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Abstract: Crown ratio (CR) and height to crown base (HCB) are important crown characteristics
influencing the behavior of forest canopy fires. However, the labor-intensive and costly measurement
of CR and HCB have hindered their wide application to forest fire management. Here, we use
301 sample trees collected in 11 provinces in China to produce predictive models of CR and HCB for
Masson pine forests (Pinus massoniana Lamb.), which are vulnerable to forest canopy fires. We first
identified the best basic model that used only diameter at breast height (DBH) and height (H) as
independent variables to predict CR and HCB, respectively, from 11 of the most used potential
candidate models. Second, we introduced other covariates into the best basic model of CR and HCB
and developed the final CR and HCB predictive models after evaluating the model performance of
different combinations of covariates. The results showed that the Richards form of the candidate
models performed best in predicting CR and HCB. The final CR model included DBH, H, DBH0.5 and
height-to-diameter ratio (HDR), while the final HCB model was the best basic model (i.e., it did not
contain any other covariates). We hope that our CR and HCB predictive models contribute to the
forest crown fire management of Masson pine forests.
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1. Introduction

The tree canopy is an important forest layer where trees interact with their surrounding
environment [1,2]. Many key physiological processes related to the growth and development
of trees, such as photosynthesis [3,4], respiration [5,6] and transpiration [7,8], occur in the canopy layer.
It also plays a vital role in maintaining the soil water of the forest stand [9,10]. Additionally,
the tree canopy is the primary fuel stratum involved in independent crown fires [11], and the spatial
continuity and density of tree canopies determine the initiation and rate of crown fire spread and
severity [12,13]. Therefore, canopy fuel characteristics (e.g., canopy fuel load (CFL), which describes
available canopy fuel in the aerial layer [14–16]; canopy bulk density (CBD), which indicates the dry
weight of the fuel available per canopy volume unity [14–16]), have been studied extensively for
forest crown fire management [15,17,18]. For instance, CBD has been widely integrated into stand
density management diagrams (SDMDs) to guide thinning practices while reducing the potential risk
of crown fires [19–21]. Many forest growth simulators have incorporated crown characteristics as the
explanatory variables in their predictive functions, such as FORMIT-M [22], the Forest Vegetation
Simulator (FVS-PROGNOSIS) [23] and the Tree and Stand Simulator (TASS) [24]. Additionally,
crown characteristics have also been extensively used as the independent variable for predicting basal
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area growth [25–28], as crown characteristics can reflect tree vigor, tree competition status and site
quality [29–32].

Tree crown dimensions are an important feature of the tree canopy. They are generally represented
by basic features, such as crown length (CL) and crown width (CW), as well as derivative features, such as
the crown ratio (CR) and tree height to crown base (HCB) [33] (Figure S1, in the Supplementary file).
CR refers to the ratio of the crown length to the total height of a tree, with values ranging from 0 (for a
tree without a crown, such as a dead or defoliated tree) to 1 (for a tree crown that extends over the
entire tree trunk) [33]. CR is a robust indicator of photosynthetic capacity [34] and tree stability [35] and
provides a means of quantifying tree vitality and stand density [36]. HCB is defined as the height from
the ground to the base of the first living branch that is a part of the crown, ranging from 0 to the height
of the tree [37], which is usually considered a reflection of the long-term level of competition [38].

Both CR and HCB are important canopy fuel characteristics influencing potential crown fire
behavior [14,18,39]. For example, there is a certain relationship between HCB and the occurrence of
crown fires: a smaller HCB is associated with a higher potential for surface fires to develop into a
crown fire [40–42]. Fernandes [43] used CR together with the overstorey height and crown cover of
each forest type to calculate wind adjustment factors, which can convert wind speed at the standard
6-m height above the vegetation to the so-called midflame wind speed. The midflame wind speed is a
quantification of the canopy-induced decrease in wind speed and can thus represent the within-stand
surface wind driving the speed of the fire.

