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Abstract: Background and Objectives: Modelling and simulation of forest land cover change due to
epidemic insect outbreaks are powerful tools that can be used in planning and preparing strategies
for forest management. In this study, we propose an integrative approach to model land cover
changes at a provincial level, using as a study case the simulation of the spatiotemporal dynamics
of mountain pine beetle (MPB) infestation over the lodgepole pine forest of British Columbia (BC),
Canada. This paper aims to simulate land cover change by applying supervised machine learning
techniques to maps of MPB-driven deforestation. Materials and Methods: We used a 16-year series
(1999–2014) of spatial information on annual mortality of pine trees due to MPB attacks, provided by
the BC Ministry of Forests. We used elevation, aspect, slope, ruggedness, and weighted neighborhood
of infestation as predictors. We implemented (a) generalized linear regression (GLM), and (b) random
forest (RF) algorithms to simulate forestland cover changes due to MPB between 2005 and 2014.
To optimize the ability of our models to predict MPB infestation in 2020, a cross-validation procedure
was implemented. Results: Simulating infestations from 2008 to 2014, RF algorithms produced less
error than GLM. Our simulations for the year 2020 confirmed the predictions from the BC Ministry of
Forest by forecasting a slower rate of spread in future MPB infestations in the province. Conclusions:
Integrating neighborhood effects as variables in model calibration allows spatiotemporal complexities
to be simulated.

Keywords: land cover change; complex systems; model calibration; random forest; insect outbreaks;
regression; machine learning

1. Introduction

Disturbances are a critical component of forests dynamics, which shape and substantially affect
these key ecosystems [1,2]. Particularly of interest, forest insect epidemics can exert severe impacts
on ecosystem dynamics due to mortality or growth reduction of millions of trees over widespread
areas [3–6]. Both indigenous and invasive species can disturb natural and managed forests habitats [6–8].
Additional to ecological impacts, insect epidemics may have devastating effects associated with
economic (e.g., losses within the forestry industry) [9–11] and social (e.g., unemployment due the
sawmill closures) development or stability [12,13].

In the province of British Columbia (BC), Canada, an unprecedented insect outbreak of mountain
pine beetle (MPB; Dendroctonus ponderosae Hopkins) began in the early 1990s and reached a peak
between 2005 and 2006, which facilitated a massive migration of beetles into the province of Alberta
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(AB) [9,12,14]. The cumulative forest area in BC alone that has been attacked by the MPB, since the
ongoing outbreak that began in 1990, is estimated to be over 25 million hectares [15,16]. An indigenous
insect to western North American forests, the MPB is a bark beetle that feeds mainly on lodgepole
pine (Pinus contorta var. latifolia Engelm.), but also feeds on sugar pine (Pinus lambertiana Douglas),
western white pine (Pinus monticola Douglas ex D. Don), and ponderosa pine (Pinus ponderosa var.
scopulorum Engelm.) [17,18]. Until the end of the last century, the historical range of MPB was limited
to the west of the continent [19,20]. However, today the MPB is present outside of its historical range,
extending into northern BC and eastward into the boreal forest of north-central AB, where approximately
1.43 million trees have been infested [21]. One of the greatest future threats from the current expansion
of the range of MPB is that the beetle is no longer limited to attacking lodgepole pine, but is also
reproducing in jack pine (Pinus banksiana Lambert), one of the dominant pine species of the boreal
forest [20].

In the light of the severity of the current insect disturbance faced by BC and AB, it has become
a pressing matter to continue monitoring, assessing, modelling, and simulating future changes
of forest cover due to MPB outbreaks to assist environmental policy development and forestry
resource management [22–25]. To assess the impact of the MPB epidemic on forest ecological systems,
different methodologies have been proposed to date. Remote sensing [26–28], equation-based [29–31],
Geographical Information System (GIS)-based [32–35], and complex systems theory approaches [35–38]
are some of the methodologies that have been most frequently applied to detect, model, and predict the
spatial dispersal of the MPB population and attack patterns. Although the aforementioned simulation
efforts have been successful at modelling the spread of MPB infestation, they have done so at a very
detailed scale that ranges from tree to stand level. By comparison, the studies that claim to have
modeled the infestations at a landscape scale have only gone as far as a county level for the United
States, for example. The MPB spread appears to depend basically on topographic conditions and the
state of neighboring areas [17,20,30,38]. These drivers may in turn be mediated by local or regional
climatic conditions (e.g., milder winters), although these conditions may affect winter survival of the
beetle, and not spatial spread per se. With the aim of carrying out spatio-temporal modelling and
simulation of the MPB infestation at a province scale in BC, Canada, we set out to apply supervised
machine learning techniques to maps of MPB-caused deforestation. This research study proposes
an integrative approach to model land cover changes at a provincial level, using as a study case the
simulation of the spatiotemporal dynamics of MPB infestation of the lodgepole pine forest of BC,
Canada. The main objective of this work is three-fold, namely:

1. Compare the performance of two methodologies, namely binomial regression and random forests,
to model the MPB spread between 1999 and 2014.

2. Evaluate the usefulness of a set of predictor variables, describing the influence of local topography
and the state (i.e., infested/non-infested) of neighboring localities, to determine the extent and
speed of the MPB infestation.

