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Abstract: Research Highlights: Black spruce (Picea mariana Mill.) and trembling aspen (Populus
tremuloides Michx.) both regenerated vigorously after wildfire. However, pure semi-upland black
spruce stands are at increasing risk of changing successional trajectories, due to greater aspen
recruitment. Background and Objectives: Black spruce and aspen are found across the boreal forest
with black spruce dominating lowlands and aspen being common in uplands. Both species are well
adapted to wildfire with black spruce holding an aerial seedbank while aspen reproduce rapidly via
root suckering. In the summer of 2016, the Horse River wildfire burned 589,617 hectares of northern
Alberta’s boreal forest. Methods: We assessed early regeneration dynamics of both pure aspen and pure
black spruce forests. For black spruce, 12 plots were established in both bog and semi-upland habitats
to assess seedling regeneration and seedbed availability. For aspen, 12 plots were established in each
of the low, moderate, and high burn severities, as well as 5 unburned plots. Results: Post-fire black
spruce regeneration densities did not differ between bog and semi-upland habitats, but were positively
correlated with forb cover and charred organic matter seedbeds. Aspen regeneration within pure
black sprue stands was substantial, particularly in semi-upland habitats, indicating a potential shift
in successional trajectory. Fire severity did not significantly affect aspen regeneration in pure aspen
stands, but regeneration density in all severity types was >90,000 stems ha−1. Aspen regeneration
densities were negatively related to post-fire forb and shrub cover, likely due to competition and
cooler soil temperature.
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1. Introduction

Boreal forest ecosystem dynamics are driven by natural disturbances such as fire, windthrow,
insects, and disease outbreaks [1]. Fire is a major stand-renewing agent and plays an essential
role in shaping boreal ecosystems by influencing species composition, age structure, productivity,
and biodiversity [2]. Approximately 0.7% of the forested land in the boreal region burns annually [3],
and this is expected to rise as fires become more frequent and harder to control due to a changing
climate [4].

Black spruce (Picea mariana Mill.) hold aerial seed banks in the form of semi-serotinous cones,
enabling them to respond quickly to disturbances. Mature trees can hold up to 6 years of closed
cones allowing for a large potential seed source [5]. Although the majority of seed fall occurs in the
first year post-fire, small amounts of seed rain can continue several years post fire, helping to ensure
establishment during favorable years [6]. In the first 1–5 years post fire, black spruce seedlings can be
found in densities of up to 80,000 stems ha−1 [7,8].
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Although black spruce is capable of providing thousands of seeds post-fire, appropriate seedbeds
are needed for successful germination. Previous studies have found that best establishment usually
occurs on mineral soil, thin organic soil, or sphagnum, because they are continually moist [9,10].
Fire often creates these favorable seedbeds by removing soil organic horizons, lichen and moss mats,
other competing vegetation, and by blackening and warming the soil [11,12]. Higher intensity fires
produce more of these favorable seedbeds and result in good black spruce establishment. However,
heavy ash layers on the soil can inhibit germination immediately after fire because of decreased water
permeability [13]. To our knowledge, most research on seedbed preference has taken place in northern
circumpolar regions [10,14,15], and it would be beneficial to also understand preferences in more
southerly portions of the boreal, as well to better understand regeneration dynamics in different black
spruce habitats.

In Alberta, there are two main types of black spruce forests, semi-upland and lowland.
In semi-upland sites, mineral soil is typically found within 30 cm of the soil’s surface and is imperfectly
drained. Lowland sites are classified as treed bogs and have organic soils that are ≥80 cm thick, the
soils are hydric and can have standing water. Semi-upland sites tend to be more productive in terms
of tree growth, because the soils have better drainage and thinner organic layers. These two habitat
types may provide different seedbeds for black spruce. Lowland sites will have greater organic matter
seedbeds, while uplands should provide more mineral soil seedbeds.