Additionally, CR and HCB have been widely used as predictors of forest growth and in yield
models [25,44–48]. For example, Ritchie and Hann [25] and Hann [46] used CR as a predictor to predict
individual basal area increment and diameter growth, respectively. Sharma et al. [48] used HCB as an
explanatory variable in their crown-to-bole diameter ratio model. Therefore, these metrics are critically
important for informing forest fire management, especially for reducing the prevalence of crown fires.
However, compared with other tree characteristics, the labor-intensive, time- and money-consuming
endeavor of measuring CR and HCB hinders their wide application to forest fire management [36,37].
Consequently, numerous studies have focused on developing predictive models that use common tree
variables or easily obtainable stand variables for estimating the CR and HCB of trees. For instance,
Fu et al. [33] developed a CR model for Mongolian oak in Northeast China. Rijal et al. [49] produced
HCB models for 13 tree species of the North American Acadian Region.

Masson pine (Pinus massoniana Lamb.) is an important tree species in southern China that
covers a total area of 10.1 million ha with a stocking of 590 million m3, accounting for 6% of the
total area and 4% of the total stocking [50]. The Masson pine forests in China primarily occur in
single-species forests, which are unstable and are highly susceptibility to disturbances such as fire,
wind and pests [51]. For instance, Masson pine forests experience the highest occurrence rates of
wildland fires, resulting in substantial losses of Masson pine forest to fire [52–54]. Wu et al. [52] showed
that more than 90% of China’s forest fires occur in southern China, mostly in Masson pine forests. Many
have found that the susceptibility of forests to crown fire is closely related to CR and HCB [40,55,56].
The crown fire risk can, therefore, be reduced through manipulation of CR and HCB within a reasonable
range [57–59]. However, there is currently no predictive model for CR and HCB for Masson pine to
support prescription of a particular silvicultural regime. Here, we aimed to develop predictive models
of CR and HCB using easily measured individual tree variables as predictors. Our predictive models
will contribute to the development of a silvicultural strategy that can reduce the potential for forest
crown fires.

2. Materials and Methods

2.1. Data

We used data from the National Biomass Modeling Program in the Continuous Forest Inventory
(NBMP-CFI) program funded by the State Forestry Administration of China [60]. These data were
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collected from 11 provinces in southern China representing the core distribution areas of Masson
pine: Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi, Sichuan and
Zhejiang (Figure 1). A total of 301 P. massoniana trees were sampled in this study and were evenly
distributed among 10 diameter classes (i.e., 2, 4, 6, 8, 12, 16, 20, 26, 32 cm and >38 cm) with about
30 sample trees per diameter class. After measuring the diameter at breast height (DBH) and CW of
each sample in the field, the trees were felled, and tree height (H) and CL were measured. The CR and
HCB of P. massoniana were calculated based on their definitions. All 301 trees were used for model
fitting and validation. Distributions of the measured and derived variables for the 301 trees are shown
in Figure 2.

Forests 2020, 11, x FOR PEER REVIEW 3 of 18 

 

pine: Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi, Sichuan and 
Zhejiang (Figure 1). A total of 301 P. massoniana trees were sampled in this study and were evenly 
distributed among 10 diameter classes (i.e., 2, 4, 6, 8, 12, 16, 20, 26, 32 cm and >38 cm) with about 30 
sample trees per diameter class. After measuring the diameter at breast height (DBH) and CW of each 
sample in the field, the trees were felled, and tree height (H) and CL were measured. The CR and 
HCB of P. massoniana were calculated based on their definitions. All 301 trees were used for model 
fitting and validation. Distributions of the measured and derived variables for the 301 trees are shown 
in Figure 2. 

 
Figure 1. Location of sample trees in China. 

 
Figure 2. Distributions of the measured and derived variables for the 301 trees. 

  

Figure 1. Location of sample trees in China.