3. Simulate possible land cover changes in 2020, due to MPB infestation.

2. Materials and Methods

2.1. Study Area

The study was conducted in the Canadian province of British Columbia (BC), and covers an area
of 944,735 km2, extending from 59◦59′27′′ N 138◦54′19′′ W to 48◦59′53′′ N 114◦2′37′′ W (Figure 1).
BC is known for its highly diverse mountainous landscape subject to a diversity of disturbance
regimes [39–41]. The climatic conditions in the province are largely controlled by the Pacific Ocean to
the west, continental air masses in the interior plateaus, and the Rocky Mountains to the east [42].
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Figure 1. The Province of British Columbia in Canada is mainly dominated by a Lodgepole pine (Pinus 
contorta) forest, which by 2014 had been decimated by almost 50% due to mountain pine beetle (MPB) 
infestation. 

Seventy percent of the total area is covered by forest, whereas only two percent of the total area 
is used by humans to live, cultivate, etc. Forest in central BC, where lodgepole pines are the main tree 
species, have been experiencing an epidemic infestation of MPB, due to factors including fire 
suppression and changing climate [43]. 

2.2. Pine Mortality Dataset 

The original source of data for the project is a collection of 16 maps indicating cumulative 
lodgepole pine mortality caused by MPB attacks on the forests of the province as observed in the 
period between 1999 and 2014 [20]. Observations were acquired by the BC Ministry of Forest from 
aerial photographs and LANDSAT satellite images, wherein infested areas are identifiable based on 
their spectral response and by calculating a Normalized Difference Moisture Index (NDMI), 
contrasting the near-infrared (NIR) band 4, which is sensitive to the reflectance of leaf chlorophyll 
content, to the mid-infrared (MIR) band 5, which is sensitive to the absorbance of leaf moisture. These 
maps are in a raster format with an Albers equal area projection and a cell size of 400 m. The cell 
values equal 10 times the percentage of infestation in each cell, hence ranging from 0 to 1000; the 
Ministry of Forests, Lands and Natural Resource Operations of the Canadian province of BC have 
made this dataset publicly accessible [44]. Existing literature and reports emphasize the importance 
of infestation levels above which the risk of MPB attack should be considered seriously by forest 
managers for further investigation [44–46]. 

For the purposes of this study we applied a threshold to the cumulative infestation maps in 
order to transform their continuous percentage scale into a binary scale (i.e., infested = 1/not-infested 
= 0). This is a simplified assumption that enabled us to apply well-known statistical methods to our 
datasets. The procedure to calculate that threshold value is described in detail in Appendix A. 
  

Figure 1. The Province of British Columbia in Canada is mainly dominated by a Lodgepole pine
(Pinus contorta) forest, which by 2014 had been decimated by almost 50% due to mountain pine beetle
(MPB) infestation.

Seventy percent of the total area is covered by forest, whereas only two percent of the total area
is used by humans to live, cultivate, etc. Forest in central BC, where lodgepole pines are the main
tree species, have been experiencing an epidemic infestation of MPB, due to factors including fire
suppression and changing climate [43].

2.2. Pine Mortality Dataset

The original source of data for the project is a collection of 16 maps indicating cumulative lodgepole
pine mortality caused by MPB attacks on the forests of the province as observed in the period between
1999 and 2014 [20]. Observations were acquired by the BC Ministry of Forest from aerial photographs
and LANDSAT satellite images, wherein infested areas are identifiable based on their spectral response
and by calculating a Normalized Difference Moisture Index (NDMI), contrasting the near-infrared
(NIR) band 4, which is sensitive to the reflectance of leaf chlorophyll content, to the mid-infrared (MIR)
band 5, which is sensitive to the absorbance of leaf moisture. These maps are in a raster format with an
Albers equal area projection and a cell size of 400 m. The cell values equal 10 times the percentage
of infestation in each cell, hence ranging from 0 to 1000; the Ministry of Forests, Lands and Natural
Resource Operations of the Canadian province of BC have made this dataset publicly accessible [44].
Existing literature and reports emphasize the importance of infestation levels above which the risk of
MPB attack should be considered seriously by forest managers for further investigation [44–46].

For the purposes of this study we applied a threshold to the cumulative infestation maps in order
to transform their continuous percentage scale into a binary scale (i.e., infested = 1/not-infested = 0).
This is a simplified assumption that enabled us to apply well-known statistical methods to our datasets.
The procedure to calculate that threshold value is described in detail in Appendix A.
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2.3. Predictor Variables

For modelling purposes, we assumed that the infestation pattern in the near future depended
directly on the status of the infestation during past years. For the sake of notation, if we denote by t2

the future year for which a prediction is sought, then t1 represents the starting date from which the
simulated map of MPB infestation is projected and t1p designates a previous year, for which further
explanatory variables, used by the model, must be determined. Throughout the study, t1p < t1 < t2

and t1 − t1p = 1 year, although t2 − t1 = 3 years.
We also assumed that the probability of beetle infestation in our thresholded maps depended

entirely, for a given pixel, both on the local topography and on the state of the infestation in adjacent
pixels. Arguably, local topography may either enhance or stall MPB outbreaks by, e.g., boosting or
blocking beetle flights, respectively. It may also determine local climatic and environmental conditions
in forests, making them a more or less suitable habitat for beetles to settle and attack. In turn,
the infestation status of nearby areas should arguably have a direct influence on the number of beetles
that affect a given location. These are distance-dependent variables that must be determined for every
individual simulation. That dependence, however, is not known a priori and must be approximated.
Bearing these ideas in mind, we set out to select a set of variables that could serve as valid drivers for
the MPB infestation.

Our choices for explanatory variables represented the drivers that we fed the MPB numeric
infestation model. These variables are listed in Table 1.

Table 1. List of predictor variables used for modeling. The Acronym column identifies the corresponding
variable in Equations (6) and (7). The Time column indicates whether the variable is calculated at t1p or
t1 (see text for an explanation).

