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Abstract: An increase in extreme weather events is predicted with increasing climate changes.
Changes indicate major problems in the future, as Norway spruce (Picea abies L. Karst.) is one of the
most important forestry species in Northern Europe and one of the most susceptible to damage from
extreme weather events, like windstorms. Root architecture is essential for tree anchorage. However,
information of structural root-plate volume and characteristics in relation to tree wind resistance in
drained deep peat soils is lacking. Individual tree susceptibility to wind damage is dependent on
tree species, soil properties, tree health and root-plate volume. We assessed the structural root-plate
dimensions of wind-thrown Norway spruce on freely drained mineral and drained deep peat soils
at four trial sites in Latvia, and root-plate measurements were made on 65 recently tipped-up trees
and 36 trees from tree-pulling tests on similar soils. Tree height, diameter at breast height, root-plate
width and depth were measured. Measurements of structural root-plate width were done in five
directions covering 180◦ of the root-plate; rooting depth was measured on the horizontal and vertical
axes of root-plate. Root-plate volume was higher in drained peat soils in comparison to mineral soils,
and root-plate width was the main driver of root-plate volume. A decreasing trend was observed in
structural root depth distribution with increasing distance from the stem (i.e., from the center to the
edge of the root plate) with a greater decrease in mineral soils.
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1. Introduction

Climate change scenarios predict an increase in extreme weather events (windstorm frequency
and intensity) [1]. Increasing frequency of storms causes loss of economic and ecological value in
European forests [2]. Yet another effect of climate change is warming of the winter season, which causes
long periods of unfrozen, wet soil [3], when tree anchorage is the weakest and wind damage probability
is higher. Fully measured tree anchorage properties can help predict the response of trees to more
severe climate change induced storms. Furthermore, trees deploy their roots in response to mechanical
forces (slope and/or prevailing wind) by devoting increased root resources downslope and toward the
windward direction to improve stability [4].

Individual tree stability varies among tree species and in regard to stand properties and tree
health [5,6]. Tree rooting strategy is an important part of the general growth strategy for trees,
and it determines root architecture [7]. The formation of tree roots depends mainly on the soil
conditions because roots continuously adapt to the temporal and spatial fluctuations in their growth [8].
Root architecture and the size of root-soil plates determines tree anchorage and stability [7]. However,
tree mechanical stability can be reduced by diseases such as root rot (Heterobasidion spp.) [9,10].

Norway spruce (Picea abies (L.) Karst.) is an economically important tree species in Northern Eurasia,
including Latvia [11,12]. Norway spruce is able to grow under a wide range of soil (physical and
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chemical) and climatic conditions [13]. In addition, Norway spruce has a high susceptibility to
windstorm damages because of its shallow root system and relatively dense crown [14–16].

Windstorms can create large gaps in forest stands, from which rapid natural regeneration
emerges [17], because wind-throw damage in spruce forests causes many tree tip-ups, and root-plate
volume determines the size of patches with open soil after the wind-throw. The most favorable
microsites (suitable seed beds) for tree regeneration are tree-fall (root-plate) pits, tip-up mounds and
logs [18–20]. However, in most cases, natural regeneration results in the establishment of dominant
species other than Norway spruce [21]. In fact, spruce forms larger root-plate areas than other native
tree species of the hemiboreal region [22], and thus creates large areas of open soil in the stand. After the
collapse of the uprooted (tipped-up) root-ball, as the roots decay, the soil mass typically settles into the
mound [23]. Thus, larger root-plate systems will create diverse microsite legacy effects.

Previous studies have analyzed root system development [8], belowground biomass [24,25], fine
root or coarse root distribution in spruce stands [26,27] and mixed forest stands [26,28]. In addition,
several studies of tree-pulling (winching) experiments have been conducted to assess the mechanical
stability of Norway spruce [10,29,30]. However, root-plate volume for wind resistance assessment
has been studied less [31], and in deep peat soils such information is even more scarce. Currently,
the most common methods for root-plate measurements are direct measurements in laboratory or
on site that involve excavating roots from the soil [32] and high-resolution geophysical imaging,
such as ground-penetrating radar (georadar) [33]. Root measurements usually include length, density,
growth angle and topological structure; however, as technology has improved, image processing has
evolved to automatic detection and analysis [34]. Root distribution is dependent on soil characteristics,
tree size and tree species; therefore, we assessed the root-plate volume of Norway spruce across many
trees from diverse forest stands on two soil types.