Forests 2020, 11, x FOR PEER REVIEW 3 of 18 

 

pine: Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi, Sichuan and 
Zhejiang (Figure 1). A total of 301 P. massoniana trees were sampled in this study and were evenly 
distributed among 10 diameter classes (i.e., 2, 4, 6, 8, 12, 16, 20, 26, 32 cm and >38 cm) with about 30 
sample trees per diameter class. After measuring the diameter at breast height (DBH) and CW of each 
sample in the field, the trees were felled, and tree height (H) and CL were measured. The CR and 
HCB of P. massoniana were calculated based on their definitions. All 301 trees were used for model 
fitting and validation. Distributions of the measured and derived variables for the 301 trees are shown 
in Figure 2. 

 
Figure 1. Location of sample trees in China. 

 
Figure 2. Distributions of the measured and derived variables for the 301 trees. 

  

Figure 2. Distributions of the measured and derived variables for the 301 trees.



Forests 2020, 11, 1216 4 of 17

2.2. Model Development

2.2.1. Basic Model Selection

We modeled CR and HCB using logistic, exponential, Richards and Weibull equations [33,37,49,61].
The Richards and Weibull equations are special forms of logistic and exponential equations,
respectively [49,61]. We selected six CR models and five HCB models as candidate models (Table 1).
Because H and DBH are key predictor variables in modeling forest crown characteristics [37], we used
both H and DBH as initial predictor variables in each HCB and CR candidate model. Based on model
evaluation and validation, the best basic model was then finally identified for further analysis.

Table 1. Crown ratio (CR) and height to crown base (HCB) candidate models.

Model Equation Model Form Range of Function Value Reference

CR1 CR = 1/
(
1 + e−βX

)
Logistic (0, 1) [62]

CR2 CR = a/
(
1 + be−cβX

) 1
m Richards (0, 1) [61]

CR3 CR = 1/
(
1 + e−βX

) 1
2 Richards (0, 1) [63]

CR4 CR = eβX Exponential (0, +∞) [34]
CR5 CR = 1− e−cβX Exponential (−∞, 1) [64]
CR6 CR = a×

(
1− be−cβXw)

Weibull (−∞, 1) [61]
HCB1 HCB = H/

(
1 + eβX

)
Logistic (0, H) [65]

HCB2 HCB = H/
(
1 + becβX

) 1
m Richards (0, H) [49]

HCB3 HCB = H/
(
1 + eβX

) 1
2 Richards (0, H) [66]

HCB4 HCB = H× eβX Exponential (0, +∞) [64]
HCB5 HCB = H×

(
1− eβX

)
Exponential (−∞, H) [37]

Note: The letters a, b, c, m and w are model parameters, where a, b and c = 1; m = 6 and w = 10. β indicates the
parameter vector and X indicates the vector of tree variables.

2.2.2. Additional Variable Selection

Stand development stage, site quality, stand density or competition may substantially influence
the tree crown [36,48,67]. Hasenauer and Monserud [36] divided the variables that predict CR and
HCB into the following three groups: tree size characteristics (SIZE), competition measures (COMP)
and site factors (SITE). The βX in candidate models in Table 1 is described as a linear function of the
variables of the three groups and is expressed as follows [36,37,61,62]:

βX = β0 + b× SIZE + c×COMP + d× SITE

where β0 is the intercept of the model, and b, c and d are a set of parameters of the model.
Size-related attributes included DBH and H. In addition, we also considered transformations of

the basic size variables, including the power of DBH (DBH2 and DBH0.5) and the natural logarithm
of DBH and H (ln(DBH) and ln(H)). These size-related attributes are important means of describing
stand structure, tree vigor and the competitive ability of individual trees, and hence are closely related
to CR and HCB [68,69]. For instance, a shorter DBH and a larger tree height, which correspond to a
higher stand density, are usually associated with a lower CR (or higher HCB) [37,49].