Predictor Description Acronym Units Time

Elevation e m -
Aspect a Arbitrary -
Slope s Radians -

Ruggedness r Arbitrary -
Identity ziden,t1p Arbitrary t1p

Linear weight zlin,t1p Arbitrary t1p
Inverse-distance weight zinv,t1p Arbitrary t1p

Square-inverse-distance weight zsqu,t1p Arbitrary t1p
No-weight ziden,t1 Arbitrary t1

Linear weight zlin,t1 Arbitrary t1
Inverse-distance weight zinv,t1 Arbitrary t1

Square-inverse-distance weight zsqu,t1 Arbitrary t1

Topography-based explanatory variables were calculated only once at the beginning of the
calibration because we assumed that local topographic conditions did not change during the time
intervals spanned by the simulations:

1. Elevation: MPB infestation has been observed to take place mostly at low or medium heights [47].
Elevation is defined as height above sea level per pixel. We used a Digital Elevation Map provided
by GeoBC. The original pixel size of 500 was changed to 400 to match the resolution of the MPB
infestation map.

2. Slope: Steeper areas may affect, for example, distances between tree canopies on a hillside [25,48],
which, in turn, may make it easier or harder for beetles to fly from one tree to another. Slope was
calculated from the elevation map with the “terrain” function of the “raster” R package.

3. Aspect: The spread of the MPB infestation may benefit from milder temperatures [20,38,49] on
south-oriented slopes. For that reason, aspect was calculated from the elevation map as the
compass direction of the pixel slope face. We employed the “terrain” function of the “raster” R
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package. Next, it was sine-transformed to avoid the discontinuity at point 0–2π radians (0◦–360◦).
Sine and cosine functions were used to avoid ambiguity at 0 radians.

4. Ruggedness: Adult beetle flight may be faster and/or longer over open ground [50]. To account
for this effect, we implemented the Terrain Ruggedness Index (TRI) [51]. The TRI index was
calculated from the elevation map with the “terrain” function of the “raster” R package using
an 8-pixel window.

In contrast, adjacency-type predictors had to be computed at every temporal step of the simulation.
As a measure of the dependence of infestation rate on the state of the neighboring pixels, we computed
a weighted sum of the surrounding pixels (containing 0 s or 1 s) at each location. The basic equation to
account for the adjacency effect can be written as:

z j =
∑

∀i, di≤dmax

pi j·wi, (1)

where z j stands for the generic adjacency effect at location j. Index i runs such that the distance from
location j at which pixel value pi j is summed, i.e., di, is smaller or equal than the maximum size dmax

of the weighting window, wi. To account for the unknown true dependency, we used four different
weighted sum expressions:

1. No-weighting (ziden):
wi = 1 (2)

2. Linear weighting (zlin): weights decrease linearly until di = dmax

wi = dmax − di (3)

3. Inverse-distance weighting (zinv): weights decrease as a function of the inverse of distance until
di = dmax

wi =
1
di

(4)

4. Squared-inverse-distance weighting (zsqu): weights decrease as a function of the inverse of the
squared distance until di = dmax

wi =
1
d2

i

(5)

In parentheses, we have included the corresponding variable name in Equations (6) and (7) and
Table 1. Appendix C demonstrates the aforementioned four weighting functions in a neighborhood of
radius 5.

All of these predictor variables were determined at every infested and non-infested pixel in the
t1p and t1 maps. Regarding adjacency-type predictors, we included the weighted total number of
surrounding infested pixels both at t1p and at t1 as adjacency-type predictors. Because we ignored the
exact dependence of the infestation rate on these predictors, we chose several weighting procedures
to account for this unknown dependency and included all of them in the calibration procedure as
independent variables.

We carried out a preliminary exploration of the relationship between infestation probability,
represented by the thresholded infestation map specified above, and the set of predictor variables
described in the previous paragraphs. Appendix A shows the logit-transformed average infestation as
a function of the binned predictors. In general, infestation rate appears to change linearly with predictors.
The mean response showed a parabolic response vs. elevation, indicating that the expected infestation
rate is proportional to a quadratic function of the elevation. In addition, it displayed an approximately
linear response vs. slope, aspect, ruggedness, and the log-transformed adjacency measures.
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2.4. Approaches to Model and Simulate Land Cover Changes

To model and simulate the changes in the lodgepole pine forest cover within the province of
BC during the sixteen-year period of the data set on recorded MPB epidemics, we implemented two
algorithms: (1) generalized linear regression (GLM), and (2) random forest (RF).

2.4.1. Generalized Linear Regression (GLM)

Generalized linear regression is a maximum-likelihood regression methodology that computes
the parameters of a linear model that maximize an appropriate log-likelihood [52]. It can be applied to
cases where the error distribution of the response variable is not Gaussian. The linear model and the
dependent variable are related directly via a continuous link function, which relates the expected value
of the response variable with a linear combination of the predictors. In turn, the error distribution of
the dependent variable determines our choice for the distributional model from which a log-likelihood
can then be derived. There are several common options for log-likelihood and link functions, and the
modeler must make his/her own choice by considering the observed relationships between response
and predictor variables. The link function imposes a final expression for the log-likelihood that is often
non-linear in the parameters. As a consequence, maximization of the log-likelihood is carried out
iteratively with an appropriate optimization scheme (see e.g., McCullagh and Nelder, 1989).