The aim of the study was to assess the root-plate dimensions of uprooted Norway spruce in
mineral and drained peat soils. We hypothesized that root-plate volume would be higher in drained
peat soils compared to mineral soils.

2. Materials and Methods

This study was carried out in Latvia, with study sites located in North-West Latvia—Skede
(57◦14′ N 22◦42′ E), Neveja (57◦34′ N 22◦18′ E), Central Latvia—Jelgava (56◦40′ N, 23◦53′ E) and East
Latvia—Kalsnava (56◦41′ N, 23◦88′ E).

Altogether, 64 recently (no longer than 1 year) tipped-up trees by wind-throw (all available
tipped-up trees in study sites) were selected for structural root-plate measurements to characterize the
rooting of wind-thrown spruce trees. Materials were collected in similar stands in terms of age and
parameters, such as stand density and tree dimensions of canopy trees, soil conditions, wind climate
and species composition. These were pure even-aged commercial Norway spruce stands growing on
freely drained mineral and drained deep peat soils (peat layer > 50 cm) [35]. In Latvia, stand density
before the final harvest in such stands is reduced to approximately 700–900 trees per ha−1. These soil
types are common in Latvia, representing 51% and 12% of the soils in spruce forests, respectively [36].
The territory of Latvia is covered by a thick layer of sediments; thus, bedrock cannot limit rooting depth.
In the studied sites, naturally well-drained podzolic soils formed on well-drained fine/loamy sand
parent materials, and artificially drained deep peat soils were also found.

For a control, we selected data from tree-pulling (winching) tests conducted in commercial
Norway spruce stands with similar characteristics as the wind-thrown stands. Control data from trees
situated on drained peat soils were obtained from a study published previously [10]. For mineral soils,
root-plate dimension data from pulling tests carried out in summer 2020 at the Jelgava site were used.

For each tree height (H), diameter at breast height (DBH), root-plate width, height and depth
were measured (including soil particles attached) (Table 1). Structural root-plate width was measured
parallel to the land surface and perpendicular to the tree stem. Root-plate surface width measurements
covered 180◦ of the root-plate in five directions from stem side: left side (L), halfway left to center (L45),
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center (C), halfway right to center (R45) and right side (R) (at 0◦, 45◦, 90◦, 135◦ and 180◦, respectively)
(Figure S1). In cases where the length of the root exceeded the length of the root-soil ball, the width
was measured to the furthest root. These values were used as the radius of the root-plate for root-ball
shape and volume calculations.

Table 1. Dimensions of sampled trees.

Variable Wind-Throw Tree-Pulling Tests (Control)

Site Neveja-Skede Kalsnava Jelgava Kalsnava

Soil Type Freely Drained
Mineral Soil

Drained Deep
Peat Soil

Freely Drained
Mineral Soil

Drained Deep
Peat Soil

N 39 25 26 10

DBH (cm)

Min 13.0 23.3 17.8 26.5

Max 50.0 46.5 42.0 37.7

Mean 25.5 ± 2.7 31.2 ± 2.6 28.0 ± 2.4 32.0 ± 3.0

Height (m)

Min 12.7 21.6 16.9 24.8

Max 32.3 31.7 33.4 29.6

Mean 21.6 ± 1.6 26.0 ± 1.1 25.6 ± 1.6 27.2 ± 0.9

Root-plate width (m)

Min 0.3 0.7 0.9 3.4

Max 3.6 3.5 3.0 5.5

Mean 1.4 ± 0.2 2.0 ± 0.3 1.7 ± 0.2 4.5 ± 0.4

Root-plate height (m)

Min 0.2 1.0 0.5 1.5

Max 1.8 2.4 2.8 2.5

Mean 1.1 ± 0.1 1.6 ± 0.1 1.2 ± 0.2 2.1 ± 0.2

Root-plate depth (cm)