Trembling aspen (Populus tremuloides Michx.) is well adapted to disturbances because it has a high
capacity for vegetative reproduction [5]. Sprouts from lateral roots (root suckers) are the main form of
regeneration after disturbance. However, stump sprouts can also be produced if the stem is removed.
Root suckers are produced immediately after fire in numbers as high as 240,000 stems ha−1 [16].
However, there is evidence of lower root suckering rates of aspen after high severity fires and under
certain pre-fire stand conditions, such as unhealthy trees and low stand basal areas. Aspen can also
colonize a site via windblown seeds capable of travelling long distances [8]. If preferable microsites,
such as mineral soil, shallow organic matter, and mineral-organic matter mix, are present, aspen will
regenerate successfully by seed, potentially occupying other habitat types [17,18].

Generally, it is thought that forests within the boreal will regenerate to similar species composition
and stem densities as before fire, known as the direct regeneration hypothesis [19]. However, deciduous
trees may dominate a regenerating forest because of rapid asexual reproduction and long-distance
transport of small wind-blown seeds [8,20]. These alternative successional trajectories can be driven
by fire severity, pre-fire vegetation composition, site conditions, and fire effects on the reproductive
potential of alternate dominant species [21]. Species interactions, such as herbivory and plant
competition, can also alter the direction and timing of successional trajectories [14]. For example,
in black spruce dominated stands, adjacent deciduous trees (e.g., trembling aspen) can populate an area
via lateral root suckering [8,22]. High severity fires also consume organic material and expose mineral
soil, leaving ideal seed beds for deciduous tree species, as well as other conifers, while scorching the
aerial seed bank held by black spruce thereby reducing their viability [14,22]. In aspen-dominated
stands, higher severity fires tend to cause more prolific asexual regeneration compared to low severity
fires [23,24]. However, severe burns (forest floor is completely removed) have also been found to
reduce aspen reproduction by consuming lateral roots [16], allowing other species to germinate on a
mineral soil seedbed.

The goal of this study was to determine the effects of fire severity, habitat type, and stand
characteristics on the regeneration of pure black spruce and pure aspen stands immediately after
wildfire. We looked at black spruce and aspen stands separately, as the emphasis of research questions
differed. For black spruce stands we sought to determine whether: (1) habitat type (i.e., bog or
semi-upland) affected regeneration of black spruce stands; (2) stand characteristics (i.e., age, diameter
at breast height (DBH), height, basal area, competition, and soil properties) affected regeneration in
black spruce stands; and (3) seedbeds were differentially occupied by black spruce seedlings in different
habitat types. For aspen forests, we asked whether: (1) fire severity affected the regeneration of aspen
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stands; and (2) stand characteristics (i.e., age, DBH, height, basal area, competition, soil properties)
affected regeneration in aspen stands.

2. Materials and Methods

2.1. Study Area

This study took place after the Horse River fire (Figure 1), which burned an area of 589,617
hectares, making it Canada’s fourth largest wildfire on record [25]. The Horse River Fire started on
1 May 2016, and was not classified as under control until 5 July 2016. Record high temperatures, low
relative humidity, and strong winds caused the fire to undergo a dramatic increase in size shortly after
ignition. At the time of the fire, the green-up of vegetation had not begun, resulting in dry fuel being
available on the forest floor [26]. The Horse River fire occurred in the Central Mixedwood Natural
Subregion of Alberta, characterized by aspen and aspen-white spruce forests on upland sites [27].
Semi-upland sites have imperfectly drained soils and are occupied by black spruce-dominated forests.
Lowland areas consist of wet, poorly drained black spruce fens and bogs, which compose almost
half the area of the subregion. Black spruce growing in lowland habitats is typically much smaller
compared to those in semi-uplands. Upland soils are predominantly Gray Luvisols, semi-uplands are
Gleysols, and lowland soils are Organic [28]. The subregion is characterized by short warm summers
and long cold winters, with the average temperature of the warmest month being 15.9 ◦C and average
temperature of the coldest month being −18.7 ◦C (this is based on the Fort McMurray climate normal
from Environment Canada). Mean annual precipitation is 469 mm.
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Figure 1. Map of field study area. Green area is the boreal forest within Alberta, Canada, while the
black area is the Horse River fire, which burned an area of 589,617 ha in 2016.