To account for the binary dependent variable representing an MPB affected/non-affected pixel,
we chose a Bernoulli log-likelihood, which corresponds to a binomial log-likelihood with number of
trials equal to one. In turn, we determined the most appropriate dependence between expected binary
response and the explanatory variables by carrying out an exploratory exercise (see Appendix B).
Based on those observed relationships, we proposed the following linear logit link function:

logit
(
µ j

)
= β0 + β1e j + β3s j + β4a j + β5r j + β6ziden,t1 + β7zlin,t1 + β8zinv,t1+

β9zsqu,t1 + β10ziden,t1p + β11zlin,t1p + β12zinv,t1p + β13zsqu,t1p

(6)

logit
(
µ j

)
= β0 + β1e j + β2e2

j + β3s j + β4a j + β5r j + β6ziden,t1 + β7zlin,t1 + β8zinv,t1+

β9zsqu,t1 + β10ziden,t1p + β11zlin,t1p + β12zinv,t1p + β13zsqu,t1p

(7)

For the sake of clarity, sub index j (i ∈ j . . . n, where n is the number of observations) was omitted
in the neighborhood covariates z. In these equations, µ j indicates the logit-transformed expected value
of the binary response variable at location j, the sub-indexed βs are the unknown parameters to be
calculated, and the predictor variables are shown in Latin letters, following the notation illustrated
in Table 1. In our calculations we used the “glm” function of the built-in stats package of the R
software [53].

The generalized linear regression scheme described above produced a continuous function, µ,
bounded between 0 and 1 such that it represented the probability of infestation. Therefore, at each
location j, that probability is given by:

µ j =
1

1 + e−(β0+β1e j+...)
(8)

where the ellipsis in the exponent indicates all linear and their interactions, depending on whether we
use Equation (6) or (7).

We then used µ to elaborate a predictive binary map pinpointing the location of newly infested
pixels. This last step entailed the selection of a valid cut-off value to map the continuous µ variable onto
a binary scale. We computed a suitable cut-off for µ by maximizing the fuzzy kappa index between
observed and predicted infestation maps.
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2.4.2. Random Forests (RF)

Random forests (RF) belong to the group of ensemble learning methods. Used for both classification
and regression, RF are sets of decision trees each including a random subset of the data, that work
based on the principle of highest voted decision, or the average of decided scores, depending on
the type of the model. Throughout the calculations, we used the RF algorithms implemented in the
“ranger” package of the R software. As predictor variables we used the same variables shown in
Equation (6). Preliminary results (Appendix E) suggested that it was better to regress than to classify
with RF, so we used the “ranger” function of that package in regression mode.

2.5. Model Calibration and Validation

To optimize the ability of our models to predict infestation in non-infested pixels we set up
a cross-validation strategy by dividing the datasets into training and test subsets. The training dataset
was used to calculate the unknown parameters of the model, whether binomial or RF, as shown above.
The test dataset, in turn, was used to gauge the predictive ability of the models and to adjust a relevant
parameter. We selected a training set containing 75% of the original dataset, whereas the test set
included the remaining 25%.

Figure 2 shows the method of analysis in a flow chart. The flow of the algorithm is downwards
and generally to the right. Raw inputs include geographical variables of elevation, slope, and aspect,
in addition to three infestation maps. The time interval between the first two maps at t1p and t1 is
one year, and the time step between the last two maps between t1 and t2 is 3 years. The goal of the
algorithm is to predict the binary spread of infestations in the next time step. After reading inputs,
the algorithm is divided into two main parts. In the first part, the inputs are analyzed, and a model is
developed and parameterized to simulate the change from the first two images (t1p and t1 maps) to the
third (t2). In the second part, the parameterized model is used to predict the change from the last two
given images (t2p and t2 maps) to the next time step in the future (t3).
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Figure 2. Schematic representation of the integrative approach to parametrize and calibrate our model
to simulate forest insect disturbances.

In this model, parameters were determined and adjusted in three stages. These stages are shown
with gray flowchart shapes in Figure 2. First, the initial threshold for conversion of numeric data into
binary (infested/not infested) was identified. The input images were converted to binary assuming
a threshold of 0.1586553 (see Appendix A), i.e., infestation proportions of above 0.158 are taken as
presence and lower values as non-presence. The second stage was the adjustment of the regression
model parameters. To do so, the compiled dataset was divided into training and test datasets. Using the
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training dataset, regression parameters were estimated. This preliminary model was then applied
to the test dataset in order to assess its ability to predict the changes in input data. Such assessment
involved the third stage of model parameterization—the selection of the final threshold for creation of
the binary output. This was done by applying and testing the goodness-of-fit of 1000 images created
by different cut-off values. The test involved giving test data to the model and comparing its output
with the most recent input image. The cut-off thresholds giving the highest kappa and the highest
Youden’s J statistic was selected for application in the prediction phase.

Model output was compared with the reference data for validation. It should be noted that the
similarity of simulation and reference maps of the final year does not provide sufficient information for
validating the model [54–56]. In fact, if the overall change in the landscape is small, even an erroneous
prediction can still be highly similar to the reference. Therefore, model validation should account for
the simulated and observed change. This requires considering three maps: a reference map of the
beginning time, and reference and simulation maps at the ending time. In this study, the process of
change is infestation, which is irreversible. As such, change may only occur in areas that were initially
not infested. We analyzed these areas when validating the model.

2.6. Software

Calibration and simulation algorithms were computed using R 3.6.0 (Auckland, New Zealand) [53]
and cartography was produced using ArcGIS Pro 2.4 (Redlands, CA, USA) [57].

3. Results

Validation testing of the model involved simulation of changes in the study area from 2008 to 2014
and comparison with reference observations. Prior to testing, the model was parameterized using data
of changes from 2005 to 2008. Then, in two rounds, it simulated the change from 2008 to 2011 and from
the predicted 2011 to 2014. These predictions were made with 3-year time steps. Figure 3 shows model
results for three algorithms—binomial regression (Equation (6); hereafter GLM1), binomial regression
with parabolic elevation (Equation (7); hereafter GLM2), and random forest (RF) with maximum kappa
final cut-off threshold—in addition to the observed change (Appendix D).