Competition-related covariates included the height-to-diameter ratio (HDR) and CW. We also
considered their transformation, such as the natural logarithm of CW (ln(CW)). HDR has been used
extensively to describe tree slenderness, which is significantly associated with the degree of competition
within a forest stand [70–72]. CW is also a variable that describes competition among neighboring
trees and has been used extensively in several studies [73–75]. CR generally decreases as HDR or CW
increases and vice versa for HCB [62,76].
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Site-related covariates were not considered in our study because of a lack of site data. Relative to
tree size and competition variables, many authors [36,37] have reported that site variables make
insignificant contributions to predictions of CR and HCB.

We selected variables using graphical or visual analysis of the data and examination of the
correlation statistics [37,62,63,69,77,78]. Moreover, an analysis of the relationship between the
residuals of the original models and the potential regressors (one at a time) was also conducted
for variable selection. Different combinations of candidate variables and their transformations were
tested in the best base model based on the adjusted determination coefficient (R2

a) and root mean
square error (RMSE) [33,78]. Additionally, because many [69,79,80] have suggested that introducing
many predictors into models not only impedes computational convergence but also results in biased
parameter estimates, we also considered over-parameterization before deciding on the final form of
our predictive models.

2.2.3. Parameter Estimation and Evaluation

The parameters of all nonlinear regressions were estimated using the ordinary nonlinear least
squares technique [33]. The performance of models was evaluated using four statistical indices: R2

a,
RMSE, Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC) [81,82].
Their formulas are shown below:

R2
a = 1−

(
n− 1

n− p− 1

)
n∑

i=1

(
yi − ŷi

)2

n∑
i=1

(
yi − yi

)2

 (1)

RMSE =

√√√√√√ n∑
i=1

(
yi − ŷi

)2

n− p
(2)

AIC = −2Loglik + 2p (3)

BIC = −2Loglik + pln(n) (4)

where yi is the observed value, ŷi is the estimated value, yi is the mean observed value, n is the number
of observations and p is the number of estimated parameters of the model (including the intercept).
A model with a high R2

a and low values of the other indicators (RMSE, AIC and BIC) was judged to have
a good fit. Additionally, the presence of heteroscedasticity was checked by plotting the studentized
residuals against the predicted values, and normal quantile-quantile (Q-Q) plots were used to check
for normality of the studentized residuals [83]. If heteroscedasticity was detected, dependent variables
were square-root or logarithm transformed to eliminate heteroscedasticity [84].

2.3. Model Validation

The robustness and predictive performance of the model was further validated using a 10-fold
cross-validation procedure [85,86]. The cross-validation evaluation indicators used in this study
included the normalized mean square error for the test set (NMSEte) [87] and the predicted residual
error sum of squares (PRESS) [88]. The description of each indicator is as follows:

NMSEte =

n∑
I=1

(
yI − ŷi

)2

n∑
i=1

(
yi − yi

)2
(5)
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PRESS =
n∑

i=1

(
yi − ŷi

)2
(6)

where yi is the observed value, ŷi is the estimated value and ŷi is the mean observed value. A model
with lower NMSEte and PRESS was judged to have better predictive performance.

All analyses were conducted using R version 3.6.1 statistical software (R Foundation for Statistical
Computing, Vienna, Austria) [89]. The following R packages were used in this study: “nlme” [90] for
model fitting and “ggplot2” [91] for plotting.

3. Results

3.1. Basic Model Selection

The goodness of fit statistics of model evaluation and validation for all candidate CR models are
shown in Table 2. Additionally, we also drew the residual and quantile-quantile (Q-Q) plots of all
models and found that they were normally distributed without obvious heteroscedasticity (Figure 3).
Furthermore, plots of the predicted values versus the observed values of all models (Figure S2, in the
Supplementary file) indicated that there were no differences among these models. Although the CR4
model performed best in model evaluation and validation, the predictive value of CR4 cannot be
constrained to [0, 1], meaning that this model lacks biological relevance. After the CR4 model, the CR2
model showed the highest performance and was therefore selected as the best base model to further
develop the final CR model. The best basic model form for CR was the following:

CR = 1/
(
1 + e−(−1.287+0.097×DBH−0.313×H)

) 1
6 (7)

Table 2. Goodness of fit statistics of model evaluation and validation for CR candidate models.

