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Abstract: Forest resources have a high economic value in the State of Georgia (USA) and the landscape
is frequently disturbed as a part of forest management activities, such as plantation forest management
activities. Thus, tracking the stand-clearing disturbance history in a spatially referenced manner
might be pivotal in discussions of forest resource sustainability within the State. The two major
objectives of this research are (i) to develop and test a reliable methodology for statewide tracking of
forest disturbances in Georgia, (ii) to consider and discuss the use and implications of the information
derived from the forest disturbance map. Two primary disturbance detection methods, a threshold
algorithm and a statistical boundary method, were combined to develop a robust estimation of recent
forest disturbance history. The developed model was used to create a forest disturbance record for the
years 1987–2016, through the use of all available Landsat Thematic Mapper (TM)/Enhanced Thematic
Mapper (ETM+) data. The final product was a raster database, where each pixel was assigned a
value corresponding to the last disturbance year. The overall accuracy of the forest disturbance map
was 87%, and it indicated that 4,503,253 ha, equivalent to 29.2% of the total land area in Georgia,
experienced disturbances between 1987 and 2016. The estimated disturbed area in each year was
highly variable and ranged between 84,651 ha (±36,354 ha) to 211,780 ha (±49,504 ha). By combining
the use of the disturbance map along with the 2016 database from the National Land Cover Database
(NLCD), we also analyzed the regional variation in the disturbance history. This analysis indicated
that disturbed forests in urban areas were more likely to be converted to other land-uses. The forest
disturbance record created in this research provides the necessary spatial data and address forest
resource sustainability in Georgia. Additionally, the methodology used has application in the analysis
of other resources, such as the estimation of the aboveground forest biomass.
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1. Introduction

As forest disturbances are a primary factor in the dynamics of a forest ecosystem, the history of
disturbances helps keeps track of the condition and development of a forest [1]. Forest disturbances
may affect the forest species composition and stand structure depending on the disturbance agent,
magnitude, and other complex factors such as soil type, water and nutrient availability, and ecosystem
biodiversity [2]. The spatio-temporal patterns of land disturbances are changing due to both
anthropogenic and natural agents of disturbance [3]. Hurricanes are a major contributor to deforestation
in states bordering the Atlantic and Gulf of Mexico regions of the southern United States [4,5], while
in the western United States, forest fires, which are the second largest cause of disturbances, have
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increased since the mid-1980s [6,7]. In Europe, disturbances caused by wind, bark beetles, and wildfires
have also increased over the last century [8]. Mechanical disturbances caused by human activity
are another cause of forest disturbance. In Southeast Asia, for instance, demand for monoculture
plantations, such as natural rubber, is the main driver of the disturbance of tropical forests [9]. As
spatially referenced forest disturbance tracking provides fundamental information in describing the
current state of a forest, accurate knowledge of it consequently facilitates the accurate prediction of
future conditions and outcomes.

In the southeastern United States, timber harvesting is estimated to be the dominant contributor
to forest disturbances [10]. This region encompasses 36% of the timberland, or forested area capable
of timber harvest, in the United States [11]. Among the states in the southeastern United States,
Georgia has the largest area of timberland. The plantations in Georgia consist predominantly of
loblolly pine (Pinus taeda L.), which is the dominant commercial tree species in the southeastern
United States. Silvicultural prescriptions for intensively managed plantations include site preparation,
herbicide control, fertilization, thinning, and the use of genetically improved seedlings [12]. The
continuous efforts to increase plantation volume yields [13,14] have led to the shortening of pine
plantation rotations to 20–25 years. Unlike other states having forest practice laws (e.g., Oregon
and California) [15], Georgia employs voluntary best management practices (BMPs) to guide forest
management activities [16]. While the BMP guidelines include adherence to the federal Clean Water
Act, forest owners in Georgia do not have to adhere to a specific scheme of forest practices. Thus, timber
plantation managers have considerable flexibility in optimizing their forest management objectives and
economic returns, such as intensive forest management and silviculture efforts. Because of the warm
and humid climate, the characteristics of the forestland, and common forest management practices,
the forest landscape in Georgia evolves rapidly, showing significant changes over relatively short
periods of time. The pertinent question regarding the welfare of Georgia forests is whether they are
managed on a sustainable basis [17,18]. To assess the sustainability of Georgia forests, it is essential
to detect stand-level disturbances, such as final harvests, because knowledge of the date of forest
regeneration helps predict the growth and yield of plantations. To this end, spatiotemporal data
providing information leading to the identification of the disturbances in a spatially referenced manner
can help inform these analyses [15]. It is noteworthy that the Global Forest Change (GFC) dataset
provides forest gain and loss with 30-m resolution, globally [19]. However, as the GFC dataset provides
the disturbance history starting only after the year 2000, it was necessary to develop our own model to
detect the disturbances occurring from the 1980s onward. Although some research has been dedicated
to partially tracking the forest disturbance history in Georgia [20–22], with the exception of the GFC,
no research has covered the disturbance history of the entire state of Georgia.