Outputs of validation analysis for the three algorithms with maximum kappa final cut-off threshold
are presented in Figure 4. Each map of this figure corresponds to one simulation algorithm and
demonstrates a comparison between three images: observed infestations in 2008, simulated infestations
in 2014, and observed infestations in 2014. In this figure, correctly simulated changes are identified
as “hits”; observed changes that are missing from simulations are identified as “misses”; simulated
changes that are not observed are identified as “false alarms”; and correct simulations of no change are
identified as “correct rejections”. Because infestation is a one-way process that is not reversible, it is
evident that zones of “prior infestation”, that is, zones that were already infested at the beginning of the
study period, are not susceptible to future change and they should be excluded from the assessment of
model performance.
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Figure 3. Comparison of model simulations with reference observations of changes in the study area
from 2008 to 2014. (a) Mountain pine beetle outbreak change in British Columbia (BC) recorded by
satellite imagery and aerial surveys; mountain pine beetle outbreak change simulated with algorithms:
(b) random forests (RF), (c) binomial regression (GLM1), (d) binomial regression with parabolic elevation
(GLM2).

Figure 4. Validation analysis by comparison of simulated and observed changes in study area from
2008 to 2014. White color indicates no data. Algorithms: (a) RF, (b) GLM1, (c) GLM2. Hits are correct
simulations of change. False alarm errors are persistence simulated as change. Miss errors are change
simulated as persistence. Correct rejections are correct simulations of persistence. Infestations prior to
the study are excluded from the study area.
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Table 2 shows hits, misses and false alarms in numbers of pixels for each of the simulation
algorithms. In addition, this table gives the figure of merit, which is the percentage of hits in the sum
of hits, misses, and false alarms. The table also shows the overall accuracy of each model, which is the
percentage of correct predictions in the study area.

Table 2. Comparison of hits, misses, and false alarms for different algorithms of simulation of change
in study area from 2008 to 2014. GLM stands for Generalized Linear regression Model.

Algorithm Cutoff Hits (Pixels) Misses (Pixels) False Alarms
(Pixels) Figure of Merit (%) Overall Accuracy (%)

Binomial (GLM1) Kappa 115,511 149,877 227,472 23.4 91.0
Binomial (GLM1) Youden’s J 171,359 94,029 433,560 24.5 87.4

Binomial-parabolic
elevation (GLM2) Kappa 120,653 144,735 214,695 25.1 91.5

Binomial-parabolic
elevation (GLM2) Youden’s J 182,475 82,913 488,038 24.2 86.4

Random forest (RF) Kappa 74,883 190,505 108,450 20 92.9
Random forest (RF) Youden’s J 90,631 174,757 144,737 22.1 92.4

Using the model results, which indicate locations of simulated infestations and the Ministry’s
map of pine volume density [58] in the study area, cumulative estimates of pine volume killed were
calculated for each algorithm. Table 3 shows these estimates. In comparison, the real percentage of
cumulative change based on the Ministry’s map of observed infestations for year 2014 is 49% for the
entire province (excluding the Tree Farm License Zone).

Table 3. Estimates of cumulative percentages of pine volume killed in MPB attacks by 2014 for
three algorithms.

Algorithm Cutoff Cumulative Volume of Pine Killed (%)

Binomial (GLM1) Kappa 57.5
Binomial (GLM1) Youden’s J 62.7

Binomial-parabolic elevation (GLM2) Kappa 57.8
Binomial-parabolic elevation (GLM2) Youden’s J 63.3

Random forest (RF) Kappa 54
Random forest (RF) Youden’s J 55

Figure 5 shows simulations of changes from 2014 to 2020, where the model was parameterized
with observed changes from 2011 to 2014. The time step for all these simulations was 3 years. This is
a demonstration of a possible application of the model for future predictions. Model outputs are
projections of the infestations in the future, for which no reference data is available yet. As such, it is
not possible to calculate the accuracy of these predictions. Rather, based on the results of validation
tests described above and summarized in Table 2, we assume that the model is able to produce valid
predictions. Aggregate percentages of cumulative pine volume killed are estimated for each simulation
algorithm using the Ministry’s pine volume density map, and are presented in Table 4.

Table 4. Estimates of cumulative percentages of pine volume killed in MPB attacks by 2020 for
three algorithms.

Algorithm Cutoff Cumulative Volume of Pine Killed (%)

Binomial (GLM1) Kappa 64.1
Binomial (GLM1) Youden’s J 70.5

Binomial-parabolic elevation (GLM2) Kappa 64.2
Binomial-parabolic elevation (GLM2) Youden’s J 69.9

Random forest (RF) Kappa 64
Random forest (RF) Youden’s J 64
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Figure 5. Predictions of changes in study area from 2014 to 2020. Algorithms: (a) random forest (RF);
(b) binomial regression (GLM1); (c) binomial regression with parabolic elevation (GLM2).

4. Discussion

4.1. Model Validation

All of the simulation and observation images show a noticeable area of new infestations north of
the center. A closer examination also reveals scattered infestations in other regions. Regarding the
larger infested area, we know based on prior information that it is the result of the spread of previous
infestations from the center of the province towards the north. A visual inspection suggests that, in the
two GLM simulations, the southern and northern envelopes of the large infested areas are somewhat
similar, as if the models have offset the prior infestations to the north. Considering that the model
calculates the adjacency-type predictors in windows of a predefined size, it appears from Figure 4 that
the GLM algorithms predicted a large number of infestations in a limited distance.