2.2. Field and Lab Methods

After initial scouting, it was determined that while aspen stands burned across a gradient of
different fire severities, black spruce stands only burned at high severities. This discrepancy in burn
severities resulted in sites selected differently for each stand type. Black spruce-dominant stands
(≥80% black spruce) were chosen by two general habitat types of black spruce in the area: semi-upland
and bog. Aspen-dominant (≥80% aspen) stands were chosen across a gradient of fire severities (low,
moderate, high, and unburned). Trees in both black spruce habitat types and across all aspen fire
severities were approximately the same age (~80 years). Buffers between plots and forest edges were
double the average tree height of a stand (60 m for aspen and 30 m for black spruce).
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In the summer of 2017, one year after the fire, 71 measurement plots were randomly placed in
appropriate stands. Twelve plots were placed in each black spruce habitat type, and each habitat type
had 3 unburned control plots. Twelve plots were placed in each aspen fire severity level, and there
were 5 unburned control plots. At each site, circular plots with a radius of 5.67 m were established.
Within each circular plot, North:South and East:West transects were also established. At each plot,
tree regeneration, fire severity, and stand characteristics were measured and a soil sample taken.
The Composite Burn Index (CBI) [29] was used to estimate burn severity. The CBI uses five strata
levels in a community to determine the magnitude of fire effects. For this research, only the substrate
and dominant/co-dominant tree strata were used, because pre-fire characteristics for other strata levels
were unknown.

Tree and stand measurements included canopy height, stand age, and DBH from all trees with a
DBH >7 cm. These measurements were taken post-fire but represent pre-fire conditions. Canopy height
was determined by measuring the heights of three average overstory trees. Tree cores were taken at
breast height from three average-sized overstory trees to estimate stand age. Age was determined in
the lab using CooRecorder software (Cybis Dendrochronology) after core preparation.

Soil grab samples, including litter, humus, and mineral soil, were collected from the four quadrants
of each plot. If mineral soil was not present in the black spruce bog stands, two depths of organic soil
were taken. These samples were then analyzed for pH, electrical conductivity (EC), and texture with
EC and pH measured in a soil to water ratio of 1:2 for mineral soils and 1:10 for organic soils using a
sympHony™ pH meter [30]. Mineral soil texture was determined using a Beckman Coulter LS 13 320
laser particle size analyzer system (ISO method 13320). Decomposition state for organic soils was done
by hand using the von Post scale of decomposition [28].

Tree regeneration, the main response variable, was measured using 20 subplots evenly spaced
along the North:South and East:West transects within each plot. Subplot size depended on the stand
type. Subplot size in aspen stands was 50 cm × 50 cm, as regeneration was very high. Subplots
in black spruce stands were 100 cm × 100 cm, as regeneration rates were lower. In each subplot,
seedlings or suckers were tallied and then averaged for the stand on a per hectare basis. Percent cover
of vegetation functional groups (shrub, forb, grass, and bryophyte) was also estimated within each
subplot. All measured aspen were root suckers (>50 cm tall one-year post-fire, green stem, large leaves)
and this was confirmed through excavation for a minimum of one regenerating aspen stem per stand.