The Landsat program is the most common source of data for broad-scale forest disturbance
analyses because (i) it has a long history starting from 1972, and (ii) its products provide moderate
spatial resolution for forest disturbance analyses [23]. Since October 2008, Landsat data managed
by the United States Geological Survey (USGS) has been freely available due to a change in the data
policy of the Landsat program [24–26]. By 2016, more than 3.2 million Landsat images were freely
available through the USGS Earth Resources Observation and Science Center archive [27]. This policy
change has stimulated new research efforts, such as those aimed at the development of algorithms to
detect the land-use change over time. One of the achievements within this research field involved the
assessment of forest disturbance trends of the conterminous United States between 1985–2010 [28].
Another example of development within this field is that the emergence of the LandTrendr algorithm,
a univariate approach that segments an imagery time series into a series of trends, including changes
in forest conditions [9,29].

The Vegetation Change Tracker (VCT) algorithm is another process that has been developed to
reconstruct past forest disturbance history from a series of Landsat imagery. With this algorithm,
changes in the spectral-temporal properties of vegetation over time are tracked to detect forest
disturbances [22,30]. The index used to detect the change is the Integrated Forest z-score (IFZ), which
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is computed for each pixel in a Landsat scene. As the VCT can be implemented in a reasonable
amount of computational time, and since it does not require extensive parameter tuning, its application
toward various topics has been made. Zhu [31] categorizes the VCT algorithm as a thresholding
method that detects the change in the land-use, where large enough deviations from the assumed
threshold are observed. The advantage of a thresholding method is that its implementation process
is more straightforward than other change detection methods, and thus it is possible to implement
this method using only one satellite image per year. The disadvantage of a thresholding method is
that the performance of the model is profoundly affected by the assumed threshold values. Statistical
boundary methods are another group of change detection models that assume time-series spectral
values fit within a statistical boundary [32–34]. These models detect a change in forest character when
any departure from the assumed statistical boundary is observed. This method has been used to detect
changes from all available satellite imagery [26] and seems less affected by the seasonality of the data,
as the raw time-series satellite data values are subjected to applied statistical procedures, in which
the seasonal variation and the noise of the raw data are removed from the transformed values. The
difficulty of performing geospatial analysis using all available time-series satellite imagery involves
basic information technology management and access to high-performance computing. Google Earth
Engine (GEE) [35] has recently made it possible to overcome these two obstacles. GEE is a cloud-based
platform that provides the high-performance computing resources necessary to process large-scale
satellite imagery without storing and managing the data locally. Recent research has involved using all
available time-series Landsat imagery with the GEE platform to assess land-uses, agricultural trends,
and forest vegetation [36–38].

We hypothesize that the known adversarial effect of thresholding methods can be reduced when
combined with statistical boundary methods, through the GEE platform. In addition, it is expected
that the disturbance detection map created from the forest disturbance detection model will help us to
understand the temporal trajectory of each forest stand. Considering these two aspects of our research
background, we set forth two major objectives of this research: first, to develop and test a reliable
methodology for statewide tracking of forest disturbances in Georgia; second, to consider and discuss
the use and implications of the information derived from the forest disturbance map.