Comparing the images with respect to the large zone of new infestations north of the center,
it appears that the GLM algorithms predicted a larger area for the spread of the insect. Moreover,
the two GLM algorithms appear to have predicted a more relatively uniform spread inside the zone
of new infestations. In contrast, the reference observation image shows a less homogeneous pattern
in the same area. Regarding the RF algorithm, its result is somewhat non-homogeneous in that area.
However, identifying correspondence between this image and the reference observation requires
further analysis.

Figure 4 clearly shows that the larger parts of observed and simulated changes occurred in the
area north of the center. It is noticeable that the two GLM algorithms predicted larger numbers of
infestations in this area. Some of these predictions of infestation matched reference observation (hits),
but many of them did not (false alarms). False alarms in the results of these two algorithms are visually
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distinctive. In contrast, the RF algorithm predicted a smaller spread of infestations and missed some
infestations that actually occurred.

Table 2 reveals useful information about the performance of the models. Considering that hits
indicate correct predictions of change, and that misses and false alarms indicate errors in prediction of
change, the figure of merit is the proportion of correct predictions in all predictions involving change.
This table confirms the above visual analyses of simulation outputs. The GLM algorithms predicted
more change (hits + false alarms) than RF. Some of these excess predictions were correct, and these
algorithms had more hits than RF. However, many of them were incorrect. The GLM algorithms,
especially with Youden’s J final cutoff threshold, produced a large number of false alarms. In fact,
although they have more hits and therefore higher figures of merit, this advantage is overshadowed by
their error in estimating the quantity of change. The GLM algorithms, particularly with Youden’s J
final cutoff threshold, produced more false alarms than misses. This means that they overestimated the
quantity of change. In contrast, the table shows that the RF algorithm underestimated the quantity of
change, producing more misses than false alarms. With the kappa final cutoff threshold, the number
of these errors in the estimation of quantity in RF is comparable with that of the GLM algorithms.
With Youden’s J final cutoff threshold, however, the underestimation of the quantity of change in the
RF algorithm is relatively small.

Prior to producing prediction maps, each algorithm creates a probability map. Then it compares
that map with the final cutoff threshold; that is, it classifies pixel values above the final cutoff threshold
as ‘Infested’, and others as ‘Not infested’. The Youden’s J threshold was calculated to be lower value
than that of the Kappa threshold for each algorithm. Therefore, for the same probability map, Youden’s
J cutoff predicts more infestations than the kappa cutoff. On the other hand, the table shows that
regardless of the final cutoff threshold, the GLM algorithms tend to predict more change. This tendency,
combined with the lower Youden’s J final cutoff threshold, resulted in the large overestimation of
quantity seen in the 2nd and 4th rows of the table. One avenue for improvement of the model in future
works can be to reduce its error of estimated quantity of change.

As seen in Table 3, the random forest algorithm produces a closer estimate of the aggregate
quantity of change in the study area. In comparison, the other two algorithms (GLM1 and GLM2)
appear to overestimate this quantity. This is also confirmed in Table 2 and Figure 4; it may be noted
that these algorithms produce more false alarms than misses. Having seen the model’s performance in
the validation test, it is easier to understand the model’s prediction of future changes.

4.2. Model Predictions

Predictions of future infestations are summarized in Table 4. These calculations are based on the
Ministry’s previous inventory and do not include the effect of harvesting or management decisions.
Different simulations estimate that by 2020 between 64 and 70 percent of the pine volume in BC forests
will be killed in MPB attacks. These assessments have been made for the entire forests—or the Whole
Land Base (WLB)—of the province. The Ministry has made estimates of the spread of infestation in
the Timber Harvesting Land Base (THLB), which is a smaller subset of the WLB. According to the
Ministry the cumulative percentage of pine volume killed in the THLB could reach 55% by 2020 (BC
Ministry of Forests, 2015c). Taking this difference in land base or study area into account, the results of
our model can be considered as a complement to the Ministry’s calculations, particularly for zones
outside the THLB. In both studies, it is predicted that in future the spread of infestations in the province
will subside.

4.3. Limitations of the Study

Applying a threshold to transform the initial continuous infestation maps into binary maps may
entail a loss of information because we discard valid knowledge about the shape of the infestation
curve, i.e., whether it grows faster or slower until it reaches saturation. However, we have shown
(Appendix A) that, in general, infestation curves in all pixels seem to follow a similar sigmoidal pattern.
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Therefore, our choice of a single threshold to compute all binary maps appears to be a reasonable
compromise between simplifying the analysis and retaining as much information relating to the
infestation process as possible.

It is obvious that, for a process that spreads spatially, the state of the surroundings is important
in determining the expansion rate. Presumably, definitions of adjacency other than those we used in
the present study may lead to a better characterization of the infestation. Proximity laws based on
insect phenology (e.g., flight time and strength, sensibility to extreme heat or sunlight) may yield better
results than the generic adjacency functions used in this work. Future work may shed some light on
this crucial topic.