To determine preferred seedbeds for black spruce seedling establishment, we returned to 21 of
the 24 black spruce sites in the summer of 2018. Three of the sites, all bog, were not revisited due to
inaccessibility. Plot layout was similar to what was setup in 2017, with North:South and East:West
transects inside of a 5.67 m plot. However, a smaller circular regeneration plot was also established at
the plot center with a radius of 3.99 m. This smaller regeneration plot was used to count the number
of black spruce seedlings that were being established and note the seedbed type they were growing
on. Sixty seedbed plots (5.67 cm radius) were placed along the transects, and within each seedbed
plot, the dominant seedbed type was determined along with total vegetation cover. Seedbed types
were classified as: mineral soil (concave and convex), unburned organic matter/hummocks (wet and
dry), dead wood (within 5 cm), charred organic matter, and other (rock, water, etc.). Concave mineral
soil, charred organic matter, wet unburned organic matter, and deadwood seedbeds all had mesic
conditions. Convex mineral soil and dry unburned organic matter had subxeric conditions. We did
not examine seedbed preferences for aspen, because regeneration took place via root suckers.

2.3. Statistical Analyses

All data were analyzed using R software (R Core Team, 2018, Boston, MA, USA). Since aspen and
black spruce regeneration variables were over-dispersed count data and could not be transformed,
negative binomial models were used. First, to understand the differences between selected sites, within
each stand type, several MANOVAs were performed (manova command in R 3.1.4). To determine the
differences among pre-fire stand characteristics, basal area, height, and age were used as response
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variables and site selectors of fire severity and habitat type were used as explanatory variables.
To determine the differences among post-fire stand characteristics, forb cover, grass cover, shrub cover,
bryophyte cover, % sand, % silt, % clay, pH, and EC were all used as response variables and site
selectors of fire severity and habitat type were used as explanatory variables.

Secondly, to determine the effects of the site variables of habitat type for black spruce stands and
fire severity for aspen stands, negative binomial models were used (glm.nb command in R 3.1.4). For the
black spruce stands, two models were created. Both used habitat type as the only explanatory variable
with one using black spruce regeneration and the other using aspen regeneration as the response
variable. In the aspen stand, fire severity was the only explanatory variable used and the amount of
aspen regeneration was the response variable. We then ran an analysis of deviance on each of the
models (anova command in R 3.1.4). Thirdly, negative binomial models were used to determine what
stand characteristics had an effect on regeneration rates. Models were chosen based on the lowest AIC
score. Beta values were transformed to integer values, eβ, to more easily understand the magnitude of
effects. Pseudo R2 values were calculated using the rms package (Version 5.1-1) [31].

Lastly, seedling preference values were derived for black spruce using the formula:

Preferenceseedbed =
(No. seedlings on seedbed x)/(Total no. of seedlings)

(No. of seedbed x)/(Total no. of seedbeds)
(1)

where a preference value of 1 indicates no preference for a seedbed, while greater values indicate
preference and lower values indicate avoidance [17]. An ANOVA (anova command in R 3.1.4)
was used compare seedbed preferences among the two habitat types. To meet the statistical
assumptions of normality and homogeneity of variance, substrate preference for aspen seedlings was
ln(x + 1) transformed.

3. Results

3.1. Regeneration in Black Spruce Stands

Pre-fire basal area (p = 0.049) and height (p = 0.007) were greater in semi-upland areas compared
to bog black spruce habitats (Table 1), but there was no difference in stand age (p = 0.147). Post-fire forb
cover (p = 0.021), shrub cover (p = 0.010), and EC (p = 0.042) were all higher in bog habitats. No other
post-fire stand characteristics were different between habitat types (p > 0.05).

Table 1. Pre- and post-fire stand characteristics for each stand type sampled. Values are average
(standard error), n = 12 for each stand type. Pre-fire forests were all comprised of ≥80% either aspen or
black spruce; other tree species were not included.