2. Materials and Methods

2.1. Study Area

The study area encompasses the entire state of Georgia (Figure 1). The land area of Georgia
totals about 154,000 km2 and contains approximately 100,000 km2 of forests, covering almost 65% of
the total land area [39]. Timberland potentially available for commercial use constitutes 97% of the
forested area, which is more than any other state. Eighty-nine percent of timberland in Georgia is
owned by private landowners or corporate entities [11]. The state is divided into seven ecoregions
using the level III classification of the United States Geological Survey [40]. The Southern Coastal
Plain ecoregion is the southernmost region of the state and consists of flat plains and low elevations.
The primary forest types in the Southern Coastal Plain ecoregion are loblolly pine and slash pine
(Pinus elliottii Engelm.), and oak-gum-cypress forests typical of some upland areas and most lowland
(wet) areas. The Southeastern Plains ecoregion consists of a mosaic of cropland, pasture, woodland,
and forest. Elevations and slopes in the Southeastern Plains ecoregion are greater in magnitude
than those found in the Southern Coastal Plain. Oak-hickory-pine and southern mixed forests are
two of the predominant species in the Southeastern Plains ecoregion, although there are many pine
plantations as well. The Piedmont ecoregion is a transitional area between the Appalachian Mountains
and the flat Southeastern Plains. Piedmont includes the Atlanta metropolitan area, where about 57%
of the population of Georgia resides [41]; thus, urban areas comprise the most significant portion
of the land-use in this ecoregion. The other ecoregions, namely the Blue Ridge, Ridge and Valley,
Southwestern Appalachians, and the Interior Plateau, contain parts of the Appalachian Mountains [42].
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Among the various ecoregions, intensively managed plantation forests are located predominantly in
the Southern Coastal Plain. The ecoregions correspond closely to four major geologic zones of the
state: (a) Coastal Plain, (b) Piedmont, (c) Blue Ridge, and (d) Appalachian Plateau. The boundary
between the Coastal Plain and the Piedmont (the fall line), running east–west through the middle
of Georgia, represents a distinct change in the geological conditions relative to those found in flatter
areas containing relatively sandy soils (the Coastal Plain), and those containing rolling hills, with soils
derived from the process of metamorphism (the Piedmont, Blue Ridge, and Appalachian Plateau).
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Figure 1. Study area. The combination of letter and number in the figure represents the path and row
number of World Reference System-2 (WRS-2).

2.2. Materials and Methods

Level-1 Precision and Terrain (L1TP) corrected Landsat 5 TM and 7 ETM+ images for all Georgia
scenes (Figure 1) acquired between April 1984 and December 2016 were queried in the Google Earth
Engine platform. The L1TP satisfies both radiometric and geometric criteria set by USGS [43]. We did
not use the Landsat 8 OLI data because upon initial inspection, using Landsat 5, 7, and 8 altogether
produced inconsistencies in the surface reflectance value. For each image in each scene, clouds,
the cloud shadows, water, and snow were masked out using the C Function of the Mask (CFMask)
algorithm [44–46]. We filtered out imagery containing a high cloud cover percentage, which is likely to
contain cirrus clouds frequently left unmasked by CFMask. After visually inspecting the imagery, we
determined not to use imagery obfuscated by more than 50% cloud cover. Landsat 7 acquired after
31 May 2003, is provided as Scan Line Corrector-off imagery. We masked out the blank spaces in the
imagery provided by GEE. As a result of the preprocessing, 373 to 453 images per scene were available
for further analysis, as summarized in Table 1. In total, 5614 images were deployed in the analysis.
On average, the mean cloud cover was 14.5% and the length of the time between images averaged
28.0 days.
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Table 1. Dense Landsat time-series data summary by scenes. Four-digit numbers at the header
represent the WRS-2 row/path combination of the scene. The first two digits represent the path number
and the following two digits represent the row number (e.g., “1638” refers to path 16 and row 38). The
“number (#) of images” row represents the total number of available images for each scene captured
between April 1984 and December 2016. The “Days/Image” row represents the average length of time
from the acquisition of an image to the acquisition of the next image in Google Earth Engine (GEE).

Values/Scene 1638 1737 1738 1739 1836 1837 1838 1839 1936 1937 1938 1939 2036 Mean

Mean Cloud % 15.0 12.6 14.0 17.2 14.3 13.2 14.2 14.9 15.4 13.6 14.7 14.4 14.7 14.5
# of images 446 419 440 453 440 429 442 436 412 429 449 446 373 431.9
Days/Image 27.0 28.8 27.4 26.6 27.4 28.1 27.3 27.6 29.3 28.1 26.8 27.0 32.3 28.0

To detect forest disturbances, we computed the IFZ for each pixel of each scene based on the
methodology applied in the VCT algorithm [22,30]. The IFZ is a vegetation index that represents
the normalized distance between a pixel value of multi-spectral satellite imagery and the value of a
previously identified reference forest pixel. A small IFZ value for a given period and pixel implies that
the pixel describes a relatively stable mature forest, while a large IFZ value indicates a non-forested
area. An identified forest region is a group of pixels that represent forested areas and are used as
reference pixels for the IFZ calculation. Thirty identified forest regions were selected from the entire
state. Fifteen of these regions were selected from deciduous forests, while the rest of the regions
were selected from coniferous forests. Each region encompassed approximately 50 ha. The mean and
standard deviation of the area was computed from a single image that met the following conditions,
(i) was taken between April 1, 2018, and August 31, 2018 and (ii) cloud cover percentage is less than
1%. Huang et al. [22] argue that each Landsat 7 Enhanced Thematic Mapper (ETM+) band has a
different sensitivity to forest disturbance. The near-infrared band has low sensitivity, as most of the
Near Infrared electromagnetic energy is reflected by land surface type. The red band, Short-wave
Infrared (SWIR) 1 band, and SWIR 2 band of the imagery were left for IFZ calculation after removing
the bands insensitive to forest disturbance. The IFZ was computed for all of the pixels in all of the
images queried.