5. Conclusions

In this work, we built a spatial change model by integrating neighborhood selection and transition
rule identification in one process. Although we did not have detailed information about distance
and neighborhood effects of MPB infestations at the beginning of this study, we compensated for
this lack of knowledge by calculating several mathematically independent functions of distance as
predictors in the model, and allowed the rule identification algorithm to find the transition rule that
best described the input data. We validated our model by comparison of its output with the observed
data. Validation based on components of figure of merit gave us better insight into the performance of
different algorithms applied in the model. In validation analyses, we noted that although the GLM
simulations resulted in higher figures of merit, the RF algorithm was better able to estimate the quantity
of change. We then used the validated model to predict the upcoming changes in the study area.
By integrating neighborhood effects as variables in the parameterization of the model, we were able to
simulate spatiotemporal complexities of a forest land change process.
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Appendix A. Calculation of Threshold Value on Cumulative Pinus contorta Mortality Data

To calculate the initial threshold value (i.e., the cutoff value that we must apply to the original
infestation map), we first convert the original 0–1000 scale of the cumulative data into a 0%–100% scale.
At every spatial pixel the infestation starts at a value close to 0% starting in the year 1999, which then
increases quickly and finally arrives at saturation level (that is, there are no more trees left in that pixel
to attack) near 100%. When sample curves of the cumulative infestation values are plotted as a function
of time (see examples in Figure A1, left panel) we see that they approximately display a sigmoidal
behavior, although the years the infestation starts are different.
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Figure A1. Three sample curves of cumulative (left panels) and annual (right panels)
infestation percentages.

Next, we determine the annual infestation percentage by computing the numerical derivative of
the cumulative curves. The resulting curves (Figure A1, right panel) now show a coarse bell-like shape
with a given center and width.

Figure A1. Three sample curves of cumulative (left panels) and annual (right panels)
infestation percentages.

Next, we determine the annual infestation percentage by computing the numerical derivative of
the cumulative curves. The resulting curves (Figure A1, right panel) now show a coarse bell-like shape
with a given center and width.

If we conjecture that the curves represent unimodal and symmetric distributions, we can calculate,
at each pixel i, (a) the centroid ci as the first statistical moment, and (b) a proxy of the width wi as the
square-root of second moment (i.e., variance), as follows:

ci =

∑16
j=1 pi j·t j∑16

j=1 pi j
(A1)

and:

wi =

√√√√√∑16
j=1 pi j·

(
t j − ci

)2∑16
j=1 pi j

(A2)

where pi j stands for the infestation percentage for pixel i at year t j (t1 = 1999, . . . , t16 = 2014). We then
use centroids ci to re-center the offset of the original cumulative infestation curves. A random selection
of 50,000 offset-corrected cumulative curves is shown in Figure A2. This figure shows the resulting
re-centered data points, where it is now easier to make out an approximate sigmoidal shape for the
cumulative infestation process. Notice that no correction for different widths has been carried out.
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Figure A2. Offset-corrected cumulative infestation data points.

Next, we compute the mean cumulative infestation in small intervals along the temporal axis.
When those mean infestation data points are plotted as a function of time (Figure A3, red dots),
the sigmoidal-like shape of the infestation process becomes more conspicuous. Finally, we plot
a normal cumulative distribution function (CDF, hereafter I(t)) with standard deviation σ = w
(Figure A3, blue curve), where:

w =
1
N
·

N∑
i=1

wi (A3)

For reference, we have also plotted (in green) the probability density function of the corresponding
normal distribution, I′(t), in Figure A3. Clearly, I(t) serves as a good approximation to the observed
cumulative infestation curve. In curves I(t) and I′(t) we can distinguish five phases as we move from
left to right:

1. initial negligible or very low infestation that spreads slowly (I(t) and I′(t) are close to zero);
2. a transitional phase in which the infestation starts picking up speed (I(t) still low but I′(t)

increases);
3. fast but steady infestation that increases constantly (I(t) increases but I′(t) reaches a maximum);
4. transitional phase during which the infestation slows down (I(t) increases further, I′(t) decreases);
5. saturation level (I(t) highest, I′(t) very close to zero).
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Figure A3. Mean observed and offset-corrected cumulative infestation (red dots), normal cumulative
distribution function I(t) (CDF, in blue, scaled to 0–100), whose standard deviation is explained in text,
and its derivative I′(t), i.e., the normal probability density function (in green).

We assume in the present study that a critical moment in the spread of the infestation occurs
when, in phase 2 above, the infestation starts picking up speed, therefore accelerating its spread.
Consequently, we will use the infestation level at which that acceleration is maximum as our threshold
value Ith, which will enable us to categorize the continuous cumulative infestation maps into binary
maps Ib such that:

Ib =

{
0 (not in f ested) I ≤ Ith

1 (in f ested) I > Ith
(A4)

The so-called acceleration can be calculated as the second derivative of I(t). Therefore, to find its
maximum we must compute in turn the third derivative and solve I′′′ (t) = 0. Assuming that I(t) is
well approximated by a normal CDF, we know that, for a centered normal distribution:

I′′′ (t) =

(
t2
− σ2

)
·e−

t2

2σ2

σ5·
√

2π
(A5)

Equating I′′′ (t) = 0 we arrive at t = ±σ, excluding the trivial solutions t = ±∞. Because t = +σ
corresponds to phase 4 above, i.e., the deaccelerating phase, we take tth = −σ as the temporal location
of the sought-after threshold. Inserting tth into I(t) yields, finally, I(−σ) = 0.1586553 (or 15.86553 in
our percentage scale). Figure A4 depicts the procedure.
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Figure A4. Cumulative distribution function (red) of the normal distribution and its 2nd derivative
(blue). The location of the maximum of the 2nd derivative and the corresponding ordinate is indicated
with a dashed line.

Appendix B. Plots of Average Mortality vs. Predictors

Each predictor variable in Table 1 (see main text) was binned at consecutive intervals and at each
interval we averaged over the corresponding 0 and 1 pixels in the map. This yielded the expected
infestation rates, which were then logit-transformed and plotted vs. the center of the intervals,
as shown below.
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Appendix C. Graphic Representation of the Four Different Neighborhood Types Implemented

Figure A6. The four neighborhood types implemented in this model are (a) no-weight:
neighborhood effect is uniformly distributed; (b) linear: neighborhood effect decreases linearly
with increasing distance; (c) inverse-distance: neighborhood effect decreases inversely proportional to
distance; and (d) squared-inverse-distance: neighborhood effect decreases inversely proportional to
distance squared.