Stand Type Basal Area Height Forb Shrub Bryophyte Clay Sand pH
Electrical

Conductivity
(EC)

(m2 ha−1) (m) (%) (%) (%) (%) (%) (µS cm−1)

Black spruce—Bog 6.7 (1.2) 11.1 (0.9) 11 (2) 8 (1.8) 3 (1.0) - - 5.0 (0.3) 140 (30.5)

Black
spruce—Semi-upland 13.9 (1.3) 14.4 (0.7) 8 (2) 2 (0.9) 11 (4.7) 24.4 (1.9) 36.8 (4.0) 5.2 (0.1) 88 (11.9)

Black
spruce—Unburned

bog
5.3 (1.7) 7.7 (2.3) 14 (4) 20 (6.5) 86 (2.5) - - 5.2 (0.2) 185 (41.2)

Black
spruce—Unburned

semi-upland
25.1 (5.8) 15.8 (1.2) 3 (1) 10 (3.5) 85 (5.1) 14.1 (1.0) 53.3 (1.6) 4.4 (0.2) 165 (46.3)

Aspen—Low 32.7 (3.5) 22.7 (1.1) 224 (3) 9 (2.0) 2 (0.8) 31.5 (2.5) 16.0 (3.2) 6.0 (0.1) 124 (14.2)

Aspen—Moderate 40.3 (10.2) 21.8 (1.0) 20 (3) 5 (0.9) 0 27.3 (2.2) 19.2 (3.6) 5.9 (0.1) 84 (5.2)

Aspen—High 27.3 (2.7) 21.5 (1.0) 26 (3) 6 (0.9) 1 (0.3) 26.5 (2.2) 23.0 (3.6) 5.9 (0.1) 106 (5.2)

Aspen—Unburned 22.9 (4.5) 21.9 (1.1) 20 (3) 10 (4.2) 1 (1.3) 18.1 (6.1) 56.4 (10.8) 5.6 (0.3) 84 (9.7)
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Across all burned black spruce stands, regeneration was primarily comprised of black spruce
(60%) and aspen (32%). However, balsam poplar (Populus balsamifera L.) and jack pine (Pinus banksiana
Lamb.) were also present in small numbers (7% and 1%). Black spruce regeneration was highly
variable, ranging from 0 to 43,000 stems ha−1 in bogs and 0 to 39,500 stems ha−1 in semi-upland
forests. Aspen regeneration was also highly variable, ranging from 0 to 17,000 stems ha−1 in bogs
and from 0 to 36,000 stems ha−1 in semi-uplands. There was no significant difference in black spruce
regeneration across the two habitat types (xbog = 13,375; xsemi−upland = 10,583 stems ha−1; p = 0.698),
however semi-upland habitats allowed for significantly greater aspen regeneration via root suckers
(xbog = 8000; xsemi−upland = 43,667 stems ha−1; p = 0.011; Figure 2). In the unburned controls, black
spruce regeneration averaged 3667 stems ha−1 and was concentrated in the bog habitats.
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Figure 2. Black spruce and aspen regeneration (stems per hectare) on different black spruce habitat
types. Values are mean and standard error.

Black spruce regeneration was positively correlated with forb cover (β = 1.448, p < 0.001, pseudo
R2 = 0.396). For each 10% increase in forb cover, there were approximately 8500 more regenerating black
spruce seedlings ha−1 (Figure 3). Aspen regeneration was greater in semi-upland habitats, but was not
affected by stand and site characteristics, including basal area, tree height, tree age, competition levels,
or soil properties.

Seedbed type had a significant effect on the establishment of black spruce seedlings, with habitat
types having significantly different availabilities of seedbeds (p = 0.009). Semi-upland habitats had
significantly more dead wood seedbeds (p < 0.001), while bog habitats had significantly more dry
unburned organic matter (p = 0.014).

In terms of seedbed availability, dry unburned organic matter was the most common at 58%,
followed by charred organic matter at 22% and dead wood at 11%, convex mineral soil, wet unburned
organic matter, and other seedbeds comprised of <10% of the available seedbeds (Figure 4A). Of the
552 seedlings observed in bog habitats, 40% were being established on dry unburned organic matter,
29% on charred organic matter, 27% on wet unburned organic matter, 3% on dead wood, and <1% on
convex mineral soil (Figure 4A).
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Charred organic was the most common seedbed available in semi-upland habitats at 44%, followed
by dead wood at 30% and dry unburned organic matter at 23%, convex mineral soil, concave mineral
soil, wet unburned organic matter, and other seedbeds made up <5% of available seedbeds (Figure 4B).
Of the 1457 seedlings observed, 48% established on dead wood, 45% on charred organic matter, 4% on
wet unburned organic matter, 2% on dry unburned organic matter, and <1% on convex and concave
mineral soil combined (Figure 4B). Black spruce seedlings tended to prefer charred organic matter
as a seedbed in both habitats (p = 0.021). In bogs, wet unburned organic matter was also a preferred
seedbed, while dry unburned organic matter was preferred only slightly. In semi-uplands, dead wood
and wet unburned organic matter were other preferred seedbeds. Preference values for all other
substrates were low.
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3.2. Regeneration in Aspen Stands