We set four conditions related to the time-series change in the IFZ to detect a forest disturbance.
Only if the time series IFZ meets all four conditions is a disturbance detected. The first of the
aforementioned conditions concerns the backward moving average. In the notation below (Equation
(1)), ti denotes the date in which the ith scene was taken. The ti is then converted from the standard
date format to a decimal value. The integer part corresponds to the year, while the fractional part
represents the Julian date in the year.

{ti ∈ R| t1, t2, . . . , tn}. (1)

For the ith imagery, x(ti) is the ith imagery captured on ti. The set of the imagery selected for ti is
denoted as Xi,

Xi :
{
x(ti − 3), x(ti+1 − 3), x(ti+2 − 3), . . . , x(ti)

}
∀i. (2)

Let C(Xi) be the number of elements of Xi. Then, the backward moving average of the IFZ for jth
pixel in the interval of [ti−3, ti], denoted as BMAti j, is formulated as follows:

BMAti j =

∑
k∈Xi

Fkj

C(Xi)
. (3)

The first condition is formulated as follows:

BMAti j ≤ 3. (4)
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This condition is equivalent to (a) in Figure 2, where the backward moving average has to be
higher than 3 for a forest disturbance to be detected. The figure shows that the mean of the last three
years of the IFZ values is smaller than 3, although some values are higher than 3.
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The second condition is related to the magnitude of change in IFZ value between the pre-disturbance
and post-disturbance states. As is argued in [23,37,47], the raw band value and vegetation index following
a forest disturbance can deviate from the model’s predicted range. Therefore, we set a condition that
detects the presence of the IFZ’s deviation from the past trend, which is quantified by the backward
moving average. We assumed that the IFZ values do not continuously deviate from a certain range unless
a disturbance occurred. The range was set to the backward moving average plus three times the standard
deviation in the last three years of the observations. The standard deviation of the IFZ for the jth pixel is
computed as,

SDti j =

√√√∑
k∈Xi

(
Zkj − BMAti j

)2

C(Xi)
. (5)

As the sample of the IFZ values after t(i), the medians of the five successive values after t(i) were
selected. The second condition is formulated as follows:

BMAti j + 3SDti j ≤ median(Yi), (6)

where Yi :
{
x(ti+1), x(ti+2), x(ti+3), x(ti+4), x(ti+5)

}
.

This condition is shown as (b) in Figure 2, where the backward moving average plus three times
the standard deviation has to be greater than the median for a forest disturbance to be detected.

The third condition is related to the moving average of the post-disturbance phase. This includes
the same computations as those seen in the computation of the backward moving average. The
collection of the imagery taken in [ti+1, ti + 3] is denoted as Zi.

Zi :
{
x(ti+1), x(ti+2), x(ti+3), . . . , x(ti + 3)

}
∀i. (7)

The forward-moving average is computed as follows:

FMAti j=

∑
k∈Zi

Fkj

C(Zi)
. (8)
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The third condition requires that,
FMAti j > 5. (9)

The third condition is presented as (c) in Figure 2, where the forward-moving average has to
be greater than 5 for a forest disturbance to be detected. As the fourth and final condition of the
disturbance, the magnitude of the disturbance was computed. The magnitude is the average distance
of the post-disturbance IFZ values from the threshold IFZ value. We used IFZ = 3 as the threshold
value; it is equivalent to the root mean square difference of the post-disturbance IFZ values from
the threshold.

All of the conditions were computed for each pixel in each image. The disturbance detection
model iteratively applied the four conditions from the oldest image to the most recent image. If
the model detects a disturbance for a given pixel in an image, the Julian date was assigned to the
disturbance map raster. Otherwise, nothing is assigned to the pixel. Although a specific date when a
disturbance was detected was recorded to the disturbance map raster, only the year was retained, since
our interest lies only in the annual disturbances. After running the algorithm forward in time toward
the most recent image, a single layer raster, of which pixels represent the last disturbance year, was
created. The pixels without any disturbance record were assigned a non-disturbance value.