Min 9.3 23.3 26.8 40.0

Max 45.5 82.5 84.0 80.0

Mean 28.3 ± 2.3 44.7 ± 5.3 49.2 ± 6.6 57.1 ± 8.5

For structural root-plate depth distribution assessment, we measured roots with diameters greater
than 10 mm instead of total rooting depth (due to the fact that fine roots could be found in deeper
layers than coarse roots). Rooting depth was assessed on the vertical and horizontal axes (center
and right), where root-plate depth, including root-soil ball, was measured (Figure S1) for assessment of
the structural root depth distribution. The first depth measurement was taken as close as possible to
the stem, and the rest were taken every 0.2 m.

Pearson’s correlations were calculated to assess the relationship between tree size, measured and
calculated variables, such as H, DBH, root-plate width, depth, volume and the relationship between
H and DBH (HD2). Root-plate volume was estimated based on calculating the structural root depth
distribution shape using an elliptic cone volume equation:

V =
(1

3

)
∗π ∗ a ∗ b ∗ h, (1)

where h is the mean root-plate center (0–20 cm) height (depth); a is the vertical radius of the root-plate;
b is the mean horizontal radius of the root-plate.

Tree wind resistance was estimated using Peltola’s [29] approach where tree height was multiplied
by DBH squared to get an idea of tree stem susceptibility to tip-up. In the generalized additive model,
relative root depth and relative distance from the stem were used as predictors to calculate structural
root depth distribution. All steps of the data analysis were carried out using the statistical software R
4.0.0. [37].
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3. Results

3.1. Structural Root Horizontal Surface Shape

To assume the structural root-plate horizontal surface is an ellipse, the horizontal and vertical
measured width can be used to calculate the 45◦ angle of the actual geometric ellipse. The halfway left
to center (L45) and halfway right to center (R45) radius was on average 0.89 ± 0.22 (mean ±95% CI)
and 0.93 ± 0.32 (mean ±95% CI) of the center (C) height for mineral and drained peat soils, respectively.
Taking into account the average of the vertical and horizontal widths, the average of L45 and R45 was
1.09 ± 0.06 (mean ±95% CI) and 1.01 ± 0.04 (mean ±95% CI) of a true ellipse in mineral and drained
peat soil, respectively; thus, L45 and R45 were 9% and 1% higher than radii of an actual geometric
ellipse, respectively. Therefore, we assumed that an ellipse is a good approximation of the horizontal
root-plate shape.

3.2. Structural Root Depth Distribution of Tipped-Up Trees

Structural root-plate depth was assessed using the relative root-plate depth distribution and the
relative distance from the stem (Figure 1). If the measurement point distance from the stem increased,
the root-depth decreased; thus, a negative relationship (r = −0.99) between the distance from the
stem and rooting depth was measured in both drained peat and mineral soils. No limitations to
root vertical growth were observed, as no compacted soil layers were found in the studied stands or
below the wind-thrown trees. In addition, the shape of the vertical roots did not indicate difficulties
of penetration.

Figure 1. Relative structural root-plate depth distribution of measurement points at relative distance
from the stem of wind-thrown trees. (Grey area denotes 95% confidence interval.)

Vertical rooting depth governs tree susceptibility to wind-throw. Mean depth at the center of
the root-plate was 28.3 ± 2.3 (mean ±95% CI) cm and 49.2 ± 6.6 (mean ±95% CI) cm for mineral and
drained peat soil, respectively. Mean rooting depth in the first meter (from the center to the edge of the
root plate) was 22.4 ± 3.4 (mean ±95% CI) cm for mineral soil and 38.9 ± 5.8 (mean ±95% CI) cm for
drained peat soil. The maximum depth values were observed in the center of the root-plate (0 cm from
the stem). Maximum depth value in drained peat soils was 82.5 cm, while in mineral soils it reached
the highest value of 45.5 cm. With increasing distance from the stem, relative rooting depth in mineral
soil decreased more rapidly than in drained peat soils. Relative rooting depth differed significantly
(p < 0.05) between soil types except at the center and the edge of the root-plate.
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3.3. Root-Plate Volume