There were no significant differences in aspen pre-fire stand characteristics (p = 0.671; Table 1).
In pure aspen stands, regeneration was dominated by aspen (99.5% of all regenerating stems). However,
balsam poplar (0.4%) and white spruce (0.1%) [Picea glauca (Moensch) Voss] were also present in
small numbers. Aspen regeneration ranged from 14,000 to 294,000 stems ha−1. In general, moderate
severity fires had the greatest amount of regeneration, followed by high and low severity (xlow = 93,384,
xmod = 122,909, xhigh = 104,000 stems ha−1; Figure 5) with differences being marginally significant
(p = 0.082). Unburned stands had little aspen regeneration, with only 5 regenerating aspen stems found
across all 5 unburned stands.
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For burned stands, forb and shrub cover negatively affected regeneration of aspen (βforb = −0.017,
pforb = 0.036, βshrub = −0.076, pshrub < 0.001, pseudo R2 = 0.475). Specifically, a 10% increase in either
forb or shrub cover decreased aspen regeneration by approximately 20,000 stems/ha (Figure 6).
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4. Discussion

Black spruce regeneration densities averaged 11,979 stems ha−1 and were slightly lower than
expected. Past studies have found that black spruce typically regenerate in numbers of about 40,000
stems ha−1 and as high as 80,000 stems ha−1 [7,8,32]. Other studies, however, took regeneration
measurements at least 5 years post-fire. Black spruce has been found to take 5 to 10 years to reach
maximum seedling establishment [33], therefore, black spruce establishment could further increase in
our stands within the next few years. Although initial black spruce regeneration densities were lower
than expected, these forests would still be considered adequately re-stocked [34].

Pre-fire stand basal area and height were both greater in semi-uplands. Black spruce growing
on wetter bog sites have been shown to have reduced growth rates compared to trees growing in
more upland sites [35,36], mainly due to low oxygen availability to the tree roots in water-saturated
soils [37,38]. Greater tree productivity is linked to greater seed production [39], so semi-upland forests
would likely have seen greater amounts of seed rain post-fire. However, semi-uplands did not see
greater amounts of black spruce regeneration, and in fact, on average they saw slightly lower amounts
of regeneration. This discrepancy can likely be explained by lower seedbed availability.

Across both habitat types, black spruce regeneration increased with forb cover, suggesting
preferable seedbed availability for both forbs and black spruce. Black spruce tends to establish on
mineral soil, thin organic soil, or moss seedbeds [9,10,15]. It has been thought that these seedbeds
are preferred because of their ability to provide constant moisture. We found similar results with
charred organic matter, which would be comparable to a thin organic soil, as a preferred seedbed
at both habitat types. Moss (wet unburned organic matter) was also a preferred seedbed. Our
results, however, did not show a preference for mineral soil. This could be explained by a lack of
mineral soil availability. Previous studies have made no mention of deadwood as a preferred seedbed,
however, deadwood and the soil around it was a preferred seedbed on semi-upland habitats in our
study. Moss seedbeds are thought to be optimal because of their high moisture retention and low
temperature [15,40]. Bog habitats had more moss seedbeds available compared to semi-uplands, which
may explain why bogs saw more black spruce regeneration on average. Our results are an important
first step in understanding seedbed preferences for black spruce in Alberta’s boreal forest, allowing for
better forest management and aiding in black spruce reforestation.
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The large amount of aspen regeneration in previously pure black spruce stands was surprising.
In semi-uplands, aspen regeneration averaged 10,917 stems ha−1, nearly matching the regeneration of
black spruce. All measured aspen were root suckers, therefore, proximity to aspen stands was likely
the main factor affecting local patterns in aspen regeneration. Aspen regeneration in black spruce
stands was not affected by any post-fire stand characteristics, likely because root suckers are sustained
by parent tree root systems for some time after fire [41], so the amount of regeneration would be
directly related to aspen root densities.