2.3. Post-Processing

We conducted a post-processing effort after developing the raw disturbance map. The first task in
the post-processing effort was the reduction of “salt and pepper” in the disturbance map. The “salt and
pepper” phenomenon refers to scattered pixels that deviate considerably from their neighbors based
on the last disturbance year. We removed small clusters of these that were less than nine pixels in size
(equivalent to 0.81 ha), considering them to be noise inherent in the data. We adopted from the USDA
Forest Inventory and Analysis (FIA) program a definition of the minimum size of disturbance to be
0.404 ha (1 acre). Another post-processing task was to cut the pixels at the edge of each image. The edge
of the raw disturbance map had a band of areas that recorded disturbances more frequently than the
rest of the area of the map. As a result of visual inspection, it was inferred that the individual images
within the Landsat time series stack did not have precisely the same geographic extent. Therefore,
the edge pixels were frequently located out of the extent of the imagery and subsequently assigned
NA value. Next, we calculated the ratio of Clear Pixels (rCP) for each pixel to determine the pixels
that were available in smaller quantities (due to clouds, etc.), within the available imagery across the
time horizon. For every pixel in a scene, rCP was calculated as the number of the non-NA pixel values
throughout the time series divided by the total number of images available within a scene. It was also
determined that some of the pixels that were in specific land-uses, such as rivers, ponds, or buildings,
had smaller rCP values than the rest of the pixels. Based on visual inspection, we set rCP = 0.6 as the
threshold value for this post-processing effort. Pixels were masked from the forest disturbance map if
a pixel had an rCP smaller than the threshold.

2.4. Accuracy Assessment

To validate the forest disturbance map, we established 30 points for each of the 30 disturbance year
classes, and 2000 points for the undisturbed classes, using a stratified sampling method. The ratio of
points between each disturbance year class and the undisturbed class was equivalent to the initial result
of the disturbance detection map, which classified about 70% of the pixels to the undisturbed class.
The last disturbance year was visually inspected for each point. Google Earth Pro Historical Imagery
(GEPHI), custom GEE API, and the time series Landsat surface Reflectance value chart were used as
the data sources. GEPHI selected the imagery used based on the user’s zoom level on the display.
When a user magnifies the scale (zooms in), it provides high-resolution imagery, such as QuickBird or
NAIP. When the scale is decreased (when the user zooms out), it provides intermediate resolution
imagery, such as Landsat. In our inspection, we determined that the combination of Landsat imagery



Forests 2020, 11, 335 8 of 19

and middle-to-low scale imagery levels was not sufficient to verify the occurrence of a disturbance on
a sample point. Therefore, when GEPHI provided only Landsat or Sentinel imagery for a given year,
we switched to using a custom GEE API. The custom GEE API showed an annual Landsat mosaic
imagery during the growing season for each year from 1984–2018. Although the spatial resolution of
the API is 30-ms for all of the mosaics, visual verification of disturbance was possible by increasing the
scale (zooming in to the points). For the detection of disturbances before 2005, the custom GEE API
was used as the primary data source, as GEPHI did not provide annual high-resolution imagery. A
time-series chart of surface reflectance values was generated using the custom GEE API. Although
the occurrence of disturbances was not determined solely from the time series chart, the chart was
used to ascertain the time range within which disturbances were likely to occur. Of the 2900 points
created through the stratified sampling method, we first filtered out 187 points that were located on
the boundary of two different stands. This was performed because it is visually difficult to determine
the disturbance year for these points. The last disturbance year was detected for the rest of the points
by using the aforementioned approach. We created a confusion matrix based on the sample counts and
a normal confusion matrix in terms of estimated area proportions [48,49]. The area-based confusion
matrix was then used to develop an unbiased estimator of the total area for each disturbance class,
with 95% confidence intervals. In addition, overall and producer’s accuracies were calculated using
the estimated area proportions for each class in the area-based confusion matrix.