Root-plate volume of tipped-up trees in mineral soil varied from 0.02 m3 to 2.01 m3, and in drained
peat soil the root-plate volume ranged from 0.4 m3 to 3.2 m3. In tree-pulling tests (control), root plate
volume ranged from 0.3 m3 to 5.9 m3 and from 4.0 m3 to 7.6 m3 in mineral and drained peat soil,
respectively. The difference of root-plate volume between soil types was statistically significant
(p < 0.001), and the results differ noticeably (Figure 2). Root-plate volume was lower for trees growing
on mineral soil, while trees on drained peat soils tended to have larger values. Mean root-plate volume
of tipped-up trees in mineral soil was 0.50 ± 0.14 (mean ±95% CI) m3 and 1.5 ± 0.3 (mean ±95% CI) m3

in drained peat soils. In addition, mean root-plate volume of control trees was significantly higher than
that of root-plate volume of tipped-up trees, as the mean volume was 1.3 ± 0.5 (mean ±95% CI) m3

and 5.5 ± 1.0 (mean ±95% CI) m3 in mineral and drained peat soils.

Figure 2. Root-plate volume of tipped-up trees and control (tree-pulling test) in two different soil types:
deep peat (Kalsnava) and freely drained mineral soil (Jelgava and Neveja-Skede).

Results indicate differences in root-plate volume of tipped-up trees and trees from pulling
(winching) experiments (Figures 3 and 4), as root-plate volume of tipped-up trees was significantly
smaller than those of control. Differences between tipped-up and control trees were marked in both
soil types; however, in drained peat soil the differences were even more pronounced (Figure 4).
In addition, the mean width of the root-plate was highly correlated (r = 0.92) with root-plate volume;
therefore, as tree roots grow wider (i.e., further from the stem), the root plate volume also increases.
Moderate correlation (r = 0.47) was observed for root-plate center depth and root-plate width.

Figure 3. Root-plate volume vs. diameter at breast height in freely drained mineral soil. Grey area
indicates 95% confidence interval.
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Figure 4. Root-plate volume vs. diameter at breast height in drained deep peat soil. Grey area indicates
95% confidence interval.

Our results indicate the importance of DBH in determining root-plate volume (Figure 3) and
potentially in increasing tree wind resistance to uprooting from wind disturbances. Therefore,
we calculated HD2, which is known to indicate tree wind resistance to uprooting in mineral soils [29].
Results show the difference of tree wind resistance between soil types, as HD2 values in mineral
and drained peat soils were 1.94 ± 0.66 (mean ±95% CI) m3 and 2.46 ± 0.57 (mean ±95% CI) m3,
respectively. Even though mean values for mineral soil were lower, with increasing root-plate volume,
the estimated wind resistance values increased more rapidly in mineral soils in comparison to drained
peat soils (Figure 5). The HD2 values showed a good linear model fit as indicated by the coefficient of
determination in mineral (r2 = 0.84) and drained peat (r2 = 0.39) soils.

Figure 5. HD2 in relation to root-plate volume in two soil types. Grey area indicates 95% confidence intervals.

4. Discussion

Assuming the structural root-plate horizontal surface shape as an ellipse was appropriate,
the average lengths of L45 and R45 were only 9% and 1% larger in comparison to a true ellipse in
mineral and drained peat soil, respectively. Structural root distributions provide physical stability of
trees to windthrow, and deep penetration by roots is important for the anchorage; trees with varying
root-plate morphologies respond differently to stress and competition [8]. The maximum depth
values differed between soil types, with drained peat soils having higher maximum depth values than
mineral soils. Overall, a decreasing trend was observed in structural root depth distribution with
increasing distance from the stem (Figure 1). Mean depth in the center and first meter of the root-plate
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was higher for drained peat soils than for mineral soils; however, with increasing distance from
the stem, a more rapid decrease was observed for mineral soils than for drained peat. The exception
was the edge of the root-plate of drained peat soils where a rapid depth decrease in the relative rooting
depth was observed. In addition, if the vertical root system is weakly developed, spruce depends on a
horizontal network of supporting lateral roots [8]. With increasing tree age, the capacity of the root
system to adapt or rebuild anchorage is lowered [8], thus affecting capability to recover and continually
resist wind damage.