Appendix D. Model Parameterization

The results of parameterization of the GLM1, GLM2, and RF models are summarized in
this appendix.

The GLM1 algorithm resulted in a Receiver Operating Characteristic Area Under Curve (AUC) of
0.7802905. The maximum values of kappa and Youden’s J obtained in model parameterization were
0.3489783 and 0.4540825, respectively. Statistics for this model’s variables are presented in Table A1.

Table A1. Parameterization statistics for the GLM1 model.

Variable Acronym Estimate Std. Error z Value Pr (>|z|)

(Intercept) - −2.518927 7.437363 × 10−3 −338.685488 0.000000
elevation e 2.415789 × 10−4 5.497418 × 10−6 43.944072 0.000000

ruggedness r 3.418483 × 10−4 3.661161 × 10−5 9.337157 9.895502 × 10−21

aspect.sin (sine) a −1.249106 × 10−2 2.968032 × 10−3 −4.208534 2.570333 × 10−5

aspect.cos (cosine) a −8.139534 × 10−3 2.982952 × 10−3 −2.728684 6.358761 × 10−3

slope s −2.682364 1.821996 × 10−2 −147.221146 0.000000
identity.1 ziden,t1p −2.990441 × 10 3.971936 × 10−1 −75.289257 0.000000
linear.1 zlin,t1p 6.979188 × 10−6 1.514023 × 10−7 46.096967 0.000000

inverse.1 zinv,t1p −3.289507 × 10−2 1.136399 × 10−3 −28.946755 3.083004 × 10−184

squared.1 zsqu,t1p −9.227856 × 10−2 4.722606 × 10−3 −19.539752 5.042652 × 10−85

identity.2 ziden,t1 3.895161 × 10 3.035022 × 10−1 128.340446 0.000000
linear.2 zlin,t1 −6.558742 × 10−6 1.114139 × 10−7 −58.868233 0.000000

inverse.2 zinv,t1 1.187859 × 10−2 8.019164 × 10−4 14.812753 1.211739 × 10−49

squared.2 zsqu,t1 1.341532 × 10−1 3.245616 × 10−3 41.333659 0.000000
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The GLM2 algorithm resulted in an AUC of 0.7966494. The maximum values of kappa and
Youden’s J obtained in model parameterization were 0.3603257 and 0.4610181, respectively. Statistics
for this model’s variables are presented in Table A2.

Table A2. Parameterization statistics for the GLM2 model.

Variable Acronym Estimate Std. Error Z Value Pr (>|z|)

(Intercept) - −5.792189 2.340479 × 10−2 −247.478780 0.000000
elevation e 6.035065 × 10−3 3.824616 × 10−5 157.795349 0.000000

ruggedness r 9.025530 × 10−4 3.765714 × 10−5 23.967649 6.049586 × 10−127

aspect.sin (sine) a −1.940276 × 10−2 2.988868 × 10−3 −6.491677 8.488584 × 10−11

aspect.cos (cosine) a −8.848104 × 10−3 2.996480 × 10−3 −2.952833 3.148722 × 10−3

slope s −2.494952 1.827487 × 10−2 −136.523626 0.000000
identity.1 ziden,t1p −3.198807 × 10 3.989017 × 10−1 −80.190364 0.000000
linear.1 zlin,t1p 6.664911 × 10−6 1.514503 × 10−7 44.007261 0.000000

inverse.1 zinv,t1p −2.847800 × 10−2 1.135279 × 10−3 −25.084582 7.326996 × 10−139

squared.1 zsqu,t1p −9.944317 × 10−2 4.717755 × 10−3 −21.078495 1.253054 × 10−98

identity.2 ziden,t1 3.926965 × 10 3.044064 × 10−1 129.004015 0.000000
linear.2 zlin,t1 −6.281823 × 10−6 1.115482 × 10−7 −56.314888 0.000000

inverse.2 zinv,t1 1.006898 × 10−2 8.026541 × 10−4 12.544607 4.255184 × 10−36

squared.2 zsqu,t1 1.190556 × 10−1 3.241775 × 10−3 36.725455 2.866455 × 10−295

I(elevationˆ2) e2
−2.332311 × 10−6 1.521917 × 10−8 −153.248243 0.000000

The RF algorithm resulted in an AUC of 0.9999999. The maximum values of kappa and Youden’s
J obtained in model parameterization were 0.9996198 and 0.9997796, respectively. The RF algorithm
produces relative importance ranks for model variables. These ranks are presented in Table A3, with the
most important variable given the score of 100.

Table A3. RF model variable ranks and relative importance scores rounded to two decimal digits.

Variable Acronym Relative Importance Score

inverse.2 zinv,t1 100.00
identity.2 ziden,t1 99.96
linear.1 zlin,t1p 90.85

inverse.1 zinv,t1p 90.23
linear.2 zlin,t1 80.11

identity.1 ziden,t1p 75.00
squared.1 zsqu,t1p 74.04
squared.2 zsqu,t1 61.32
elevation e 22.43

slope s 11.16
aspect.cos (cosine) a 6.95

aspect.sin (sine) a 6.76
ruggedness r 3.83

Appendix E. Code and Data Availability

Model code is available at https://github.com/s-harati/model-MPB. Data used in the study is
accessible at https://doi.org/10.17605/OSF.IO/V7ATJ.
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