Pixels without a disturbance record in our model were assigned to the undisturbed class. To
further classify the undisturbed classes into either persistent forest, persistent non-forest, or into a
non-forest-to-forest class, the National Land Cover Database 2016 (NLCD 2016, [50]) was consulted.
The NLCD 2016 was developed to create a consistent multitemporal land cover and land cover change
map for the conterminous United States, at 30-m spatial resolution, from 2001 to 2016. In the NLCD
2016, deciduous forests, evergreen forests, mixed forests, and woody wetland classes were assigned
as the applicable vegetative land-uses. Yang et al. [50] studied the accuracy of a map created from a
model of the Appalachian Mountains in the northern part of Georgia (WRS-2 path 18, row 35), and
determined that the overall agreement between map and reference labels was 88%. However, the
user’s accuracies of evergreen forest, mixed forest, and woody wetland were relatively low (between
32%–62%). The NLCD 2016 raster data was acquired from the Multi-Resolution Land Characteristics
Consortium website [51]. For the sake of our goal, reclassification of the original data was performed.
The four aforementioned vegetation classes were aggregated into one forest class, while the remaining
of the classes were redefined as non-forested. The temporal trajectory of all the land in the state in
terms of the forest class was then examined (Table 2). The pixels assigned to the persistent forest class
were those with undetected forest disturbances over our time horizon forest disturbance, and were
considered as forest in the reclassified NLCD 2016. The persistent non-forest class was assigned to
pixels with undetected forest disturbances, which were considered as non-forest in the reclassified
NLCD 2016. The disturbed forest class was assigned to pixels with detected forest disturbance within
our time horizon, which were also considered as forest in the reclassified NLCD 2016. Pixels with
undetected forest disturbances were assigned to the persistent non-forest class and were considered
as non-forest in the reclassified NLCD 2016. The disturbed forest class was assigned to pixels with
detected forest disturbances within our time horizon, and which were also considered as forest in
the reclassified NLCD 2016. It was observed that many pixels with a recent disturbance record were
classified as the disturbed non-forest class. Classifying a newly disturbed pixel as non-forest, as of
2016, was appropriate if the forest represented by the pixel had not yet recovered. However, these
pixels are more likely to be regenerated as a forest than those pixels within the non-forest areas that
were disturbed more than five years ago. Therefore, we categorized the deforested class and recent
disturbance class as subclasses of the disturbed non-forest class to examine how much area was left as
non-forest for a substantial length of time. In the typical plantation forest management scheme in the
southeastern United States, forest regeneration is initiated soon after a major disturbance, such as a
final harvest or a fire. Thus, we classified pixels within the disturbed non-forest class detected as being



Forests 2020, 11, 335 9 of 19

disturbed after 2011 into the recent disturbance subclass, while the rest of the pixels, belonging to the
disturbed non-forest class, were classified as a deforested subclass. As a result, 5 class categories were
developed to describe the temporal trajectory of all the land in the state.

Table 2. Disturbance history classification class.

Class Name NLCD Class Disturbance Area (ha) Description

1 Disturbed forest Forest Between 1987–2016 2,347,978 Disturbed at least once,
currently forested

2 Persistent forest Forest No disturbance 7,330,405 Persistent forest

3 Recent disturbance Non-Forest 2011–2016 370,208 Disturbed after 2011,
currently non-forest

4 Persistent non-forest Non-Forest No disturbance 4,944,445 Persistent non-forest

5 Deforestation Non-Forest 1987–2010 398,663 Disturbed before 2011,
currently non-forest

3. Results

A 30-m spatial resolution raster database, in which each pixel was assigned a value that represents
the last disturbance year of the forest (Figure 3a), was created as a result of applying the GEE to a time
series of Landsat data. As is explained in Section 2.4, a count-based confusion matrix was developed
to gauge the accuracy assessment (Figure A1). An area-adjusted confusion matrix was also developed
to inform the accuracy assessment (Figure A2). Using the area-adjusted method, the overall accuracy
was 87%. As was shown in Figure A1, when using the area-adjusted method, the commission rate was
lower than the omission rate for most of the disturbed classes. Conversely, the commission rate was
higher than the omission rate for the undisturbed classes. The high omission rate indicates that the
disturbance detection algorithm tends to underestimate the area of disturbance.
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The estimated amount of disturbed area by disturbance year is plotted in Figure 3b. The estimate
indicated that 4,503,253 ha of the forest land in Georgia, which occupies approximately 29.2% of the
total forest land, was disturbed at least once between 1987 and 2016. The annual amount of disturbance
area ranged between 84,651 ha (±36,354 ha) and 211,780 ha (±49,504 ha) for the entire state. It is
worth mentioning that the annual last disturbance area tends to be lower in the early period of the
time horizon of this research. Conversely, the annual last disturbance area tends to be larger for
more recent years. This is because the recent disturbances overwrite the older disturbance record. To
examine the regional variations in forest disturbances, we aggregated the pixel values of the temporal
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trajectory raster data to county-scale. The mean last disturbance year was then computed for each
county, using pixels that have a disturbance record (Figure 4a). Subsequently, county-scale data was
further aggregated at the ecoregion-scale (Table 3) to illustrate the mean last disturbance year for the
159 counties in the state. The mean last disturbance year was approximately 2003.69 for Southern
Coastal Plain, while that of Blue Ridge ecoregion was 2000.11. This result indicates that the forest was
disturbed more frequently in the areas where intensive management of plantations occupies more land.
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Table 3. Land-use pattern classification in Georgia.