These high regeneration densities of aspen in black spruce stands could indicate a change in forest
successional trajectory. Successional processes in black spruce have traditionally been viewed as a
simple cycle of self-replacement after fire. However, with changing climate and fire regimes, it has
been found that black spruce forests may be more susceptible to change than originally thought [14].
A change in successional pathways has already been seen in Alaska’s boreal forests [8], with sites
previously dominated by black spruce now seeing domination by deciduous trees in early successional
stages. This study seems to show evidence of this occurring in Alberta’s boreal forests as well, especially
in semi-upland habitats.

Increases in deciduous tree species cover will also contribute to changes in the fire regime for
stands previously dominated by black spruce. Black spruce have a large amount of fine twigs and
needles, high resin content, low moisture content, and large quantities of fine ground fuels that are
connected to the canopy, creating a highly flammable environment [14]. Deciduous tree species
are much less flammable due to higher moisture content and reduced amounts of fine fuels [42].
Our findings correspond with this, as we found that pure aspen stands burned at differing severity
levels, while black spruce stands burned only at high severities. For forest managers, understanding
how black spruce forests can shift in successional trajectories can help with predicting how changes in
fire regimes may shape future forest cover.

Aspen regeneration across different burn severity levels was not different. However, an average
regeneration rate of 105,944 stems ha−1 demonstrates that these post-fire forests will easily be fully
stocked aspen forests [34]. This large amount of regenerating aspen is similar to results found in some
studies in western Canada [16], but much higher compared to other studies in the western United
States [43]. Low severity burns saw the least amount of regeneration on average, likely because there
was not complete overstory mortality and sucker production was not initiated in all trees. Since there
was not complete overstory mortality, and there were still many suckers produced, it is likely that these
forests will become uneven-aged stands. This could change our perspective on forest management, as
it is generally assumed in the area that all stands are even-aged after fire.

Increasing amounts of forb and shrub cover were found to inhibit aspen sucker regeneration.
These findings support other studies showing that vegetative competition can significantly reduce
aspen suckering through competition for resources and cooling of the soil, which can inhibit sucker
initiation [44,45]. Shrub cover had a greater effect on aspen suckering compared to forb cover, although
forb cover was typically much greater than shrub cover (Table 1). Shrubs are larger and are more
capable of competing for resources than forbs, they also would shade the soil much more than forbs,
cooling the soil and blocking light from a shade-intolerant species. This information could be used by
forest managers in areas where aspen regeneration is low, with understory vegetation removal being
considered to facilitate more root suckering.

5. Conclusions

In conclusion, both black spruce and trembling aspen regeneration post-wildfire was substantial
enough for both stand types to be considered adequately restocked. Regeneration of black spruce
was positively correlated with forb cover, likely due to higher availability of preferable microsites
for seed germination. Conversely, aspen regeneration was negatively correlated with forb and shrub
cover, likely due to competition. High regeneration of trembling aspen was observed in semi-upland
black spruce stands, which could indicate a change in successional trajectory. A changing climate and
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changing fire regimes could allow deciduous forests to replace these once pure black spruce stands.
In turn, higher amounts of deciduous forests would also alter fire regimes, due to characteristics that
make them less flammable than conifers. Understanding these shifts in successional trajectories and
fire regimes could help predict changes in future forest cover and allow for better management.
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