Model
Fitting Statistics of the CR Candidate Models Cross-Validation

AIC BIC RMSE R2
a NMSEte PRESS

CR1 −333.3678 −318.5928 0.1369 0.3763 0.6726 0.5607
CR2 −344.0376 −329.2626 0.1345 0.3983 0.6454 0.5408
CR3 −337.2242 −322.4493 0.1360 0.3843 0.6623 0.5533
CR4 −346.0108 −331.2359 0.1340 0.4023 0.6409 0.5375
CR5 −319.7976 −305.0226 0.1401 0.3471 0.7161 0.5908
CR6 −337.3960 −322.6210 0.1360 0.3847 0.6624 0.5531

In the process of selecting the best basic model of HCB, we found that the residuals of all candidate
models showed pronounced heteroscedasticity (Figure S3, in the Supplementary file). Additionally,
the plots of the predicted values versus the observed values for all HCB candidate models revealed a
tendency for overestimation (Figure S4, in the Supplementary file). However, the heteroscedasticity
was successfully mitigated (Figure 4) and the tendency of overestimation was ameliorated (Figure S5,
in the Supplementary file) by conducting a square-root transformation of the dependent variable.

The goodness of fit statistics of model evaluation and validation for all candidate HCB models
with the square-root transformation are shown in Table 3. Although there were almost no significant
differences in the performance of all HCB candidate models, HCB2 and HCB4 were slightly better
performing than the other models. The model HCB4 was not considered, given that the range of
dependent variables could not be limited to [0, H]. Therefore, we selected the HCB2 model as the best
basic model form to construct the final model of HCB. The best basic model for predicting HCB was
the following:

√

HCB = H/
(
1 + e(8.441+0.084×DBH)

) 1
6 (8)
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Table 3. Goodness of fit statistics of model evaluation and validation for HCB candidate models with
square-root transformation.

Model
Fitting Statistics of the HCB Candidate Models Cross-Validation

AIC BIC RMSE R2
a NMSEte PRESS

HCB1 225.2464 236.3275 0.3512 0.8803 0.1246 3.7029
HCB2 222.4478 233.5290 0.3495 0.8814 0.1233 3.6683
HCB3 223.3159 234.3971 0.3500 0.8811 0.1238 3.6790
HCB4 222.4446 233.5258 0.3495 0.8814 0.1234 3.6683
HCB5 237.8585 248.9397 0.3587 0.8751 0.1305 3.8639

3.2. Inclusion of Additional Covariates

The relationships among the dependent variables (CR and HCB), the candidate covariates and
their transformation were first investigated by performing a visual analysis (Figures S6 and S7, in the
Supplementary file). We found that all of the candidate covariates and their transformations were
negatively correlated with CR (Figure S6). In contrast, HCB showed a positive relationship with all
of the candidate covariates and their transformation, except for HDR, which exhibited a negative
correlation (Figure S7). Furthermore, we also conducted a Pearson correlation analysis to quantitively
investigate the relationships among the dependent variables (CR and HCB), the candidate covariates
and their transformation. The correlation coefficients are shown in Table 4. We found that the results
of the Pearson correlation analysis were consistent with the visual analysis.

Table 4. Pearson correlation coefficients among CR, HCB and variables.

Variables DBH DBH2 DBH0.5 ln(DBH) H ln(H) HDR CW ln(CW)

CR −0.38 ** −0.29 ** −0.42 ** −0.46 ** −0.54 ** −0.59 ** −0.04 −0.28 ** −0.31 **
HCB 0.75 ** 0.67 ** 0.77 ** 0.76 ** 0.92 ** 0.87 ** −0.19 ** 0.61 ** 0.63 **

Note: HDR = height-to-diameter ratio, ln = natural logarithm. Significance codes: ** = (0.001 ≤ p < 0.01).