Ecoregion DistFor PerFor RecDist PerNon Defor AvgYear

Blue Ridge 3.51 76.47 0.36 18.36 1.31 2000.11
Piedmont 11.83 50.23 1.52 33.18 3.23 2000.93

Ridge and Valley 9.07 52.70 1.02 35.30 1.92 2001.12
Southeastern Plains 15.48 42.73 2.80 37.21 1.79 2003.68

Southern Coastal Plain 23.27 45.18 4.55 23.96 3.06 2003.69

DistFor: Disturbed forest (%); PerFor: Persistent forest (%); RecDist: Recent disturbance (%); PerNon: Persistent
non-forest (%); DeFor: Deforestation (%); AvgYear: Mean last disturbance year.

To further examine the types of disturbances, the ratio of the recent disturbance subclass to the
disturbed non-forest class (Figure 4b) was mapped. Figure 4b indicates that the majority of non-forest
pixels with a disturbance record in the Southern Coastal Plain were disturbed after 2011. In these 19
counties located in the Southern Coastal Plain, more than 70% of the non-forest land was disturbed
since 2011. On the other hand, about 67% of the non-forest land in Piedmont was disturbed during this
time period. This result coincides with previous research, which revealed that the growth of the Atlanta
metropolitan area over the last four decades has led to changes in land-use and the fragmentation of
forests for urbanization purposes [52].

4. Discussion

In this research, we examined the recent forest disturbance history of the state of Georgia. In
comparison to the change detection research that employed the VCT algorithm in North Carolina [53],
our results have almost the same overall accuracy (88.6% vs. 87%), although the accuracy assessment
methods between two research models are not identical. The most significant difference between the
model in [53] and our model is the number of Landsat time series scenes used to conduct the analysis.
As a result, our model less frequently misclassifies the disturbance year, plus or minus one year. This
may be because we used all available imagery with less than 50% cloud cover. Due to the improved
data availability, it was possible to detect forest disturbances approximately every 30 days, unlike
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the previous research that used a single set of imagery or mosaic imagery captured only during the
growing season.

We attempted to compare our result with the two existing disturbance detection datasets: the
North American Forest Dynamics data set [28] and the Global Forest Change dataset [19,54]. The
North American Forest Dynamics dataset does not match the spatio-temporal range of our study, as
it covered only two out of 14 WRS-2 scenes used in our research. Additionally, the North American
Forest Dynamic dataset was limited to detecting change from 1986–2010. On the other hand, the Global
Forest Change dataset includes the entire state of Georgia, although its temporal coverage initiates only
after the year 2001. Thus, we selected the Global Forest Change dataset as the basis of the comparison.
Version 1.4 of the Global Forest Change dataset was selected among the several available versions, as it
covers the years extending between 2000 and 2016. If an accuracy assessment point was assigned a
value smaller than that found in 2001, we reclassified it to the undisturbed class. Following this, the
pixel values of the band that represents the year of gross forest cover loss event in the Global Forest
Change dataset were extracted to the accuracy assessment points. Finally, a confusion matrix was
constructed (Figure A3). The overall accuracy of Global Forest Change was 85.9%, which is lower than
our result. Most of the user’s and producer’s accuracies for the disturbance class in Figure A3 were
lower than our result, except for the undisturbed class.

The four conditions described in our new algorithm served different roles in detecting forest
disturbances. Among these conditions, two of them, namely the backward and forward-moving average
of IFZ, are based on the threshold method, while a third is based on the statistical boundary method. The
backward moving average is a condition that quantifies the likelihood of a pixel being forest three years
before the target date. The forward-moving average, on the other hand, quantifies the likelihood of a
pixel being forest three years after the target date. These two moving averages describe the state of the
landscape within a time frame. As is shown in the various research conducted concerning change detection
models, it is possible to detect the occurrence of the land-use change by using only the backward and
forward-moving averages [55–57]. However, if only these two conditions are employed, our algorithm
suggests that disturbances are detected before they actually occur. This is because the forward-moving
average exceeds the threshold when most of the observations come from the post-disturbance period.
The final condition, which sets the statistical boundary for the five post-disturbance observations, helps
to detect disturbances at the correct time. Therefore, combining the threshold method and the statistical
boundary method alleviates the limitations of each method individually.