Root-plate volume in drained peat soils was more than three times higher than root-plate volume
in mineral soils (Figure 2); thus, the hypothesis of the study was confirmed. This could be explained by
the fact, as reported in other studies, that trees on deep peat soils flex more as trees sway and adapt
their roots to the wind environment (develop eccentric cross-sectional root-system shape) and are
better prepared to resist bending in the stronger winds than trees on mineral soil [30]. In both soil types,
an increase in root-plate volume was observed with an increase in tree DBH (Figures 3 and 4). A close
relationship between tree size parameters and root-plate system development has been reported in
previous studies, where dominant large trees form the largest root systems, while average-sized trees
develop well-shaped root systems and suppressed trees form poorly developed root systems [8].
Results show that the main determining factor of root-plate volume is root-plate width (r = 0.92). Thus,
if the root distribution (i.e., root-plate diameter) is wider, the root-plate volume is greater, as also
reported in other studies [38]. With similar tree dimensions, root-plate depth and width was larger for
drained peat soils in comparison to mineral soils (Table 1). Therefore, larger patches of open soil in the
forest stand after wind-throw are formed by trees with larger root-plate width and by trees growing on
drained peat soils than for trees with the same dimensions on mineral soil. In addition, trees adapt
their root systems to the applied mechanical forces by the prevailing winds and slope and devote
additional root resources towards improving tree stability, thus increasing root volume, resistance and
adapting root shape [4].

Comparison of root-plate volume between tipped-up trees and control trees, as well as trees
from tree winching experiments, indicates significantly higher root-plate volume compared to
windthrown trees, especially in drained peat soils (Figure 4). Trees with the weakest root systems
are the first ones tipped-up in storms in both soil types. However, with increasing climate change
and prolonged periods of wet, unfrozen soil in the winter, the wind damage probability increases [3].
Furthermore, comparisons of data obtained from windthrows and tree-winching tests can be applied
in wind risk models to improve the model parametrization of tree resistance against overturning.
Nevertheless, a larger root-ball does not always ensure greater wind resistance, as root binding with
drained peat soils is weaker and soil mass is lighter in comparison to root binding with mineral
soils [4]. In our research, root adaptation was not studied, but root distribution against the prevailing
wind direction and root shape was found to be important for wind resistance. However, there are
many other factors affecting wind resistance and wind damage probability, such as tree stem and root
system adaptation, soil conditions in winter, recent silvicultural measures (thinning) and even diseases
such as root and stem rot (Heterobasidion spp.) [10,39,40].

Differences in tree wind resistance between soil types were indicated, as spruce trees on drained
peat soils had larger root-plate volumes and greater mean tree wind resistance values (Figure 5).
Yet, spruce on mineral soil had a more rapid increase in wind resistance values with increasing
root-plate volumes, indicating higher overall wind resistance than drained peat soils. This assumption
is in accordance with previous studies that show trees on drained peat soils are more susceptible to wind
damage than trees on mineral soils [30]. Observed differences could be explained by differences in soil
conditions, rigidity, water table depth and structural root-system architecture that might differ between
forest and soil types [41,42]. In our study, we used root-plate measurement data from tipped-up trees,
which introduces a systematic bias since trees with weaker root systems are uprooted in storms [40]
and because some soil from the root-soil plate might be lost before the measurements, even if the
measurements were done shortly after the wind-throw.
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From an economic point of view, in order to reduce wind damage risks, timely applied thinning
of the stands could improve and help develop larger and stronger tree root systems. In addition,
low-density Norway spruce stand establishment could help to improve the root system due to reduced
competition in the stand.

5. Conclusions

An overall decreasing trend of structural rooting depth was observed in both (mineral and
drained peat) soil types, with more rapid depth decrease for mineral soils. Root-plate volume differed
significantly between soil types, and it was higher for drained peat soils in comparison to mineral soil
even with equal tree parameters (DBH). The width of the root-plate was the main determining factor
for root-plate volume. However, tree wind resistance in mineral soils increased more rapidly with
increasing root-plate volume in comparison to drained peat soils.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/11/1143/s1,
Figure S1: Schematic image of root-plate measurement methodology.
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