To identify additional covariates, we also performed an analysis of the relationship between the
residuals of the original basic models and the potential regressors (one at a time) (Figures S8 and S9,
in the Supplementary file). We found that almost all of the residuals improved after adding the
regressors (one at a time). Similar to Temesgen et al. [62], the inclusion of HDR in the best basic model
of CR improved the performance of the model, although the correlation between HDR and CR was not
significant in this study (Table 4). Thus, we still considered HDR when developing the final CR model.

Based on the best basic model, different combinations of additional covariates were added
and examined. We identified the best combination of additional covariates for the best basic model
of CR and HCB (Table 5) based on adjusted determination coefficients and root mean square error.
In general, we observed that the performance of the model improved as additional covariates were
added (Table 6). For instance, the R2

a increased by 0.058 from 0.3983 (initial variables: DBH and H) to
0.4563 (two additional covariates: DBH0.5 and HDR). However, the R2

a only increased by 0.0089 from
0.4563 (two additional covariates: DBH0.5 and HDR) to 0.4652 (three additional covariates: DBH2,
DBH0.5, HDR). Consequently, in order to maximize model simplicity and generality, we finally selected
CR2_1 as our final CR predictive model, which was written as follows:

CR = 1/
(
1 + e−(5.217+0.274×DBH−0.097×H−2.603×DBH0.5

−2.504×HDR)
) 1

6
(9)
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Table 5. The best combinations of variables for the best basic model of CR and HCB.

Model Submodel
Number of
Variables

The Best Combinations of Variables

c1 c2 c3

CR2
CR2_1 2 DBH0.5 HDR
CR2_2 3 DBH2 DBH0.5 HDR

HCB2
HCB2_1 1 ln(CW)
HCB2_2 2 H ln(CW)
HCB2_3 3 HDR CW ln(CW)

Note: CR2 and HCB2 refer to the best basic models for CR and HCB, respectively.

Table 6. Results of parameter estimates and the goodness of fit of the CR2 model with the best
combinations of variables.

Model
Parameter Values Fitting Statistics Cross-Validation

b0 b1 b2 c1 c2 c3 AIC BIC RMSE R2
a NMSEte PRESS

CR2 −1.287 0.097 −0.313 — — — −344.0376 −329.2626 0.1345 0.3983 0.6454 0.5408
CR2_1 5.217 0.274 −0.097 −2.603 −2.504 — −372.1724 −350.0100 0.1278 0.4563 0.5821 0.4928
CR2_2 7.625 0.714 −0.104 −0.005 −4.606 −2.614 −376.0822 −350.2261 0.1268 0.4652 0.5813 0.4893

Note: p-values for all parameters in this table are <0.05.

The residual plot and quantile-quantile (Q-Q) plot of the final CR model is shown in Figure 5.
The residuals were normally distributed with no pronounced heteroscedasticity.
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Figure 5. Residual and quantile-quantile (Q-Q) plots of the final CR model. The solid line in the
residual plots is the smoothing spline, which is close to zero.

For the best basic HCB model (HCB2), the best combination of additional covariates is shown in
Table 5. The models improved slightly when covariates were added (Table 7). However, since CW
measurement in these models is labor-intensive as well as time- and money-consuming, we decided to
not introduce any additional covariates and selected the best basic HCB model (HCB2) as our final
HCB model. Figure 6 shows the comparison between the predicted and observed values of the final
CR and HCB models.

Table 7. Results of parameter estimates and the goodness of fit of the HCB2 model with the best
combination of variables.