Although the results of the accuracy assessment suggest that this new method is better than our
previous analysis, which attempted to detect the disturbance history of seven counties in Coastal Georgia [20],
our new method still contained several areas of concern. For instance, on the commission error side of the
analysis, we found that some forest thinnings could have been misclassified as a final harvest disturbance.
One possible reason for the confusion is that the change in IFZ, when mediated through a high intensity
thinning and through a final disturbance, could be similar due to the amount of forest canopy removed, the
amount of forest floor exposed, and the size of Landsat pixels. Often, a forest thinning in plantation forests
in Georgia removes up to 50% of the basal area, and the residual live tree canopy may require three years
or more to close the gaps that are created. Conversely, on the omission error side, omission error rates for
the disturbance classes were between 23% to 67% in the area-adjusted confusion matrix. These errors are
often physically located at the edges of the disturbed stands. The omission error rate could be reduced by
changing the threshold values set for our disturbance detection algorithm. However, a more relaxed set
of threshold values for the disturbance detection process might result in a higher commission error rate
by confusing thinnings with final harvest disturbances. Thus, a delicate balance must be achieved if the
parameters are to be adjusted in an effort to reduce omission or commission errors. One plausible way of
acquiring better overall accuracy may be to develop a system that would optimize the threshold values in
the conditions we set in our algorithm.

Future research related to the methods described here might focus on detecting more recent
disturbances. To achieve this goal, it is necessary to remove the third and fourth conditions in our
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model, which observe the IFZ values after the disturbance. A second focus may be to combine
the regeneration history data with disturbance year, as the timing of regeneration processes (site
preparation, planting, etc.) can range from nearly instantaneous after harvest, to 2–3 years after harvest.
In our regional-scale disturbance analysis, we did not directly examine the timing of forest regeneration.
By applying a method for detecting the forest regeneration, it is expected that one may more closely
comprehend dynamic changes in forests across broad areas of a landscape.

Finally, the disturbance year map created in this research can be used to conduct an analysis
related to the forest inventory in Georgia. Once the disturbance year is combined with a broad-scale
forest inventory, the data can be used to estimate the above-ground biomass and perhaps other forest
product-related metrics of interest to both society and industry. Previous research has demonstrated the
use of these types of methods in estimating biomass in various regions by incorporating environmental
data to improve the accuracy of the estimation [58–61]. Although these research efforts have succeeded
in creating databases that estimate above-ground biomass, there is a known issue in which spectral
reflectance values of Landsat imagery are insensitive to changes in biomass among dense and
multilayered canopy forests, regardless of their age. Consequently, the biomass estimation results
in low accuracy for high biomass stands [62,63]. By incorporating the disturbance year data created
in this research, it is expected that the old forest and young forest can be discriminated more easily
among dense and multilayered canopy forests.

5. Conclusions

In this research, we established a high-resolution, spatially explicit inventory of Georgia’s forest
disturbance history that will serve as a baseline for stand-level forest management and conservation. The
raster database we created presents the last disturbance year of forests. Then, Google Earth Engine was used
to process all available images from the time series of Landsat TM/ETM+ imagery. Finally, we combined
the VCT algorithm, a threshold method, and the statistical boundary method to create our algorithm,
which detects forest disturbances. The overall accuracy of the disturbance year data was 87%. The data
suggests that 29.2% of the land area in Georgia was disturbed between 1987 and 2016. The estimated
annual last disturbance area ranged between 84,651 ± 36,354 ha and 211,780 ± 49,504 ha. As the process
records only the final disturbance for each pixel, the annual area of disturbance tends to increase towards
the more recent years. The use of all available time-series Landsat imagery contributed to the achievement
of less frequent misclassification of the disturbance year, plus or minus one year. Combining the threshold
method and the statistical boundary method made it possible to detect disturbances with a relatively
accurate temporal specification. Furthermore, by using the NLCD 2016 dataset and the disturbance map
we created, we were able to further examine regional variations in the disturbance history. The subsequent
analysis confirmed common insight on land-use patterns: namely, that disturbed forests near urban areas
were more likely to be converted to other land-uses than disturbed forests in rural areas. Meanwhile, in
the Southern Coastal Plain, where intensive plantation forest management is widely practiced, forests
experienced the greatest intensity of disturbance and regenerated at a higher rate relative to other regions.
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