and only one or a few years are considered in assessments of
longitudinal δ13C variability.
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Figure 5. Longitudinal δ13C variability. Left panel shows the δ13C disc mean curves (DMCs), integrating
the radii A-F at tree heights from 1 to 13 m. Right panel shows the average values at these heights.

The trend towards isotopically heavier values with increasing tree height found here deviates
from most existing assessments conducted so far (Table 2). The reasons for this contradictory
conclusion are potentially manifold, but certainly include the particular tree species—here a deciduous
conifer—and study site in a high elevation alpine environment. The longitudinal δ13C trend appears
to be independent of TRW that shows no systematic gradient with tree height but a temporal increase
from ~0.5 to 1.0 mm over the 1991–2010 period (Figure 6) is potentially related to regional warming
and/or thinning effects. The δ13C trend reported here for Larix decidua fits expectations based on δ13C
measurements of leaf tissue of a Fagus sylvatica from Germany, demonstrating a distinct gradient of
~0.13%� m−1 towards less negative values with increasing canopy height [40]. Our findings are also in
line with gradients found in needle tissue of multiple tree species in the western United States [44],
attributing these trends to shading [42,62] and water stress effects on foliar δ13C [63]. Also, the effects
of CO2 stratification driven by the decomposition of soil organic matter [41,64] could contribute to the
longitudinal trend recorded here.
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Our results might also differ from previous findings because we sampled several radii and
measured six sequences of 20 rings in each level along the trunk. Averaging the radial series to form
DMCs compensates for circumferential variability that would otherwise affect the results, if only one
radius and only one ring or group of rings were considered. This conclusion is underpinned by the
early work of Tans and Mook (1980) [28], who demonstrated substantial longitudinal δ13C variability
of 0.8%� over only 40 cm in a Quercus rubra L. from the Netherlands. Yet this variability diminished to
only 0.2%� 40cm−1 if the fiber orientation within the oak stem was considered. These results show that
each fiber has its own δ13C identity, and that sampling several radii per height level, and averaging
these supports discerning longitudinal trends over longer stem distances. Further studies of annually
resolved δ13C series (i) over two or more decades, (ii) along 4–8 radii, (iii) at multiple heights, (iv) over
10+ meters are needed to test whether the longitudinal gradient recorded here in Larix decidua from the
Swiss Alps can be validated for other tree species and habitats.

3.3. Climate Signals

Despite the large circumferential and longitudinal variabilities recorded in our larch trunk,
the δ13C DMCs displayed in Figure 5 correlate at r1992–2010 = 0.82, revealing substantial covariance
among tree heights. The corresponding seven TRW DMCs even correlate at r1992–2010 = 0.94, but this
coefficient is inflated by a common trend towards wider rings (Figure 6). Removal of the long-term
trends from the δ13C and TRW data, by first differencing the DMCs (Figure 7), demonstrates that
significant high-frequency co-variability is retained in both tree-ring parameters along the trunk
(rδ13C = 0.86, rTRW = 0.88). As the mean δ13C and TRW time series (red curves in Figure 7) also
correlate significantly at r1992–2010 = 0.54, this shared variability indicates that both proxies are
controlled by similar climatic drivers.
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Figure 7. High frequency TRW and δ13C variability. Top panel shows first-differenced TRW disc mean
curves (DMCs) at seven tree heights (black) together with their arithmetic mean (red). Bottom panel
shows the first-differenced δ13C DMCs and mean.

Calibration against monthly climate data shows that the highest correlations are recorded with
regional May–August temperatures (δ13C and TRW) and previous-year May–August precipitation
(δ13C) (Figure 8). The latter signal seems to be a side effect of our approach of considering whole-ring
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samples that include earlywood material from stored photosynthates, which are additionally affected
by previous-year hydroclimatic conditions [65]. The dominant, current-year warm season temperature
signal is stronger and longitudinally more balanced in δ13C compared to TRW. Whereas the δ13C
correlations range from r = 0.57 at 3 m to r = 0.79 at 13 m, the TRW results are consistently lower
(r = 0.48–0.60) except for the deviating coefficient obtained for the 13 m DMC (r13m = 0.78). However,
given the short calibration period that includes only 20 years from 1992–2010, all longitudinal differences
shown in Figure 8a are insignificant, and therefore do not support specific considerations of certain
tree heights to potentially increase signal strength in tree-ring δ13C (or TRW) time series.Forests 2020, 11, x FOR PEER REVIEW 9 of 13 
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Figure 8. High frequency climate signals. (a) Pearson correlations δ13C disc mean curves (DCMs)
against May–August (MJJA) mean temperatures (blue), δ13C DCMs against previous-year MJJA
precipitation (yellow), and TRW DCMs against MJJA temperatures. Both the proxy and instrumental
data were first-differenced. Correlations calculated over 1992–2010. (b) The δ13C mean tree curve (MTC)
in blue and the TRW MTC in green plotted together with MJJA temperatures (black) from 1992–2010.

The high covariance among first-differenced DMCs also controls the calibration of the δ13C and
TRW mean tree curves against May–August temperatures (Figure 8b). Again, the coefficient is slightly
higher for δ13C compared to TRW, but the difference is statistically insignificant. On the other hand,
the correlation values are surprisingly high (particularly the rδ13C = 0.77), considering that only one
tree is compared against regional climate data. These findings reinforce the climate sensitivity of tree
ring carbon isotopes and the skill of such data to particularly reconstruct high-frequency temperature
variations over longer timescales [66,67].

4. Conclusions

By analyzing 42 annually resolved δ13C time series spanning the 1991–2010 period, at seven
height levels, we found substantial circumferential and longitudinal δ13C variability within a single
Larix decidua trunk from a sub-alpine environment in the Swiss Alps. Circumferential variability is
comparable among different tree heights, and the range of values (0.5–2.8%� at 1 m) is near the upper
limit reported from other species and habitats. The variability along the trunk is of similar magnitude
(1.2%� over 12 m), yet we, for the first time, demonstrate a systematic trend of 0.1%� m−1 towards
isotopically heavier values with increasing tree height. This trend is in line with expectations based on
δ13C measurements of leaf tissue within a Fagus sylvatica treetop [40], which showed a vertical gradient
of 0.13%� m−1 towards less negative δ13C with height, likely driven by CO2 stratification and changing
microclimatic conditions.
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Both the circumferential and longitudinal variabilities are of practical importance as they are of the
same magnitude as the inter-annual δ13C variability that is typically used to reconstruct environmental
and climatic changes over longer timescales. Whereas some of the intra-ring variability recorded at a
certain stem height (e.g., breast height) can be compensated by averaging samples from several radii,
the systematic longitudinal gradient reported here appears to be a fundamental concern of long-term
climate reconstructions from δ13C. If discs and cores are obtained at unknown sampling heights,
which is typically the case in composite chronologies including samples from historical buildings,
lakes, and sediments, longitudinal variability can add substantial uncertainty to reconstructions from
such compilations. It is therefore recommended to assess offsets between single δ13C series, and apply
dendrochronological detrending techniques to mitigate potential biases on the low-frequency spectrum
of long stable carbon isotope chronologies. The high-frequency, inter-annual signal, which in our larch
tree from the Swiss Alps is controlled by May–August temperatures, remains largely unaffected by the
circumferential and longitudinal variabilities reported here.
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