Model
Parameter Values Fitting Statistics Cross-Validation

b0 b1 c1 c2 c3 AIC BIC RMSE R2
a NMSEte PRESS

HCB2 8.441 0.084 — — — 222.4478 233.5290 0.3495 0.8814 0.1233 3.6683
HCB2_1 7.980 0.064 0.584 — — 213.9222 228.6972 0.3440 0.8851 0.1189 3.5479
HCB2_2 7.304 0.024 0.083 0.689 — 179.3343 197.8029 0.3240 0.8981 0.1059 3.1647
HCB2_3 6.494 0.077 0.736 −0.258 1.816 198.3975 220.5599 0.3340 0.8917 0.1131 3.3735

Note: p-values for all parameters in this table are <0.05.
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4. Discussion

To systematically compare this research with existing models, we constructed a table for
other similar models containing model equations, tree species, predictors and lack of fit statistics
(i.e., R2 or RMSE) (Table S1, in the Supplementary file). The equations for predicting CR and HCB
are mainly logistic equations, followed by exponential equations (Table S1). The final CR and HCB
models of Masson pine in this study were developed based on the best candidate model (basic model):
the Richards equation (a special form of the logistic equation). The advantage of this form is that
the prediction of CR and HCB can be constrained to be between 0 and 1 as well as between 0 and H,
which avoids the generation of predictions that are inconsistent with reality [33,36]. Furthermore,
the Richards form has also been found to significantly reduce biases, and the problems of convergence
rarely occur [49]. Thus, the Richards form has been used extensively to model crown characteristics,
such as CR [61,63], HCB [49,66] and CW [78]. However, the best candidate model (basic model) might
change after additional covariates are included.

Similar to other CR and HCB modeling studies (Table S1), DBH and H were also the key predictors
for predicting CR and HCB in our study. This could be because H and DBH can describe tree structure,
tree vigor and competitive ability well [37,69]. Additionally, we also included potential covariates into
the best basic model for CR and HCB. Generally, we found that the model performance of CR and HCB
improved with the addition of covariates. However, improvements in performance with the addition
of covariates were minor for the HCB model; therefore, the best basic model of HCB was selected as
our final HCB model.

In contrast, there was a pronounced improvement in the performance of the CR model when other
covariates were introduced. In addition to DBH and H, HDR and DBH0.5 were included in our final
CR model. Many authors [36,62–64] have shown that HDR is a robust predictor of CR and some of
them [36,64] have argued that HDR can be considered as an indicator of past competition. For instance,
Dyer and Burkhart [64] found that HDR made significant contributions to predicting CR and they
think this ability to predict CR stems from the fact that HDR largely accounted for the effect of density
on CR; that is, HDR can accurately represent local competition status. Therefore, HDR can serve as a
good surrogate for local competition in the absence of competition variables.

Generally, a tree with a greater diameter or a smaller tree height is associated with a higher
CR (or lower HCB) in a stand [33,49]. The findings of our study are consistent with this conclusion.
In general, the canopy of a larger tree that grows better in a stand experiences less competition from
surrounding trees and has better light conditions, resulting in higher crown length (or lower HCB) [81].
Additionally, we observed that CR was negatively correlated with tree height while HCB was positively
correlated with tree height. This observation suggested that taller trees in a dense stand experience
a greater degree of competition and physical interactions from neighboring trees, or poorer light
conditions under the canopy of taller trees, which may result in crown recession and a larger HCB
(or, lower, C.R.). We also observed that CR was negatively correlated with HDR. This same finding
has been reported by several other studies [49,61,62,69]. HDR has also been called the slenderness
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coefficient, as it is usually associated with a tree’s mechanical stability when calculated at the level
of the individual tree [92]. Therefore, HDR has been used extensively to characterize stand stability
against disturbances, such as wind and snow [20,72,92].

Many authors have established models of CR and HCB for different tree species (Table S1).
The coefficient of determination (R2) and RMSE have often been used to measure model performance.
For CR models, the values of R2 and RMSE are mainly in the range of 0.09–0.94 and 0.041–0.168,
respectively; in contrast, the range of R2 and RMSE for HCB models is 0.04–0.91 and 0.239–3.330,
respectively. In our study, the value of R2

a and RMSE in the CR model was 0.46 and 0.128. These values
were within the range of previous studies, suggesting that our CR model is applicable for Masson pine
forests in China with an appropriate level of reliability. In comparison, the value of RMSE was 0.350
and R2

a was 0.88 in our HCB model, which is better than most of those documented in previous studies.
However, our HCB model only contained DBH and H relative to existing models. The distinguished
performance of our HCB model might be explained by the stable (linear) relationship between H
and HCB, which also explains why there was little difference among model candidates of HCB.
In contrast, the other independent variable (CW) was measured before the trees were felled. Moreover,
it was generally more difficult to measure CW, which may have resulted in less accurate measurements.

Competition indices are frequently used as predictors in CR and HCB models (Table S1).
For instance, Hasenauer and Monserud [36] included crown competition factor (CCF) in their CR
model for Austrian forests. Sharma et al. [69] introduced basal area in larger trees (BAL) to predict
HCB. In addition, many [63,69,93] have insisted that including site-related covariates, such as elevation,
site index, slope and aspect, could significantly improve model performance; however, some [36,49,62]
have disagreed with this suggestion and have argued that these variables only contribute 1% to 5% to
the R2 in CR and HCB models.

Mixed-effect models have been extensively used to develop forestry models, such as the individual
tree diameter growth model [77,94–97], the tree crown width model [78,80,98,99], the site index
model [100–102] and the biomass model [103–106]. These studies have shown that mixed-effect models
can significantly improve model performance. For instance, Fu et al. [33] reported that the R2 increased
from 0.26 to 0.64 after introducing both blocks and the interaction of blocks and sample plots as
random effects when developing a crown ratio model. Pokharel and Dech [107] included ecological
land classification (ELC) ecosites as a random effect to predict basal area growth and found that the
model’s performance was also significantly improved. They attributed the improvement to the fact
that ELC ecosites used substrate characteristics (e.g., soil texture, moisture regime and soil depth) and
overstorey tree species composition to delineate forest conditions. Therefore, ELC could accurately
represent the specific site environment of each tree.

In our study, detailed site information, such as ELC ecosites, were not available; we only had
access to information on the province in which each tree was located. Including province as a random
effect in the models did not improve model performance, which might stem from the fact that the
delimitation of provinces is not inherently based on the biological, geographical and climatic factors
that significantly affect tree growth. In future studies, site conditions and other types of relevant
information affecting the environments associated with trees need to be collected when conducting
forest inventories.

5. Conclusions

Here, we developed CR and HCB models for Masson pine in southern China. In practice,
forest managers could use our CR and HCB models combined with other forest models (e.g., the basal
area increment model and crown width model) to estimate crown surface area, crown volume and
crown biomass. Additionally, CR and HCB models can also be used as submodels in forest growth
simulators, which are useful tools for prescribing forest management strategies. Most importantly,
CR and HCB are critically important for forest fire management, as these models can be used in fire
modeling systems that can be used to assess crown fire hazards and provide fuel treatment alternatives
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for forest managers. However, other canopy fuel characteristics, such as CFL and CBD, were not
examined because of a lack of data. We encourage future studies to examine these other canopy fuel
characteristics, given that the joint consideration of all possible fuel characteristics would facilitate the
development of forest fire management strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/11/1216/s1.
Table S1. Detail information of crown ratio and height to crown base mode in existing literature; Figure S1.
Schematic diagram of tree crown dimensions; Figure S2. Plots of predicted values against observed values of CR
candidate models; Figure S3. Residual and quantile-quantile (Q-Q) plots of HCB candidate models. The solid
lines in residual plots is a smoothing spline; Figure S4. Plots of predicted values against observed values of HCB
candidate models; Figure S5. Plots of predicted values against observed values of HCB candidate models with
root square-transformed data; Figure S6. Scatter plot of CR and all variables; Figure S7. Scatter plot of HCB and
all variables; Figure S8. Residuals of the CR best base model with the potential covariates. The first subplot
showed the residual of the CR best base model; Figure S9. Residuals of the HCB best base model with the potential
covariates. The first subplot showed the residual of the HCB best base model.
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